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Abstract 

In this summary we present extrema1 (worst and best) average mutual information values carried 
by the extrinsic loglikelihood under the constraint of a given mean and variance while accounting for 
the consistency feature of loglikelihoods. This is done in an effort to gain insight into the iterative 
decoding procedure without resorting to the classical “Gaussian approximation”. 

1. Introduction 

In recent contributions [1]-[4] an approximate method based on a Gaussian approximation for the a 

posteriori extrinsic probability has been invoked in an effort to gain insight into the major param- 

eters affecting the performance of iterative decoding of concatenated interleaved coding systems. 

While [l] focuses on signal-to-noise ratio transfer, the studies in [2]-[6] adopt the mutual informa- 

tion measure. All results in [1]-[4] rely on the Gaussian approximation in the sense of [7], that is 

the extrinsic [8] probability function modeled as Gaussian and hence characterized by its average 

and variance. See [7] for further details and justifications. 

In this work, we wish to relax the Gaussian approximation. Specifically, we shall use the mutual 

information framework as in [3]-[4], but rather than invoking the Gaussian assumption, we shall 

introduce the worst case associated mutual information which still satisfies the discrimination (the 

expectation of the loglikelihood ratio) and a variance constraint as well as the consistency property 

[7], which is satisfied by the a posteriori extrinsic loglikelihood ratio (interpreted here as a random 

variable). To be addressed also the maximum of the associated mutual information under the same 

average and variance constraints of the extrinsic loglikelihood ratio. 

It is emphasized that the parameters of the a posteriori extrinsic loglikelihood ratio variable] such 

as its average (discrimination) and variance should be evaluated via probability propagation [9], 

not adhering to any Gaussian approximations. 
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2. Preliminaries 

Consider a random variable y which carries information on a binary symmetric random variable x 

taking on the values -1 and 1 with equal probability 1/2. Assume that y takes on values in some 

observation space 7, and is characterized by the conditional probability measure p(y1x). 

We now define a symmetry property as follows: 

Symmetry Definition [ll]. For all y E y ,  there corresponds a y’ E y ,  such that the Radon- 

Nykodim derivatives satisfy: 

A special case of this definition is the standard symmetric transition probability property where 

yl= -y. 

In the following it is useful to introduce to loglikelihood variable 

which is in fact a transformation of the random variable y. 

Following [9],[10] it is elementary to show the consistency of the random variable A. Assume that the 

effective probability measure is p(y(1) (interpreted as assuming that x = 1, was transmitted). This 

induces a probability measure on X (2.2) designated by q l ( X ) ,  and respectively +1(X) is induced 

by AYI- 1). 

Consistency: For a symmetric conditional measure we have [ll] 

and correspondingly, 
-A  4-1(4 = e Q-1(-X) . 

2.1. Mutual Information 

Consider now the average mutual information: 

where E designates here the expectation operator. It follows straightforwardly that 

1 0 0  
2 -00 2 -00 

00 

I = log 2 - 1 / dp(y)l) log (1 + e-’) - - / dp(y1 - 1) log (1 + e’) , (2.6) 
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where X and y are interrelated by (2.2). 

Invoking the symmetry condition (2.1) yields immediately that 

00 

= log 2 - dq1(X) log (1 + e-A) . s_, 
Since 

I = H ( z )  - H ( X l Y )  > 

where H stands for entropies or conditional entropies, by (2.7) it is clear that the equivocation 

3. Optimization Problem 

We are now in the position to set up the optimization problem. We first wish to minimize I or to 

maximize the equivocation H+. 

over all distributions of X that satisfy 

(3.5) 

Constraints (3.3),(3.4) are interpreted as a given predetermined mean (A) and variance (a2) while 

(3.5) designates the consistency property. 

We now use the consistency property (3.4) and the evident equality 
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for any G(X), to transform the optimization problem originally stated (3.1)-(3.5) in the double 

infinite interval (--00, GO) to the positive infinite interval (0 ,  GO). This yields 

X>O 

with the constraints, 

dpl (A) x (1 - e&) = X , (3.9) /om 

We can further transform the optimization into an optimization with respect to probability measure 

p(X) where 

which reads, 

Assertion (-mtative solu 

dp(X)X (-) 1 - e--X = X , 
1 + e--X 

lm X2dp(X) = u2 + . 

ion) : 

The maximizing distribution for (3.12) under constraints (3.13)-(3.15) is given by: 

&(A) = (1 - a )  d(0) dX + ad(X - A,) dX , 

or equivalently in terms of 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

(3.17) 
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where 

A0 = ( 6 2  + ( 1 ) 2 ) / x  

and where 
A x = aXo 

is the solution of the equation 

By (3.18), (3.20) we have, 

X2 
a =  

( 6 2  + ( 1 ) 2 )  

The corresponding average mutual information is 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

(3.22) 

Results (3.20),(3.22) are presented in a parametric form. That is for a fixed value of 5, x and 

Imin are given in a parametric form as a function of x E (0, d m ) .  It might be useful to 

introduce another parameter a (3.21) which takes on values in a E (0 ,1] .  

Assertion (tentative solution): 

The minimization in (3.12) over p(X) under constraints (3.13)-(3.15) is achieved by 

(3.23) 
J 6 2  + i 2  - (1 - €)A; 

6 (1 - €)b(X - Xo) dX + €6 
E’O 

where 

In terms of q1(X) (3.23) at the limit E = 0 transforms into 

The corresponding mutual information is given by 

(3.24) 

(3.25) 

Note that Imax is independent of the value of g2 and is fully determined by the sole constraint 1. 
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4. Conclusions 

In this summary we have identified the minimum (and maximum) average mutual information 

associated with the log likelihood consistent random variable, standing for the extrinsic information. 

This is done in an effort t o  relax the Gaussian approximation while propagating mutual information 

expression through the iteration process in a similar manner as done in  [2]-[4]. To that end the 

a posteriori average x and variance cr2 should be exactly evaluated [lo] without resorting t o  a 

Gaussian approximation [7]. The  minimum mutual information is then, a function of and cr2. 

The maximal value of the mutual information depends on x only. Using the proposed methods we 

obtained numerical examples that provide the upper bound and lower bound on the signal t o  noise 

ratio thresholds of concatenated codes with asymptotic interleavers. 
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