Direct Observations of Rotationally Distorted Stars

Gerard T. van Belle
Jet Propulsion Laboratory
David R. Ciardi
University of Florida
Robert R. Thompson
Jet Propulsion Laboratory
Rachel L. Akeson
Infrared Processing and Analysis Center

IAU Symposium 210:
Modelling of Stellar Atmospheres
17-21 June 2002, Uppsala, Sweden
Acknowledgements

- Referee: George W. Collins, II (Case Western Reserve University)
- The PTI Collaboration (JPL/Caltech)
- Steve Howell (Planetary Sciences Institute), Francis Wilkin (Observatoire de la Cote d'Azur)
- JPL Media Relations: Jane Platt, Frank Semerano
Spectral Inference of Rapid Rotation

- Rapidly rotating stars show line broadening
- Provides an independent check of our interferometric results
- Extreme rapid rotators can be difficult to characterize spectroscopically due to excessive line smearing
The Palomar Testbed Interferometer
PTI is a Near-IR (K & H-band) single-baseline interferometer

- NS and NW baseline combination
- NICMOS array combiner
- Point Src Limiting Mag K ~ 6.5
- Scientific Limiting Mag K ~ 5.7

http://huey.jpl.nasa.gov/palomar

Single and Dual-Beam Interferometry:

- Visibility (V^2) measurement \Rightarrow modelling (simple morphology like one or two stars)
- Simultaneous fringe tracking on two nearby stars \Rightarrow differential astrometry

Established as a Technology Testbed for the Keck Interferometer

First Fringe: July 1995
First Sci Pub: August 1998
Ops Through 2002

Palomar Testbed Interferometer (PTI)
Michelson Interferometer

\[x = D \sin \theta \]

Star is at infinity

Match paths through use of delay lines
Fringe Visibility

- Constructive & destructive interference of light
- Fringe contrast or visibility:
 \[V = \frac{I^+ - I^-}{I^+ + I^-} \]
- Calibration issues
 - Detector linearity
 - Zero point measurement
 - Noise characterization

Actual starlight fringes from IOTA - β And
Photo credit: R.R. Thompson
Visibility Function

- For a ‘uniform disk’, visibility matches:
 \[V = \frac{J_1(x)}{x} \text{ where } x = \frac{\pi \theta B}{\lambda} \]

 - \(B \) is the projected baseline
 - \(\theta \) is the stellar disk size
 - \(\lambda \) is the instrumental wavelength

- Baseline, wavelength known
 - Can solve for \(\theta \)

- Use \(V^2 \) instead of \(V \)
 - Unbiased estimator of visibility
 - See Colavita (1999)
Limb darkening

• Stars are *not* uniform disks
• Gaseous, not solid, sphere
 - End up looking ‘into’ the star
• Good and bad
 - Have to account for this
 - Measuring this can be used to characterize internal structure of star
 - Direct probe of internal temperature structure
Limb darkening. II

- Effects are less striking in the near-IR
- Most of the effects are seen at the higher spatial frequencies
- Acceptable to do a UD fit, and scale
 - Corrections are $\sim 1.5\%$ for main seq.
 - Higher for evolved stars
 - Gives the size of the mean radiating surface

A-type Star Model (Claret et al. 1995)
Initial Indications of Something Interesting with Altair

- Use of the PTI N-S and N-W baselines gave different angular sizes
- Not explainable in terms of limb darkening, spotting

![Graph showing normalized v^2 versus Mλ for different baselines and angular sizes.]

Baseline PA~195°
Baseline PA~245°
3.32 mas UD
3.13 mas UD
3.40 mas UD
Contemporaneous Measurements Appear Normal

- Vega had been observed on the same nights, at the same time
- No apparent $\theta(UD)$ evolution with projection angle
Ellipsoidal Fit to Altair Data

- Measurement of Altair's angular size with PTI's N-S and N-W baselines
 - ~50° between the baselines
- Best fit is an ellipse
 - $a/b = 1.140 \pm 0.029$
 - $a-b = 424 \pm 79 \text{ \mu as}$
- Star is a known rapid rotator
 - Can derive rotational velocity:
 \[v \sin i = \sqrt{\frac{2GM}{R_b}} \left(1 - \frac{R_b}{R_a}\right) \]
 - $v \sin i = 224 \pm 28 \text{ km s}^{-1}$
The Roche Model

- Shape defined by local radius $R(\theta, \omega)$ of an equipotential surface:

$$\Phi = const = \frac{GM}{R} + \frac{1}{2} \omega^2 R^2 \sin^2 \theta$$

$$= \frac{GM}{R_p(\omega)}$$

where θ is the colatitude and $R_p(\omega)$ is the polar radius
Solving for the Roche Model

A solution for the colatitude- and rotation speed-dependent radius:

\[r(\theta, u) = \frac{R(\theta, u)}{R_p} = \frac{3}{u \sin \theta} \cos \left[\frac{\cos^{-1}(-u \sin \theta) + 4\pi}{3} \right] \]

where \(u \) is the fractional rotation speed and \(r(\theta, \omega) \) is the normalized radius. \(u \) is defined as:

\[\omega^2 = u^2 \frac{8 \ GM}{27 \ R_p^3(\omega)} \]
Elements of a Roche Model. I

- Four independent parameters define Roche model on the backdrop of the sky
 \(i \) – inclination
 \(\alpha \) – orientation
 \(R_p \) – polar radius
 \(u \) – fractional rotational speed
- Assumes a mass \(M \) and distance \(d \) for the object is known
Noteworthy Assumptions

• Rigid rotation
 – Poor assumption for most stars
 – But actually not bad for A-type stars

• Uniform disk illumination
 – Again, poor assumption for most stars
 – Expected gravity darkening will be low contrast for Altair in near-IR
 – Again, actually not bad for A-type stars

• Working in image space, not Fourier space
 – Downright dangerous assumption
 – Will change the analysis in future experiments
Monte Carlo Fitting

- Can randomly generate values for \(\{i, \alpha, R_p, u\} \) and examine \(\chi^2 \) of fit
- Brute-force examination of \(\chi^2(i, \alpha, R_p, u) \) can reveal global minima in \(\chi^2 \) space
Results of the Minima Search

- No statistically significant global minima found for \(\{i, \alpha, R_p, u\} \)
 - For rich enough interferometric data sets, unique solutions are possible
- However, a minima 'trough' found in \(\{i, u\} \)
 \[
 u = 4.961 \times 10^{-5} (90 - i)^2 + 1.116 \times 10^{-3} (90 - i) + 0.762
 \]
- No inclination less than 30° is allowed, no speed less than 210 km/s

Altair \(\chi^2 \) in \(\{i, u\} \) subspace
Unique Apparent Rotational Velocity

- Family of models appear to fit data
 - A single projected rotation velocity agrees with these models
- Unique solution for $v \sin i = 210 \pm 12$ km/s
 - Independent of, and agrees with, $v \sin i$ from spectra
- Finding not inconsistent with NPOI data

Altair best fit: $u=0.82, i=70^\circ$
Future Directions

• Other large (nearby) rapid rotators
 – eg. Regulus, eps Sgr

• Multiwavelength observations
 – Combine PTI, NPOI data in near-IR, visible
 – Directly probe latitude dependencies of radius and temperature

• Main limitation – resolution, not sensitivity
 – Need 250 or more meters to have a large (10+) sample size
 – New interferometers (CHARA, NPOI) will make this possible
Basic Parameters from Angular Diameters (θ)

- **Direct observation** of fundamental stellar parameters

- Effective temperature is defined as: $L = 4\pi\sigma R^2 T_{\text{EFF}}^4$,
 which can be rewritten as: $T_{\text{EFF}} = 1.316 \times 10^7 \left(\frac{F_{\text{BOL}}}{\theta_R^2} \right)^{1/4}$
 - F_{BOL} is the bolometric flux (W cm$^{-2}$), θ_R is the Rosseland mean stellar angular diameter (mas)

- Linear radius is simply: $R = \frac{1}{2} \theta \times d$
 - Hipparcos (Perryman et al. 1997) distances now available
 - Uncertainties in parallax (typically ~15-20%) still largest contribution to error