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Motivation 

t3 One goal of current work is to improve understanding of the type 
of faults that are inserted into a software system during its 
lifetime by identifying relationships between types of structural 
change and the number and types of faults inserted. 

s Developing software fault models depends on definition of what 
constitutes a fault 
Desi red characteristics of measu re men ts, m eas u re men t 
process 

Repeatable, accurate count of faults 
Measure at same level at which structural measurements 
are taken 

Measure at module level (e.g., function, method) 
Easily automated 
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Motivation (cont'd) 
Measurement of Structural Evolution 

l l a r w i n  D a m h  Portal 
\ i i $ , r  \ \  ( I ,  1,1" , , , ,_11 

Graph of Code Churn and Code Delta for the Navigation 

project fdms mdsv5 cvs. Darwin Main 

Manager 
Infomation I 

- - 
I ' ' ' ' ' ' ' . ' ' . ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '_ '  ' I 

I Date 

Click here for help Feedback 

4 



Motivation (cont'd) 
Structural Evolution at the Module Level 

(Non-zero) Modules for build 2001-08-09 of project mdsvS-cvs, sorted by 
Churn since baseline. 
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Motivation (cont’d) 

PmblemReports 
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Current State of Affairs 

No existing definition of fault in measurable terms 
+ IEEE Standards 

r-* IEEE Std 729-1 983, “IEEE Standard Glossary of 
Software Engineering Terminology” 
IEEE Std 982.1-1 988, “IEEE Standard Dictionary of 
Measures to Produce Reliable Software” 
IEEE Std 1044-1 993, “IEEE Standard Classification for 
Software Anoma I ies” 

+ ODC 
+ Previous work (Annual Oregon Workshop on Software 

+ Frankl, Hamlet, Littlewood, Stringini (IEEE TSE, vol. 24, no. 
Metrics, May 11-13, 1997) 

8, August 1998) 
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Approach 

Examine changes made in response to 
reported failures 
Base recog n it i o n/e n u me ra t i o n of software 
faults on the grammar of the software 
system’s language 
+ Faults found in executable, non-executable 

statements 
Fault measurement granularity in terms of 
tokens that have changed 
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txampies 

Example 1 
+ Original statement: a = b + c * d; 
+ Intended statement: a = b + c / d; 
+ One token changed - r L * ”  - “I” 

Coding error 
+ Count number of faults as I 
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Examples (cont’d) 

Example 2 
+ Original statement: a = b + c * d; 
+ Intended statement: a = b + (c * x) + sin@); 
+ Substantial difference between first and 

Reflects design rather than coding 
problem 

+ Fault measurement method should reflect 

second statements 

the degree of change 
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Identifying and Counting Faults 
Consider each line of text in each version of the 
program as a bag of tokens 
+ If a change spans multiple lines of code, all lines 

for the change are included in the same bag 
Number of faults based on bag differences between 
+ Version of program exhibiting failures 
+ Version of program modified in response to 

Use version control system to distinguish between 
+ Changes due to repair and 
+ Changes due to functionality enhancements and 

other non-repair changes 

failures 
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Fault Identification Examples 

Example 1 
+ Original statement: a = b +-c; 

B, ={<a> <=> <b> <+> <c>} 
1 7 7 7 

+ Modified statement: a = b - c; 
--B2 ={<a> <=> <b> <-> <c>} 

7 7 7 1 
z 

+ One token has changed I fault 
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Fault Identification Examples 
(cont’d) 

Example 2 
+ Original statement: a = b - c; 

+ Modified statement: a = c - b; 
B2={<a> 7 <=> 7 <b> 7 <-> 

7 <c>} 

-+B3 = {<a> <=> <c> C-> <b>} 
7 7 7 7 

+ I fault representing incorrect sequencing 
13 
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Current Work 

Current Work 
+ Application to JPL software development 

effort 
Research 
Production 

+ Develop better models relating 
Structural measurements of software 
evolution during development 
Number and types of faults inserted 
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