
Automated Software Fault
Measurement

Alien P. Nikora John C. Munson
Jet Propulsion Laboratory,

California Institute of Technology

Al1en.P. Nikora@jpl.nasa.gov

Computer Science Department
University of Idaho

J mu nson @cs. u id a ho. ed u
Pasadena, CA Moscow, ID

The work described in this paper was carried out at the Jet Propulsion
Laboratory, California Institute of Technology. This work is sponsored by the
National Aeronautics and Space Administration’s Office of Safety and Mission
Assurance under the NASA Software Program led by the NASA Software IV&V
Facility. This activity is managed locally at JPL through the Assurance
Technology Program Office (ATPO).

mailto:Nikora@jpl.nasa.gov

Agenda

Motivation
Current State of Affairs
Approach
+ Examples
Identifying and Counting Faults
+ Examples

Current Work

2

Motivation

t3 One goal of current work is to improve understanding of the type
of faults that are inserted into a software system during its
lifetime by identifying relationships between types of structural
change and the number and types of faults inserted.

s Developing software fault models depends on definition of what
constitutes a fault
Desi red characteristics of measu re men ts, m eas u re men t
process

Repeatable, accurate count of faults
Measure at same level at which structural measurements
are taken

Measure at module level (e.g., function, method)
Easily automated

3

Motivation (cont'd)
Measurement of Structural Evolution

l l a r w i n D a m h Portal
\ i i $, r \ \ (I , 1,1" , , , ,_11

Graph of Code Churn and Code Delta for the Navigation

project fdms mdsv5 cvs. Darwin Main

Manager
Infomation I

- -
I ' ' ' ' ' ' ' . ' ' . ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '_ ' ' I

I Date

Click here for help Feedback

4

Motivation (cont'd)
Structural Evolution at the Module Level

(Non-zero) Modules for build 2001-08-09 of project mdsvS-cvs, sorted by
Churn since baseline.

670 521970
660.69373
509.fi8008

- 366.179343 -~
362.248144
291.209347
276.794821
253.716821

~ _ _ _ _ _ ~ -~

1245.984883
243.421666
241.489394
232.521508
-~ ~~ - .___.

5

Motivation (cont’d)

PmblemReports

Measurement Framework

Files
Repaired File IDS Identify Source \

FilesRepaired /
\

Fault Identification
andcounting

Rules

I

Extmct Faulty \
Source Files Faulty Source Files

Add fault

repository / Initial Fault \ placement to
Find Initial Fault \

Cccurence Placement / \ Identify Faults \ Discowed Faults - \

/
\ Extractchanged \

sourcefiles / CM Li brary

\
module name,

fault count
Add stfuctural

measurements to
repositocy

kWStNCtU~l \ Wst recently hkasure most
measurements / changed source \ recently changed \

sourcefiles / files

hkasurement
Baseline

module name,
revision number,

structural measurements

/
\ Compute fault \

index
\ hkasurement

Repository / module name,

. .. I
/

module mmes.
reusion numbers,

fault indices
/

Fault
Measurement

and
Identification

module names,
rewsion numbers.

fault indices Compute

I

\
module name, reusion number,

fault indel; fault count
PlDpoftional Fault

Burden

Compute

Burden
Propomonal Fault \

Structural
Measurement

Fault
Burden

fault index I I I

Regression
coefficients

Dewrlop fault

model
content regression \ 6 \ Computeabsdute \ Absolute Fault

/ fault burden / Burden

Current State of Affairs

No existing definition of fault in measurable terms
+ IEEE Standards

r-* IEEE Std 729-1 983, “IEEE Standard Glossary of
Software Engineering Terminology”
IEEE Std 982.1-1 988, “IEEE Standard Dictionary of
Measures to Produce Reliable Software”
IEEE Std 1044-1 993, “IEEE Standard Classification for
Software Anoma I ies”

+ ODC
+ Previous work (Annual Oregon Workshop on Software

+ Frankl, Hamlet, Littlewood, Stringini (IEEE TSE, vol. 24, no.
Metrics, May 11-13, 1997)

8, August 1998)

7

Approach

Examine changes made in response to
reported failures
Base recog n it i o n/e n u me ra t i o n of software
faults on the grammar of the software
system’s language
+ Faults found in executable, non-executable

statements
Fault measurement granularity in terms of
tokens that have changed

8

txampies

Example 1
+ Original statement: a = b + c * d;
+ Intended statement: a = b + c / d;
+ One token changed - r L * ” - “I”

Coding error
+ Count number of faults as I

9

Examples (cont’d)

Example 2
+ Original statement: a = b + c * d;
+ Intended statement: a = b + (c * x) + sin@);
+ Substantial difference between first and

Reflects design rather than coding
problem

+ Fault measurement method should reflect

second statements

the degree of change
10

Identifying and Counting Faults
Consider each line of text in each version of the
program as a bag of tokens
+ If a change spans multiple lines of code, all lines

for the change are included in the same bag
Number of faults based on bag differences between
+ Version of program exhibiting failures
+ Version of program modified in response to

Use version control system to distinguish between
+ Changes due to repair and
+ Changes due to functionality enhancements and

other non-repair changes

failures

11

Fault Identification Examples

Example 1
+ Original statement: a = b +-c;

B, ={<a> <=> <+> <c>}
1 7 7 7

+ Modified statement: a = b - c;
--B2 ={<a> <=> <-> <c>}

7 7 7 1
z

+ One token has changed I fault
12

Fault Identification Examples
(cont’d)

Example 2
+ Original statement: a = b - c;

+ Modified statement: a = c - b;
B2={<a> 7 <=> 7 7 <->

7 <c>}

-+B3 = {<a> <=> <c> C-> }
7 7 7 7

+ I fault representing incorrect sequencing
13

A

A

A
2

V

A
 h

h

6

A
 t>

V

A

+ V
 h

A
h

- V

A

II
V

m V
 II h

A
-

c3lrz

mi7

v
)
a

- Q €
v
)

3

.

-

i
n

11
A

(\1

II

m X

m
cv
I
I

I

t>
+

V

i
h

W

t> I

h

m
i

A

6

23)
c

c

a,
cn

.- I

11
I

II
0

A

h

t>
V

II
m

h

I

c

m- I

m
m

i
A

A

+ V

i
i

I

a,
I

i
m

I

S

h

h

A
 II

V

a,
Q

a,

0
0

II
E

a,
I

E
h

A

V
 II

7

+
+

d-

a,
.

a,
m v
)

.

*

v
)
c

a,
x

0

-
A

m V

 II
+
+

m
I

a

v
)

U

a,
G

U

.- r"

h

m

a,
m

m
-

r
.-

3 a, c
mi

23)
I

mi
m X

W

cv +

+
+

Current Work

Current Work
+ Application to JPL software development

effort
Research
Production

+ Develop better models relating
Structural measurements of software
evolution during development
Number and types of faults inserted

15

