| , JPL
@ Software Metrics In Use at JPL g

Applications and Research

1. ODC-Based Anomaly Analysis
Dr. Robyn Lutz (JPL/ISU) & Carmen Mikulski (JPL)

2. Assurance Optimization
Dr. Martin S. Feather (JPL)

3. Predictive Cost/Quality Metrics
John Powell (JPL) & Dr. Jairus Hihn (JPL)

4. Detailed Project Metrics
Helenann Kwong-Fu (JPL)

5. Formal Definition of Software Faults
Dr. John Munson, Univ. of Idaho & Dr. Allen Nikora (JPL)

Presentation by Dr. Allen Nikora
Jet Propulsion Laboratory, California Institute of Technology

The work described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of
Technology. This work is sponsored by the National Aeronautics and Space Administration’s Office of Safety
and Mission Assurance under the NASA Software Program led by the NASA Software IV&V Facility. This activity
is managed locally at JPL through the Assurance Technology Program Office (ATPO).

1. ODC-Based JPL

California
Institute of

Anomaly Analysis

Dr. Robyn Lutz (JPL/ISU) and Carmen Mikulski (JPL)
NASA Code Q Software Program Center Initiative UPN 323-08
Supported by JPL Assurance Technology Program Office

Goal: To reduce the number of safety-critical
software anomalies that occur during flight by providing a
quantitative analysis of previous anomalies as a foundation
for process improvement

Analyzed 199 Incident/Surprise/Anomaly reports (ISAs)
»Software anomalies post-launch
=High criticality
=7 spacecraft
*Institutional defect database

Software Metrics In Use at JPL-Applications and Research

" @ ODC-Based Anomaly Analysis J4PL

California
Institute of

A p p r oa C h Technology

Orthogonal Defect Classification (ODC) method
= Developed at IBM; widely used by industry
* Quantitative approach
= Used here to detect patterns in anomaly data

Adapted ODC categories to operational spacecraft software
at JPL

= Activity: what was taking place when anomaly
occurred?

= Trigger: what was the catalyst?
= Target: what was fixed?
= Type: what kind of fix was done?

Collaborating with Mars Exploration Rover to
experimentally extend to pre-launch testing

Software Metrics In Use at JPL-Applications and Research

ODC-Based Anomaly Analysis 4PL

California

Exam p e Tty

Sample Question: What is the typical signature of a post-
launch critical software anomaly?

Metrics:
= Activity = Flight Operations
= Trigger = Data Access/Delivery
» Target = Information Development
= Type = Procedures
Example: Star Scanner anomaly
= Activity = occurred during flight
= Trigger = star scanner telemetry froze
» Target = fix was new description of star calibration
» Type = procedure written

Software Metrics In Use at JPL-Applications and Research

PROJECT] (All) _,_,_‘

Target Distribution

Count of Target 39 2%, 2%

| @ ODC-Based Anomaly Analysis
Quantitative Analysis

16%

23%)

APLU

California
Institute of
Technology

Target

. &

D information Development

Ground Softw are
O Flight Softw are

0 None/Unknow n

m Hardw are

0 Build Package
Ground Resources

24%

Drop More Series Fields Here

Software Metrics In Use at JPL-Applications and Research

California
Institute of

@ ODC-Based Anomaly Analysis JPL
Benefits EA

= User selects preferred representation (e.g., 2-D
bar graph) and set of projects to view

= Data mines historical and current databases of
anomaly and problem reports

= Uses metrics information to identify unexpected
patterns and focus on problem areas

» Provides rapid quantitative foundation for
process improvement

= Equips us with a methodology to continue to
learn as projects and processes evolve

Software Metrics In Use at JPL-Applications and Research

California

Dr. Martin S. Feather (JPL) Technology
NASA Code Q Software Program Center Initiative UPN 323-08
Supported by JPL Assurance Technology Program Office

@ 2. Assurance Optimization JPL

Assurance activities have costs:

- Requirements inspections take skilled peoples’ time
+ Test-what-you-fly takes high-fidelity testbeds

Assurance activities have benefits:

- Requirements inspections may catch problems early, when it is
inexpensive to fix them

- Test-what-you-fly may catch problems that would jeopardize the
mission

Software Metrics In Use at JPL-Applications and Research

Assurance Optimization JPL

California

Goals Instiutc of

The selection of assurance activities such that:

For a given set of resources
(time, budget, personnel, fest beds, mass, power, ...)
benefits are maximized

or

For a given level of benefits attainment
(science return goals; on-time and in-budget development, ...)
costs are minimized

Software Metrics In Use at JPL-Applications and Research

S

II

III

Assurance Optimization
What's Needed to do it

JPL

California
Institute of
Technology

A model to calculate assurance costs & benefits -
we use Dr. Steve Cornford's Defect Detection and
Prevention (DDP) (http://ddptool.jpl.nasa.gov)

Optimization over the model -
we use Menzies' TARZ treatment learning system
(http://www.tim.menzies.com)
Also exploring use of genetic algorithms.

Data to populate the model -

we populate with metrics from experience (when
available) augmented with experts’ best estimates

Software Metrics In Use at JPL-Applications and Research

http://www.tim.menzies.com

Assurance Optimization JPL
@ I. DDP Cost/Benefit Model ciwne

Technology

Benefits - aﬁaigmen’r of requirements

Requirements

Risks

Assurance
Activities

Costs = X costs of selected assurance activities

Model holds guantitative measures of:
How much each risk impacts each requirement, and
How much each assurance activity reduces each risk.

Risks are crucial intermediaries in the model -
requirements impacted by risks to differing extents
assurance activities mitigate risks to differing extents

10
Software Metrics In Use at JPL-Applications and Research

Assurance Optimization JPL

California

A Populated DOP Dataset ey

32 requirements, 69 risks, 99 assurance activities
352 non-zero quantitative requirement-risk links
440 non-zero quantitative assurance-risk links

11
Software Metrics In Use at JPL-Applications and Research

Assurance Optimization JPL
II. Finding the q;m'mum Calfoms

of
Each black point a randomly chosen selection of dataset's ey
assurance activities. DDP used to calculate cost and benefit of

each such selection. Each white point is an optimized selection of

o

dataset's assurance activities.

0 == i i] R - = = & .
200000 300000 400000 500000 600000 700000 800000 900000 1000000 1100000 1200000 ﬁ;’@;‘;ﬁa

Tim Menzies' TAR2 system used here for optimization.
TARZ identified 33 most critical decisions:
21 of them assurance activities to perform
12 of them assurance activities to no# perform.

- Assurance Optimization JPL
@ IITI. Data to Populate the Model c:::

Technology

Risks:

How many defects, and of what kinds, are introduced during
development? How serious are those defects?

Assurance activities.

How effective are assurance activities at defect prevention,
and at detection & repair? How much do they cost?

Metrics can help provide this data:
Historical, culled from past similar cases.
Predictive, during current development.
Monitoring, to track current development against predictions.

In the absence of metrics we use expert judgment.
We need your meftrics!

13
Software Metrics In Use at JPL-Applications and Research

APL

California
Institute of
Technology

-' 8l 3. Predictive Cost/Quality Metrics

John Powell (JPL) & Dr. Jairus Hihn (JPL)
Supported by JPL’s Software Quality Improvement Project

' Cost |
! Drivers + | Parametric Cost Models > Total
botieritienas COCOMO I Effort
> SEER -SEM |
Dy Price S
o & ||swc Quality Models 3| Residual
d y—{
o = I SEER -SEM Defects
2| |G w7 oo
o 3 i Profiles !
- " ! A 4 Phase /
CG S :"I: PR —_—_-_-.:! S .W . Eng_ > ACthIty
E g Effort Decomposition Cost
=
o U JPL
N ‘—E} Software v Total
. O
SreM oddl Intecosttor > Dev .
e Cost

Figure1 : Overall Cost Quality Modeling Effort

14
Software Metrics In Use at JPL-Applications and Research

Predictive Cost/Quality Metrics JPL

Institute of

Input Data for Cost/ Quality Models “"*

 Cost Models
— Size SLOC, Function Points

— COCOMO Il Cost Drivers and Scale
Factors

— Straight Forward Mapping to SEER-SEM
* Quality Models

— Three Defect Removal Profile Levels

— Cost Drivers from Cost Model Inputs

15
Software Metrics In Use at JPL-Applications and Research

@ Predictive Cost/Quality Metrics ‘élll;nlj

Model Outputs for Calibration ™"

« Cost Models
— Planned and Actual Effort

— Suitably broken down by phase or
activity or function etc... (Specific to
organization needs)

« Quality Model
— Tracked Software Defects

— Categorized by pinot of introduction
(Requirements, Design, Code)

16
Software Metrics In Use at JPL-Applications and Research

netiuts of
Cost / Quality Benefits
« Consider a Navigation software component
— If budget/effort is inaccurately estimated for NAV

« Cost over runs may disrupt work on NAV as well as
other software within the system such as fault protection
etc... due to unplanned staffing and resource
reallocations.

- Budgetary Constraints due to overuns may cause
project cancellation.

— If defect density is inaccurately estimated

 Insufficient or unnecessary resources may be allocated
for QA, V&V, Testing etc... of navigation (or other)
system software

« Unexpected delays may occur due to larger than
expected volume of defect repairs or late discovery of

defects may jeopardize budget, schedule, delivery date
and/or system functionality

Software Metrics In Use at JPL-Applications and Research

@ Predictive Cost/Quality Metrics P

17

JPL

California

.8l 4. Detailed Project Metrics

Institute of
Technology

Helenann Kwong-Fu (JPL)
JPL Software Quality Assurance

A sampling of actual SQA metrics kept on a project

18
Software Metrics In Use at JPL-Applications and Research

Number of Demonstrated Capabilities (Cumulative)

Detailed Project Metrics JPL

Overall Project Software Metrics Cafornia
Institute of
1200 Technology
LIPlanned (Cum)
1000 | mActual (Cum) | o e 967 967 977 977 977
iti 931932 Tn NN
Additional (Cun) 083 883 T 11 T
w10
769788 B Y O O U O o T | O IO
800 747 754 ;”5855825_’8r ,' (I 1 H |
718 704 708 rp9dBog || | : 1| (I
675 maeqP93l |[
1 48T 11
600 - N T 111 - ‘ ,,,,, ~ _ _ - SN N DR O ! N N
535 |
439
400 - - -l — =1} o — -
310
3 |
200 |- - 17%67 -1 -1 I E = - — - _ _ _ _ _ -
%sal I 4 1b tad [k bed [lad | Led | led uq ol 4o 40,-T_|0 ;L'JO g-to ._
oﬂl b U e 0 10 L L e Lo U i i |
® O O N SHTFI I IS IS I FS SO
SSe S S S S P PFHFHFHFEFE IS
S S > P S S S O D S >SS PSS
n \'\ \'\b\‘b ‘},\\‘L,\\‘Lb\‘b \‘L@'L,\\"lx,\\']/ (lzbt\’lz,\\"lz,\\q/ N ’b,\\‘b,\\%,\\%,\\‘b,\\‘b,\\%,\\‘b,\\%
,L\\"’cb\ PO RS (1200 \Q\s,\@%\,\\m& P T S AN Y N S R N .

Software Metrics In Use at JPL-Applications and Research

Detailed Project Metrics JPL
Software Metrics By System Califoria

Institute of

300 Technology

EITo Completion ’61 e
@ Planned-To-Date -

N
wn
o

Actual-To-Date

OAdditional

200 -+

Il!l)l)ifll?xx%l‘

L e

)
2
k=
3
E
=
e :
2 e - -
5 b H
S - T
Q. PN A
© O8N RAR)
O e -
k5 e -
2 150 1t S -
& B
0) 41
6 - T
o e ER
£ o o
a + i
w 100 - B - R - - -
@ g fff e
P it X8 .
£ pi: BE: i
z 53 i i i

50 + '+ Een) 5 5! I .

paas :f : 19
ol 9 pau 5 s o
0 i) ° | | |

SYSTEM 1 SYSTEM 2 SYSTEM 3 SYSTEM 4 SYSTEM 5 SYSTEM 6 SYSTEM 7

20
Software Metrics In Use at JPL-Applications and Research

i @ Project

2000

1200

Total number of Problem Reports (Cumulative)
NN
8

-
o]
[
o

-
N
o
o

1000 +

800 |-

D
(@]
o

N
(o]
O

Detailed Project Metrics

Integration & Test Problem Reports

'ElOpened >90 days
-~ Total Opened e
'BOTotal Closed |

|
|
SR

1600 | oo _ - OClosure > 90 days ;

M Closed:Inactives/non-repeatables |
N O E * A

) INES| &\ PO

5] ™
LN
& & & & o
& & & & S
. ﬁ? v v gf

Software Metrics In Use at JPL-Applications and Research

JPL

California
Institute of
Technology

21

Requirements and Tests Accumulatives

Detailed Project Metrics JPL
Completion of Requirements and Tests ciiomis

Institute of
Technology

Phase | Planned Phase Il

2500

A

> : >
2308 2317 , 2326 2335
2127 e i .
2000
i
1500 2 u
;)‘1317"- i
ri e
1 : —
5 8. |t =
1000 -) it (11 = [T —
1. lbea i Y
i pas :E BiH=l
== =sii=
3 (] — = I [bounen
= =R~
i — : 1 i § o
§ & fom— b frowmad
r H=itl= =R
H=1l=F = |
0 it ! ™| 4 i b L ik " E 1 il — 4 i 4 IS I
3172002 /812002 311512002 312212002 3/29/2002 411112002 41872002 4/24/2002 4/30/2002

_|#Test Planned to complete

#Req. Planned to complete
E# Req. Passed (Actuals) ETotal test/SE signed off (Actuals)

22
Software Metrics In Use at JPL-Applications and Research

Detailed Project Metrics JPL
Implementation Process Risk Metrics castom

Institute of

Te am- by- Team Technology

TEAM1 TEAM 2 TEAM 3 TEAM 4
87% Al 7_00 46.7% Al 74.3% Al 88.0% Al 6_99
Obj. Priority Risk Obj. Priority Risk Obj. Priority Risk Obj. Priority __ Risk As of 611999

9 8
9 8
9 4
9 4
6 4 12 5.1 1 2
[3 [12 71 1 2
3 6 12 1.2 3 1
[6 8 13 3 1
6 [} 8 15 3 1 Obi# Definitions
6 6 4 21 3 1
6 6 4 23 3 1 1X SWMeregement
8 6 9 26 3 1 2X SW Recuirement and Design
34 2 2 4 6 6 41 3 1 3X SW Dev. Std./Coding Corwv. & Maint.
46 2 2 4 6, [3 1 4.X S Test Verification and Validation
48 ! 2 2 N 6 8 ! 5X SW Developrment Todls
5.2 1 2 2 6 6 3 1 6X SW Problem Repuot fion
93 1 2 2 6 6 3 1 Sl
13 3 1 3 6 6 3 1 7X SW Doouentation
1.4 3 1 3 5.1 1 2 2 6 2 1 8X SW Configuration Menagement
15 3 1 3 91 1 2 2 22 2 2 4 2 1 9X SWQuity Control
21 3 1 3 9.3 1 2 2 25 2 2 4 2 1 10X SWFaut Protedion
23 3 1 3 14 3 1 3 31 2 2 4 2 1
24 3 1 3 21 3 1 3 5.4 1 2 28 "X S Sdlety
42 3 1 3 24 3 1 3 91 1 2
43 3 1 3 45 3 1 3 9.3 1 2
6.2 3 1 3 22 2 1 2 14 3 1 Ref. Risk Pricsity
8.1 3 1 3 31 2 1 2 12 3 1 A NA -
82 3 1 3 33 2 1 2 14 3 1
92 3 1 3 34 1 2 15 3 1 ° nore -
22 2 1 2 5 0 24 3 1 1 low low
32 2 1 2 0 10.1 3 1 2 g Med
33 2 1 3 10.2 3 1 3 Hoh Heh
35 2 1 3 10.3 3 1 4 Pend _
3 32 2 1
3 33 2 1
3 34 2 1
1
0

S - T- d

23
Software Metrics In Use at JPL-Applications and Research

Detailed Project Metrics

APU

Implementation Process Risk Metrics Cuioms
One Team's Progress Over Time

JUN 99 JAN 00 JUL 00

87% Al Jun-99 87% Al Jan-00 a7% Al Jul-00
Obj. Priority Risk j Priority Risk . Priority

Software Metrics In Use at JPL-Applications and Research

Institute of
Technology

As of 6/1999

10X

S WK =20

Definitions

SWMenagement
SWRequirement and Design
SWDev. Std/Coding Corw. & Mairt.
SW Test Verification and Validation
SW Develcpment Tods

SW Problem Reporting/Resolution
SW Dooumertation

SW Corfiguration Meregemrent
SWAQuality Contrdl

SW Fault Protection

SW Salety

Risk Pricrity
NA -—

Sig Med
Hgh Hoh

24

5. Formal Definition of JPL

California
Institute of

Software Faults

* Investigators
— Dr. John Munson, University of ldaho
— Dr. Allen Nikora, JPL

NASA Code Q Software Program Center Initiative UPN 323-08
Supported by JPL Assurance Technology Program Office

25
Software Metrics In Use at JPL-Applications and Research

California
Institute of

'- @) Formal Definition of Software Faults= -
Motivation Technology

— Developing software fault models depends on
definition of what constitutes a fault

— Desired characteristics of measurements,
measurement process
* Repeatable, accurate count of faults

» Measure at same level at which structural
measurements are taken

— Measure at module level (e.g., function, method)
» Easily automated

26
Software Metrics In Use at JPL-Applications and Research

@) Formal Definition of Software Faults4PL

California
Institute of

Current State of Affairs

— No existing definition of fault in measurable terms
- IEEE Standards

— |IEEE Std 729-1983, “IEEE Standard Glossary of Software
Engineering Termlnology”

— |IEEE Std 982.1-1988, “IEEE Standard Dictionary of Measures
to Produce Reliable Software”

— IEEE Std 1044- 1993, “IEEE Standard Classification for
Software Anomalles

- ODC

* Previous work (Annual Oregon Workshop on Software
Metrics, May 11-13, 1997)

* Frankl, Hamlet, Littlewood, Stringini (IEEE TSE, vol. 24, no.
8, August 1998)

27
Software Metrics In Use at JPL-Applications and Research

California
Institute of

. @ Formal Definition of Software Faults3PL
A p p roac h Technology

— Examine changes made in response to
reported failures

— Base recoghnition/enumeration of software
faults on the grammar of the software system’s
language

- Faults found in executable, non-executable
statements

— Fault measurement granularity in terms of
tokens that have changed

28
Software Metrics In Use at JPL-Applications and Research

California
Institute of

: @) Formal Definition of Software Faults 3"
ApprOaCh (continued) Technology

— Example 1
* Original statement: a=b + ¢ * d;
* Intended statement: a=b + ¢/ d;

* One token changed - “*” = /”
— Coding error

 Count number of faults as 1

29
Software Metrics In Use at JPL-Applications and Research

B @ Formal Definition of Software Faults3P%

California
Institute of

Approach (continued)

— Example 2
 Original statement: a=b + c * d;
* Intended statement: a = b + (¢ * x) + sin(z);

 Substantial difference between first and
second statements
— Reflects design rather than coding problem

e Fault measurement method should reflect
the degree of change

30
Software Metrics In Use at JPL-Applications and Research

California
Institute of

‘ @) Formal Definition of Software Faults=>t
Approach (continued)

— Consider each line of text in each version of
the program as a bag of tokens

 If a change spans multiple lines of code, all lines for
the change are included in the same bag

— Number of faults based on bag differences
between
* Version of program exhibiting failures
* Version of program modified in response to failures

— Use version control system to distinguish
between
+ Changes due to repair and

+ Changes due to functionality enhancements and
other non-repair changes

31
Software Metrics In Use at JPL-Applications and Research

@ Formal Definition of Software Faults3PL

California
Institute of

Approach (continued) Technology

— Example 1
* Original statement: a=b + c:
— B, ={<a>, <=>, , <+>, <c>}
* Modified statement: a=b - ¢;
- B, = {<a>, <=>, , <->, <c>}
+ B, - B, = {<+>, <->}
* B[=By, [B1— By =2
* One token has changed = 1 fault

32
Software Metrics In Use at JPL-Applications and Research

California
Institute of

@) Formal Definition of Software Faults--"
Approach (continued)

— Example 2

* Original statement: a=b - c;
— B, = {<a>, <=>, , <->, <¢>}

 Modified statement: a =c - b;
- B, = {<a>, <=>, <c>, <->, }

*B,-B;={}
* |B2]=|Bs|,|B;—B;3| =0
* 1 fault representing incorrect sequencing

33
Software Metrics In Use at JPL-Applications and Research

California
Institute of

@ Formal Definition of Software FaultsJPb
Approach (continued)

* Approach (cont’d)

— Example 3

 Original statement: a=b - c;

— B, = {<a>, <=>, <¢>, <->, }
 Modified statement: a=1+c - b;

— B, = {<a>, <=>, <1>, <+>, <¢>, <->, }
« B, - B, = {<1>, <+>}
* B3] =6, [By| =8, B, —|B;| =2
« 2 new tokens representing 2 faults

34
Software Metrics In Use at JPL-Applications and Research

@ Formal Definition of Software Faults 2% -

California
Institute of

Cu r r e n t Wo rk Technology

— Application to JPL software
development effort
 Research
* Production

— Develop better models relating

e Structural measurements of software
evolution during development

 Number and types of faults inserted

35
Software Metrics In Use at JPL-Applications and Research

