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1. ODC-Based JPL
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Anomaly Analysis

Dr. Robyn Lutz (JPL/ISU) and Carmen Mikulski (JPL)
NASA Code Q Software Program Center Initiative UPN 323-08
Supported by JPL Assurance Technology Program Office

Goal: To reduce the number of safety-critical
software anomalies that occur during flight by providing a
quantitative analysis of previous anomalies as a foundation
for process improvement

Analyzed 199 Incident/Surprise/Anomaly reports (ISAs)
»Software anomalies post-launch
=High criticality
=7 spacecraft
*Institutional defect database
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Orthogonal Defect Classification (ODC) method
= Developed at IBM; widely used by industry
* Quantitative approach
= Used here to detect patterns in anomaly data

Adapted ODC categories to operational spacecraft software
at JPL

= Activity: what was taking place when anomaly
occurred?

= Trigger: what was the catalyst?
= Target: what was fixed?
= Type: what kind of fix was done?

Collaborating with Mars Exploration Rover to
experimentally extend to pre-launch testing
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ODC-Based Anomaly Analysis 4PL

California

Exam p e Tty

Sample Question: What is the typical signature of a post-
launch critical software anomaly?

Metrics:
= Activity = Flight Operations
= Trigger = Data Access/Delivery
» Target = Information Development
= Type = Procedures
Example: Star Scanner anomaly
= Activity = occurred during flight
= Trigger = star scanner telemetry froze
» Target = fix was new description of star calibration
» Type = procedure written
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@ ODC-Based Anomaly Analysis  JPL
Benefits EA

= User selects preferred representation (e.g., 2-D
bar graph) and set of projects to view

= Data mines historical and current databases of
anomaly and problem reports

= Uses metrics information to identify unexpected
patterns and focus on problem areas

» Provides rapid quantitative foundation for
process improvement

= Equips us with a methodology to continue to
learn as projects and processes evolve
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Dr. Martin S. Feather (JPL) Technology
NASA Code Q Software Program Center Initiative UPN 323-08
Supported by JPL Assurance Technology Program Office

@ 2. Assurance Optimization JPL

Assurance activities have costs:

- Requirements inspections take skilled peoples’ time
+ Test-what-you-fly takes high-fidelity testbeds

Assurance activities have benefits:

- Requirements inspections may catch problems early, when it is
inexpensive to fix them

- Test-what-you-fly may catch problems that would jeopardize the
mission
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Assurance Optimization JPL

California

Goals Instiutc of

The selection of assurance activities such that:

For a given set of resources
(time, budget, personnel, fest beds, mass, power, ...)
benefits are maximized

or

For a given level of benefits attainment
(science return goals; on-time and in-budget development, ...)
costs are minimized
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Assurance Optimization
What's Needed to do it

JPL

California
Institute of
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A model to calculate assurance costs & benefits -
we use Dr. Steve Cornford's Defect Detection and
Prevention (DDP)  (http://ddptool.jpl.nasa.gov)

Optimization over the model -
we use Menzies' TARZ treatment learning system
(http://www.tim.menzies.com)
Also exploring use of genetic algorithms.

Data to populate the model -

we populate with metrics from experience (when
available) augmented with experts’ best estimates
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Assurance Optimization JPL
@ I. DDP Cost/Benefit Model  ciwne

Technology

Benefits - aﬁaigmen’r of requirements

Requirements

Risks

Assurance
Activities

Costs = X costs of selected assurance activities

Model holds guantitative measures of:
How much each risk impacts each requirement, and
How much each assurance activity reduces each risk.

Risks are crucial intermediaries in the model -
requirements impacted by risks to differing extents
assurance activities mitigate risks to differing extents
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Assurance Optimization JPL

California

A Populated DOP Dataset ey

32 requirements, 69 risks, 99 assurance activities
352 non-zero quantitative requirement-risk links
440 non-zero quantitative assurance-risk links
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Assurance Optimization JPL
II. Finding the q;m'mum Calfoms

of
Each black point a randomly chosen selection of dataset's ey
assurance activities. DDP used to calculate cost and benefit of

each such selection. Each white point is an optimized selection of

o

dataset's assurance activities.
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Tim Menzies' TAR2 system used here for optimization.
TARZ identified 33 most critical decisions:
21 of them assurance activities to perform
12 of them assurance activities to no# perform.




- Assurance Optimization JPL
@ IITI. Data to Populate the Model c:::

Technology

Risks:

How many defects, and of what kinds, are introduced during
development? How serious are those defects?

Assurance activities.

How effective are assurance activities at defect prevention,
and at detection & repair?  How much do they cost?

Metrics can help provide this data:
Historical, culled from past similar cases.
Predictive, during current development.
Monitoring, to track current development against predictions.

In the absence of metrics we use expert judgment.
We need your meftrics!
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-' 8l 3. Predictive Cost/Quality Metrics

John Powell (JPL) & Dr. Jairus Hihn (JPL)
Supported by JPL’s Software Quality Improvement Project
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Predictive Cost/Quality Metrics JPL

Institute of

Input Data for Cost/ Quality Models “"*

 Cost Models
— Size SLOC, Function Points

— COCOMO Il Cost Drivers and Scale
Factors

— Straight Forward Mapping to SEER-SEM
* Quality Models

— Three Defect Removal Profile Levels

— Cost Drivers from Cost Model Inputs
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@ Predictive Cost/Quality Metrics ‘élll;nlj

Model Outputs for Calibration ™"

« Cost Models
— Planned and Actual Effort

— Suitably broken down by phase or
activity or function etc... (Specific to
organization needs)

« Quality Model
— Tracked Software Defects

— Categorized by pinot of introduction
(Requirements, Design, Code)
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netiuts of
Cost / Quality Benefits
« Consider a Navigation software component
— If budget/effort is inaccurately estimated for NAV

« Cost over runs may disrupt work on NAV as well as
other software within the system such as fault protection
etc... due to unplanned staffing and resource
reallocations.

- Budgetary Constraints due to overuns may cause
project cancellation.

— If defect density is inaccurately estimated

 Insufficient or unnecessary resources may be allocated
for QA, V&V, Testing etc... of navigation (or other)
system software

« Unexpected delays may occur due to larger than
expected volume of defect repairs or late discovery of

defects may jeopardize budget, schedule, delivery date
and/or system functionality
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.8l 4. Detailed Project Metrics

Institute of
Technology

Helenann Kwong-Fu (JPL)
JPL Software Quality Assurance

A sampling of actual SQA metrics kept on a project
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Detailed Project Metrics JPL
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Requirements and Tests Accumulatives

Detailed Project Metrics JPL
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Detailed Project Metrics JPL
Implementation Process Risk Metrics  castom
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Detailed Project Metrics

APU

Implementation Process Risk Metrics  Cuioms
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5. Formal Definition of JPL

California
Institute of

Software Faults

* Investigators
— Dr. John Munson, University of ldaho
— Dr. Allen Nikora, JPL

NASA Code Q Software Program Center Initiative UPN 323-08
Supported by JPL Assurance Technology Program Office

25
Software Metrics In Use at JPL-Applications and Research



California
Institute of

'- @) Formal Definition of Software Faults= -
Motivation Technology

— Developing software fault models depends on
definition of what constitutes a fault

— Desired characteristics of measurements,
measurement process
* Repeatable, accurate count of faults

» Measure at same level at which structural
measurements are taken

— Measure at module level (e.g., function, method)
» Easily automated

26
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@) Formal Definition of Software Faults4PL
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Current State of Affairs

— No existing definition of fault in measurable terms
- IEEE Standards

— |IEEE Std 729-1983, “IEEE Standard Glossary of Software
Engineering Termlnology”

— |IEEE Std 982.1-1988, “IEEE Standard Dictionary of Measures
to Produce Reliable Software”

— IEEE Std 1044- 1993, “IEEE Standard Classification for
Software Anomalles

- ODC

* Previous work (Annual Oregon Workshop on Software
Metrics, May 11-13, 1997)

* Frankl, Hamlet, Littlewood, Stringini (IEEE TSE, vol. 24, no.
8, August 1998)
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. @ Formal Definition of Software Faults3PL
A p p roac h Technology

— Examine changes made in response to
reported failures

— Base recoghnition/enumeration of software
faults on the grammar of the software system’s
language

- Faults found in executable, non-executable
statements

— Fault measurement granularity in terms of
tokens that have changed

28
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: @) Formal Definition of Software Faults 3"
ApprOaCh (continued) Technology

— Example 1
* Original statement: a=b + ¢ * d;
* Intended statement: a=b + ¢/ d;

* One token changed - “*” = /”
— Coding error

 Count number of faults as 1

29
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B @ Formal Definition of Software Faults3P%
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Approach (continued)

— Example 2
 Original statement: a=b + c * d;
* Intended statement: a = b + (¢ * x) + sin(z);

 Substantial difference between first and
second statements
— Reflects design rather than coding problem

e Fault measurement method should reflect
the degree of change

30
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‘ @) Formal Definition of Software Faults=>t
Approach (continued)

— Consider each line of text in each version of
the program as a bag of tokens

 If a change spans multiple lines of code, all lines for
the change are included in the same bag

— Number of faults based on bag differences
between
* Version of program exhibiting failures
* Version of program modified in response to failures

— Use version control system to distinguish
between
+ Changes due to repair and

+ Changes due to functionality enhancements and
other non-repair changes
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@ Formal Definition of Software Faults3PL
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Approach (continued) Technology

— Example 1
* Original statement: a=b + c:
— B, ={<a>, <=>, <b>, <+>, <c>}
* Modified statement: a=b - ¢;
- B, = {<a>, <=>, <b>, <->, <c>}
+ B, - B, = {<+>, <->}
* B[ =By, [B1— By =2
* One token has changed = 1 fault

32
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@) Formal Definition of Software Faults--"
Approach (continued)

— Example 2

* Original statement: a=b - c;
— B, = {<a>, <=>, <b>, <->, <¢>}

 Modified statement: a =c - b;
- B, = {<a>, <=>, <c>, <->, <b>}

*B,-B;={}
* |B2]=|Bs|,|B;—B;3| =0
* 1 fault representing incorrect sequencing
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@ Formal Definition of Software FaultsJPb
Approach (continued)

* Approach (cont’d)

— Example 3

 Original statement: a=b - c;

— B, = {<a>, <=>, <¢>, <->, <b>}
 Modified statement: a=1+c - b;

— B, = {<a>, <=>, <1>, <+>, <¢>, <->, <b>}
« B, - B, = {<1>, <+>}
* B3] =6, [By| =8, B, —|B;| =2
« 2 new tokens representing 2 faults
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@ Formal Definition of Software Faults 2% -
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Cu r r e n t Wo rk Technology

— Application to JPL software
development effort
 Research
* Production

— Develop better models relating

e Structural measurements of software
evolution during development

 Number and types of faults inserted
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