
Fast and Reliable Obstacle Detection and Segmentation for 
Cross-country Navigation 

A. Talukder, R. Manduchi*, A. Rankin, L. Matthies 

Jet Propulsion Laboratory, California Institute of Technology 

[ashit. talukder, art. rankin, larry. matthies]@.jpl. nasa.gov 
Pasadena, CA 91109. Tel. (818)354-1000 -Fax (818)393-3302 

*University of California at Santa Cruz 

manduchi@soe. ucsc. edu 
Santa Cruz, CA 95064. Tel. (831)459-1479 -Fax (818)459-4829 

Abstract 

Obstacle detection (OD) is one of the main components 
of the control system of autonomous vehicles. In the case 
of indoorhrban navigation, obstacles are typicalb de- 
fined as surface points that are higher than the ground 
plane. This characterisation, however, cannot be used in 
cross-country and unstructured environments, where the 
notion of "ground plane" is often not meanin&l. A pre- 
vious OD technique for cross-country navigation 
(adopted by the DEMO III experimental unmanned vehi- 
cle) computes obstacle by analysing the columns of a 
range image independently, looking for steps or slopes 
along the range profile. This procedure, however, is 
prone to missing obstacles with surface normal pointing 
awayjom the line of sight. We introduce a fast, &I& 3-0 
OD technique that overcomes such a problem, reducing 
the risk of false-negatives while keeping the same rate of 
false-positives. A simple addition to our algorithm allows 
one to segment obstacle points into clusters, where each 
cluster identifies an isolated obstacle in 3-0 space. Ob- 
stacle segmentation corresponds to finding the connected 
components of a suitable graph, an operation that can be 
performed at a minimal additional cost during the com- 
putation of obstacle points. Rule-based classifcation 
using 3-0 geometrical measures derived for each seg- 
mented obstacle is then used to reject false-obstacles @or 
example, objects that are small in volume, or of low 
height). Results for a number of scenes of natural terrain 
are presented, and compared with a pre-existing obstacle 
detection algorithm. 

Keywords: Autonomous navigation, obstacle detection, 
terrain perception, 3-D vision, classification, geometrical 
reasoning 

1. Introduction 
Path planning for autonomous vehicles requires that the 
map of all visible obstacles be produced in real time using 
the available sensing information. The obstacle-free can- 
didate paths leading toward the desired position are then 
compared in terms of their hindrance (measured, for ex- 
ample, by the amount of steering involved [Lacaze98].) 

For navigation indoor or in structured environment 
(roads), obstacle are simply defined as surface elements 
that are higher then the ground plane. Thus, assuming that 
elevation information is available (by means of stereo 
cameras or ladars), the main task of obstacle detection 
(OD) algorithmsdforAqindoor/urban environmentsis twesrW. 
timate the ground plane in front of the vehicle. Many pa- 
pers exist in the literature dealing with such a problem 
(see for example [Zhang94], [ W illiamson9 81, [BroggiOO] .) 

This flat-world assumption is clearly not valid when 
driving in off-road, cross-country environments. In such 
cases, the geometry of the terrain in front of the vehicle 
can hardly be modelled as a planar surface. Figure 1 
shows examples of natural scenes where no distinct pla- 
nar surface can be fit as a ground surface due to inade- 
quate number of visible ground points. 
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Figure I :  Examples of natural terrain 

In principle, one could determine the traversability of a 
given path by simulating the placement of a 3-D vehicle 
model over the computed elevation map, and verifying 
that all wheels are touching the ground while leaving the 
bottom of the vehicle clear. This procedure, however, 
besides being computationally heavy, requires the avail- 
ability of a high-resolution elevation map to work with. 
Maps are estimated starting from range images (from ste- 
reo or ladars). Backprojecting image pixels onto the 3-D 
world generates a non-uniform point set. Therefore, either 
the elevation map is represented by a multiresolution 
structure (which makes the OD task cumbersome), or it is 
interpolated to an intermediate-density uniform grid, 
which may imply a loss of resolution in some regions of 
the map. 

On the converse, working directly on the range image 
domain (pixel-based approach) presents two advantages: 
first, it is much faster than dealing with elevation maps; 
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second, it uses range data with the highest resolution 
available (since the data does not need to be interpolated 
into fixed-size 3-D cells.) Indeed, the elevation map ap- 
proach allows one to easily integrate range information as 
the vehicle moves along and collects more sensing infor- 
mation. This functionality is certainly important for ro- 
bust path planning, especially when the scene has many 
visual occlusions, meaning that a single view may not 
convey enough information. Yet, we argue that for a ve- 
hicle moving forward, it is the most recently acquired 
range image that typically contains the higher resolution 
range information. Hence, computing obstacles based on 
the most recent range image makes sense on the grounds 
of computational efficiency and of detection accuracy. 

Matthies et al. developed a fast pixel-based algorithm 
to detect obstacles for cross-country terrain [Mat- 
thies94],[Matthies96],Matthies98]. Their technique 
(adopted by the DEMO I11 experimental Unmanned Ve- 
hicle (XUV) [BelluttaOO]), measures slope and height of 
surface patches (where “slope” is measured by the angle 
formed by the surface normal and the vertical axis.) Fig- 
ure 2 shows an example of a I-D range profile, where 
slant (9 and height (H) are shown for two different sur- 
face patches. Obstacles correspond to ramps with a slope 
above a certain threshold and spanning a minimum 
height. The rationale behind this approach is simple: if a 
surface patch has limited slope, we may assume that it 
belongs to the ground surface (for example, as part of a 
path leading to a plateau,) and therefore it is traversable. 
If a patch is steep but of small size, it corresponds to an 
obstacle short enough to be negotiable by the vehicle. 
Thus, the lower patch in Figure 2 would probably be con- 
sidered traversable, while the higher patch would proba- 
bly be considered an obstacle. 

In fact, the OD technique of [Matthies961 looks exclu- 
sively at 1-D range profiles such as in Figure 2, because it 
analyses each column in the range, image separately from 
the others. This choice, which makes the algorithm very 
fast, has drawbacks in terms of detection accuracy. It is 
easy to see that any 1-D range profile corresponding to 
one column of the range image is equal to the trace left by 
the visible surface on a slicing plane 17defined by the 

Figure 2: I-D range profile and obstacle definition 

column points in the image plane and the focal point of 
the camera. The estimated slope of this 1-D range profile 
is not equal, in general, to the true slope of the visible 
surface, and can actually be much smaller than that. Thus, 
an obstacle may be missed by such a technique, if the 

obstacle’s surface normal points away from the slicing 
plane L! 

In this paper, we present an improved version of the 
column-wise OD algorithm Watthies961, which com- 
putes 3-D slopes and yet retains most of the simplicity 
and computational efficiency of the original approach. 
More precisely, this work has three main contributions. 
First, we provide a simple but rigorous definition of ob- 
stacle points that make sense for cross-country environ- 
ments, formalizing and extending the intuitive notion in 
[Matthies96]. Second, we derive an efficient algorithm to 
compute the obstacle points in a range image. Third, we 
present a technique to correctly segment such obstacle 
points, so that isolated obstacles are identified and la- 
beled. We show that obstacle segmentation (OS) corre- 
sponds to finding connected components in a suitable 
graph built by the OD procedure. Our OS procedure 
makes full use of 3-D information, and is implemented 
efficiently i n t e m f  computations and memory. 

The paper is organized as follows: The OD algorithm is 
detailed in Section 2, followed by a discussion of our 
obstacle segmentation (OS) algorithm in Section 3. In 
Section 4, we discuss some of the parameters in the OD 
and OS algorithms, and in Section 5, we detail our 3-D 
geometrical-based obstacle reasoning and classification 
method, followed by results of our algorithms and com- 
parison with a pre-existing OD method in Section 6. 

. 

2. Obstacle definition and algorithms for OD 
In this section we give an axiomatic definition of “ob- 

stacle” which is amenable for cross-country navigation, 
and derive a simple and efficient algorithm for obstacle 
detection (OD). We will show in Section 3 that a simple 
extension of this algorithm allows us to not only detect 
obstacle points in an image, but also to identify regions of 
points belonging to the same obstacle. 

In order to introduce our algorithm, we first provide an 
axiomatic definition of the “obstacles” we want to detect. 
We will define obstacles in terms of two distinct points in 
space: 

Definition 1.: Two surface points p ~ = ( j Y ~ ~ p l , , p ~ J  and 
p2=(jY2mp2yp2J belong to the same obstacle(and will be 
called “compatible” with each other) if they satis& the 
following two conditions: 
I .  H$Ipa-pl,l<H,, (i.e., their difference in height is 

larger than HT but smaller than H d ;  
2. b2y-p~yl/l [p2-p1J 1 >COS(& (ie., the line joining them 

forms an angle with the vertical axis smaller than 
69; 

where HE H,, and eT are suitably chosen constants. 

In our definition, HT is the minimum height of an object 
to be considered an obstacle; H,, is a parameter control- 
ling the size of the analysis window in the OD algorithms, 



and will be discussed in Section 3; is the smallest value 
of the slope of the steepest point of an obstacle. 

Thus, a point p is classified as “obstacle” if there exists 
at least another visible surface which is compatible with 
p. Definition 1, however, specifies more than just that: it 
also formalizes the notion of points belonging to the same 
obstacle. This is rather useful if, beyond determining ob- 
stacle points, one wishes to segment the different obsta- 
cles visible in an image, as discussed in Section 3. 

Figure 3 shows an illustration of the detection of obsta- 
cle points (blue) in 3-D space based on slope and height 
measures relative to ground points (brown). 

A narve strategy for detecting all the obstacle points in 
an image would thus examine all point pairs, resulting in 
1\15 tests. Note that testing if two points are compatible 
requires 5 sums, 4 multiplications and 3 comparisons, all 
on floating-point numbers. A more efficient algorithm can 
be designed starting from the following observation. Ac- 
cording to Defmition 1, p is an obstacle point if and only 
if there exists at least one visible surface points located 

Figure 3: 3 -0  obstacle search method using 
double cone that locates ground pkels 
(brown) & obstacle pixels (blue). 

inside the double truncated cone of Figure 3. Searching 
for such points in 3-D space, however, is an expensive 
operation. Instead, we observe that the double truncated 
cone centered in p projects into a double truncated trian- 
gle in the image plane centered in pixel e (the projection 
o f p  on the image plane’). Each such triangle has height 
equal to where f is the camera’s focal length. 
Note, however, that an image point in such triangles is not 
necessarily generated by a 3-D point within the cone. 
Thus, a strategy for detecting all obstacle points in the 
image is the following one: 

Obstacle Detection (OD) Algorithm 1. 
For each pixel E, determine the set Ip of pixels be- 
longing to the double truncated triangle centered in 
e. Define a scanning order for the points in Ip. 

As there is a onetoone correspondence between 3-D points p in 
the range image and their projectionse in the image plane, we will that 
two 2-D points & and are compatible, meaning that their c o m e  
sponding 3-D points are. 

Scan the points in Ip until a pixel fi compatible 
with e is found, in which case classify p as an ob- 
stacle point. 
If no such pixel is found, p is not an obstacle point. 

We managed to reduce the complexity of the algorithm 
from quadratic to linear in N. Note, however, that there is 
the possibility that a pair of points (p1,p2) are tested twice. 
If a is the proportion of obstacle points in the image, and 
K is the average number of points in each projected trian- 
gle on the image plane, then this algorithm requires an 
expected number 0€2N(a+(l-a)K) tests. 

Let us now introduce a second strategy, which does not 
require duplicate tests: 

OD Algorithm 2. 
Initialization: classify all pixels as non-obstacle. 
Scan the pixels from bottom to top and from left to 

Determine the set Up of pixels belonging to only 
the upper truncated triangle with lower vertex in 

Examine all points in Up, and determine the set 
Sp of points BE Up compatible with e.. 
If Sp is not empty, classify all points of Sp and p 
as obstacle points. 

right; For each $h!eY 1” d. &*C”tl ? i I 

(see Figure 4). 

It is easy to see that each pixel is tested just once against 
all the other points in the upper and lower truncated trian- 
gles in OD 1. With reference to the quantities introduced 
earlier, now NK tests must be performed over the image. 
Thus, if &OS,  the second algorithm results in higher 
computational efficiency. More importantly, a simple 
modification of this algorithm allows one to easily seg- 
ment obstacles in the image, as described in the next sec- 
tion. 
Figure 4 shows an illustration of our OD 2 algorithm, 
where the search area in the image depends on the dis- 
tance of the point from the image plane. 

Figure 4: Implementation of OD Algorithm 2 on 
2-0 image data using triangular projections. 



3. Obstacle segmentation 
Definition 1 specifies only a suficient condition for two 
points to belong to the same obstacle, not a necessary 
one. Two points may well belong to the same obstacle 
without being compatible (for example, if the two points 
are very close to each other.) In fact, the missing “if only” 
part is implicitly defined by the following transitivity 
property: ifp, andp, belong to the same obstacle, andp, 
and p3 belong to the same obstacle, then pI, p2 and p3 be- 
long to the same obstacle. We maintain that two points pI 
and pM belong to the same obstacle if and only i f  there 
exists a chain of point pairs (pI,p2),(p2,p3),. . . , ( p~ , ,p~) ,  
such that all pairs (pj,pi+,) are compatible. We can repre- 
sent the set of points as the nodes of an undirected graph 
(points graph); two nodes in the graph are linked if they 
satisfy the conditions of Definition 1. Thus, two points p I 
and p2 belong to the same obstacle i f  and only if there 
exists a path in the graph from pI to p2. We can extend 
this notion to define a single obstacle as a maximal con- 
nected subgraph (i.e., a connected component) of the 
point graph. 

Classical depth-first or breadth-first search algorithms 
[Mehiholm841 can find the connected components of the 
points graph with complexity linear in (N+M), where M is 
the number of edges in the graph. Note, however, that our 
OD technique does not yield an explicit graph representa- 
tion, as required by classical connected component algo- 
rithm. In the following, we discuss some possible proce- 
dures for computing the connected components of the 
points graph as it is being built in the loop of OD Algo- 
rithm 2. 

The first proposed algorithm is based on pixel re- 
coloring: 

Obstacle Segmentation (OS) Algorithm 1. 
Modify the initialisation line of OD Algorithm 2 as fol- 
low: 

Initialisation: Classify all image points as non- 
obstacle; no image point is labelled; initialise the la- 
bel graph to the void set. 

The following instructions are added to the loop on the 
pointsp in OD Algorithm 2: 

If no point in (p,S,} was already labelled, color all 
points in S, andp with the corresponding label. 
Else, if just one point in @,S,} was already col- 
ored, colorp and all points in S, with such a label. 
Else, there is a label conflict: two or more distinct 
labels { I , ,  ..., IL} are used for the same connected 
component. Choose any such label (say, I,), and 
find the set of pixels that have been already col- 
ored with any label in {I2 ,  ..., lL}; change the label 
of such pixels to I,. 

0 

0 

OS Algorithm 1 always keeps the number of existing 
labels small, so that the likelihood of label conflicts is 

minimized. However, pixel re-coloring is an expensive 
operation. Of course, one may use a hashing table, but 
that requires a significant amount of additional memory. 

The second proposed algorithm introduces an auxiliary 
labels graph, whose nodes correspond to labels used to 
color the nodes of the point graph. 

OS Algorithm 2. 
Modify the inizialization line of OD Algorithm 2 as fol- 
low: 

Initialization: Classify all image points as non- 
obstacle; no image point is labelled; initialize the la- 
bel graph to the void set. 

The following instructions are added to the loop on the 
pointsp in OD Algorithm 2: 

If no point in (p,S,} was already labelled, create a 
new node in the labels graph and color all points in 
S, andp with the corresponding label. 
Else, if just one point in (p,S,} was already col- 
ored, colorp and all points in S, with such a label. 
Else, there is a label conflict: two or more distinct 
labels {I,, ..., lL} are used for the same connected 
component. Color all unlabelled points in @,S,} 
using any one of such labels (say, 11), and add 
edges in the labels graph linking the nodes corre- 
sponding to such labels. Re-color all pixels in 
(p,S,} to label 1,. 

0 

1 

(b) (4 
Figure 5: Labelling process during 3 - 0  obstacle detec- 

tion: (a) Obstacles for one ground pixel; (b) for second 
ground pixel, (e) Merging of overlapping obstacles, and (4 
new obstacle label. 

When the procedure terminates, all nodes in the points 
graph are labelled; the nodes belonging to any connected 
component of the labels graph represent the set of labels 
coloring the nodes of one connected component of the 
points graph. Thus, in order to identify all the obstacles in 
the scene, one has to compute the connected components 
in the labels graph. This operation takes a negligible 
amount of time if there are much fewer labels than points 
in the image. Note that the operation of pixel re-coloring 
within @,S,} in case of label conflict is not strictly neces- 



sary, but it helps reduce the likelihood of label conflict. In 
fact, we noticed that only a minimum amount of over- 
segmentation is introduced if one neglects to compute the 
connected components of the labels graph (Le., if each 
node of the labels graph corresponds to one obstacle.)" 
Figure 5 shows the process of segmentatiodlabeling of 
obstacles that occurs implicitly in our 3-D obstacle detec- 

Image Plane 

Figure 6: Obstacle labelling in our 3-0 obstacle 
detector where adjacent obstacle points in 2-0 im- 
age space (green, blue pixels), but distant in 3-0 
space, are assigned unique labels. 

tor. Figures 6 and 7 show examples of a synthetic and real 
example where disparate objects that touch in 2-D space, 
and therefore assigned to one obstacle by a 2-D blob col- 
oring procedure [BelluttaOO], are labelled with different 
colors using our OS algorithm. 

Having formalized the notion of points belonging to the 
same obstacle, the role of the parameter H,, should now 
be clear. H,, enforces separation of two obstacles in 
those cases where pairs of points exist, one for each ob- 
stacle, satisfying the slope condition but located far apart. 
Typically, such situations arise from missing range meas- 
urements (due, for example, to poor stereo matching qual- 
ity.) Rather than linking two obstacles when there is not 
enough range information, the first condition in Defini- 
tion 1 keeps such obstacle separated. Note in passing that 
larger values of H,, imply larger triangles in Figure 4, 
and therefore higher computational complexity. On the 
other side, too small a value for H,, could be liable for 
missing many obstacle points. An interesting case is rep- 
resented by obstacles which are not connected to the 
ground (e.g., concertina wire). For the wire to be detected 
as an obstacle, H- should be at least as large as the 
height of the wire with respect to the ground. 

4. Spatial Resolution of 3-D obstacle detector 
In order to evaluate the efficacy of our 3-D obstacle de- 

tector, it is important to realise the spatial resolution limi- 
tations of our algorithm. The spatial resolution determines 
how close two obstacles can be and still be segmented as 
two different objects. This information is crifical when 
the terrain is densely occupied by non-traversable o b  

stacles, in which case the gaps between two obstacles 
should be accurately located to allow autonomous naviga- 
tion and effective movement of the vehicle in such 
densely occupied landscapes. 

If the search height of the cone in 3-D space is H,,, as 
specified earlier, our algorithm classifies any two occu- 
pied pixels that are separated by a horizontal distance of 
2Hm/cos(BT) with the same obstacle label. Therefore, 
two different obstacles that are at least H,, in height and 
separated by a horizontal distance of more than 
2H,,/cos(eT) are assigned different labels by our 3-D 
obstacle detector. This implies that the spatial resolution 
for obstacles that are at least H, in height is 

Figure 7: Obstacle labelling and segmentation 

2H,,/cos(OT). For obstacles of height H lesser than 
H,,, the spatial resolution of our algorithm is much bet- 
ter; it is 2wcOs(eT) for obstacles with lower height. 

If the width of the vehicle W is lesser than the spatial 
resolving power of the algorithm, then our algorithm 
would safely and accurately locate all visible, traversable 
paths in the terrain. This is generally true for autonomous 
cross-country vehicles, such as the HMMWV or the 
URBIE robot testbeds used at JPL. In practice, the range 
estimates from stereo or laser-range sensors is corrupted 
by noise and susceptible to measurementlestimation er- 
rors, especially for points far fiom the sensor. This is fur- 
ther magnified by errors due to incorrect sensor calibra- 
tion. Therefore, the spatial resolution of our 3-D obstacle 
detector is typically worse than the theoretical limits dis- 
cussed here. 

4.1. Parameter selection in 3-D obstacle detector 

As discussed in Section 2 earlier, our 3-D obstacle de- 
tector involves searching a cone region around each point 
in 3-D space for the presence of an obstacle. If the ground 
terrain is flat (horizontal), obstacle search at a point 
(%,yo,z,,) at a distance 20 from the image plane would in- 
volve searching an area corresponding to the projection 
of the cone on the 2-D image, which is an inverted trian- 
gle of height Hi = (HT) flz,, (whose vertex is (x,-,i,yoi) in the 
image I as ai = xo flz,,, yoi = yo flz,,), and with vertex angle 
90- &, as shown in Figure 4 earlier. This is the region Up 
in OD 2. 

However, in reality, the terrain is uneven, and many 
ground pixels in the terrain do not lie on the camera 
plane. Additionally, the camera plane may not be horizon- 



tal if the vehicle is on a slope. Therefore, the projection of 
the cone will change with terrain elevation variations. 

We analyse the change in projection of the 3-D cone 
along each spatial dimension XJ as the terrain configura- 
tion changes. When the terrain is flat, the projection (re- 
gion Up in OD 2) is a triangle with a horizontal base of 
height (HT) Uq. I f  the terrain is sloped, or the camera 
plane tilted, it is possible that the cone generatrix (the 
slanted line with angle 0,) becomes parallel to the camera 
plane. In such a case, the region Up is a slanted triangle 
whose base is at angle eT with the horizontal. The hy- 
potenuse of the triangle is parallel to the vertical axis of 
length ((H+/cos2(eT)) + H2)H f/q; this is larger than (HT) 
Uz,, for a projection of a cone on a ground plane that is 
horizontal and at the same elevation as the image plane. 

Similarly, if the camerdvehicle, or a ground plane 
segment were tilted from the x-axis, the hypotenuse of the 
projected triangle could be parallel to the x-axis, thereby 
yielding a projection of size (HT2cosZ(eT) + H?)M ffq 
along the x-axis. 

Therefore, the shape and size of the search region Up 
varies with terrain orientation. In practice, we use a 
square search window at least of size (H2cos2(OT) + 
H:? flz, for our 3-D obstacle detection to accommodate 
all possible terrain variations. Typically, a window of 
about 4-5 times the minimum size is employed to ensure 
that valid obstacles are not discarded due to spatial reso- 
lution limitations of the estimated range-from-stereo data. 

5. 3-D Shape Reasoning for Obstacle Classifica- 
tion using Rule-based Classifier 

As discussed earlier, our 3-D obstacle detection algo- 
rithm automatically segments the obstacles to yield an 
unique label for each obstacle in 3-D space. This facili- 
tates the use of 3-D shape and geometrical measures to 
effectively reject spurious false obstacles that may have 
been detected. 

3-D shape reasoning techniques have been used in ro- 
botics in the past. Sutton et. al. [Sutton98] have used 3-D 
shape reasoning in robotics by building detailed 3-D 
models of an object from range data, followed by shape- 
reasoning to label the object's potential functionality. A 
model-based 3-D geometrical reasoning scheme for land 
vehicles has been used marti961 where prior scene 
knowledge with a generic 3-D model of the expected 
scene and the potential objects is compared with the ac- 
tual scene to do 3-D obstacle classification. Both these 
techniques require detailed prior knowledge of the objects 
and the scene which is not expected in real terrain naviga- 
tion scenarios, and 3-D model-matching which is compu- 
tationally demanding. In [Crisman98], stereo data is used 
to locate edges and comer targets for wheelchair naviga- 
tion in relatively uncluttered, flat urban environments. In 
another approach [Hoover98], a planar boundary repre- 
sentation space envelope models the empty, unoccupied 

volumes in the scene. Reasoning about the scene's content 
using surface geometry and topology is used to determine 
the number of visible objects. All these methods require 
creation of a 3-D model, possibly by converting the 3-D 
point data into a mesh representation, which is a complex 
operation and often not suited for real-time applications 
that have limited computational resources. We compute 
3-D geometrical features from the raw point-cloud data, 
which enables real-time analysis. 

In our initial research efforts, we extracted five simple 
3-D geometrical measures from each obstacle. This in- 
cluded the perimeter of the 3-D bounding box for an ob- 
stacle, the average slope of the obstacle and relative 
height from surrounding background, the maximum slope, 
and the maximum relative height of an obstacle from sur- 
rounding regions. These geometrical measures are auto- 
matically derived during the obstacle segmentation proc- 
ess, without any extra computational overhead. Thresh- 
olds are assigned to each of these five 3-D measures. If 
any of the five variables have a value less than the pre- 
selected thresholds, it is rejected as a false obstacle. For 
example, all obstacles with an average slope lesser than 
2.5, or maximum slope lesser than 5.0 were classified as 
false-obstacles. Our rule-based classification therefore 
rejects obstacles with small bounding volume, aver- 
age/maximum slopes, or average/maximum relative 
height. 

Our new rule-based 3-D shape reasoning and classifica- 
tion is expected to outperform prior 2-D based obstacle 
reasoning methods ISelluttaOO] that used 2-D area infor- 
mation (not 3-D geometrical measures) to reject small- 
sized false obstacles. In many cases, an object that occu- 
pies a small number of pixels in the 2-D image does not 
imply the presence of a false obstacle, or conversely a 

(b> (4 
Figure 8: (a), (6) Obstacle regions before and (c), (4 

large 2-D pixel area does not signify the presence of a 
true obstacle. False obstacle regions that are close to the 
camera could occupy a large number of pixels, and true 

afer 3-0 rule-based false obstacle removal. 



obstacles far away fiom the camera could occupy a sig- 
nificantly small area. 

Figure 8a shows a road with surrounding natural terrain 
and telephone poles. The initial 3-D obstacle detection 
algorithm locates all true obstacles (telephone poles, 
trees, etc.), but also locates false obstacles on the flat road 
on the upper left and upper right parts of the image (due 
to incorrect range from stereo measurements), as shown 
by the overlaid blue regions in Figure 8a. The corre- 
sponding segmented obstacle label image is shown in 
Figure 8b. Our rule based classification evaluates the 3-D 
geometrical measures for each detected obstacle, and cor- 
rectly rejects the false-obstacles on the road that have low 
average/maximum height and bounding volumes, as 
shown by the new labeled data in Figure 8c. The overlaid 
true obstacle image after our rule-based classification is 
shown in Figure 8d, where the red regions are the rejected 
false obstacle regions. 

6. 3-D Obstacle Detection: Results and Com- 

We present results on several types of terrain using our 
new 3-D obstacle detector. These are compared against a 
prior obstacle detection technique [BelluttaOO] that used 
slope measurements along image columns and 2-D area 

parisons 

(e) (0 
Figure 9: Obstacle regions located using (a), (b) our 3- 
D obstacle detector and (c) prior 2 - 0  obstacle detec- 
tor; (4 Range, and (e) elevation maps, and # I-D 
elevation profile. 

measures for obstacle detection. As mentioned earlier, 
this prior technique is not expected to work well on ter- 
rain that contains obstacles that slope along the image 
plane, rather than vertically downwards along image col- 
umns. Figure 9 shows an example of terrain that contains 
two mounds to the right of the camera with slanted slopes. 
Figure 9a shows the true detected obstacle regions using 
our new 3-D obstacle detection algorithm in blue and the 
corresponding obstacle labels are shown in Figure 9b. 
The 2-D obstacle detection algorithm [BelluttaOO] results 
are shown as blue regions in Figure 9c, and the rejected 
obstacle regions are shown in red. As seen, all of the 
closest mound and much of the larger mound obstacles 
are not detected due to the columnwise scanning tech- 
nique used. Additionally, parts of the smaller mound are 
rejected (red regions) since a 2-D blob area measure is 
used to reject small obstacles. Note that the previous 
obstacle detector using 1-D elevation profile fails to 
detect the two mounds due to the fact that the estimated 
slope of this 1-D range profile is not equal, in geneqal, to 
the true slope of the visible surface, as seen in the eleva- 
tion map in Figure 9(e), and the 1-D elevation profile in 
Figure 9(0. 

Figure 10 shows an image of a road with obstacles 
(telephone poles, and trees) on the side. Our 3-D obstacle 
detector locates all obstacles effectively (blue regions in 
Figure loa), and the 3-D rule-based geometrical classifi- 
cation rejects false obstacles that are loc 
road (red regions in Figure 10(b)). In*con 
D obstacle detector is unable to reject false obstacles on 
the road due to the 2-D pixel area measure used. A large 
false obstacle region is also incorrectly located on the 
upper right side of the image. 

(c) 
Figure 10: Obstacle regions located using (a), (5) 

our 3-0 obstacle detector and (c) prior 2 -0  obstacle 
detector 
Figure 11 shows natural terrain with a tall bush on the 

right, a negative obstacle in fiont of the camera, and trees 
in the background. Our 3-D obstacle detector locates all 



the obstacles effectively, and rejects false obstacles near 
the foot of the bush, and in the grassy terrain beyond the 
negative obstacle. In this case, the 2-D obstacle detector 
performs comparably, even though parts of the trees in 
the background are not correctly detected. Note that our 
3-D obstacle detector correctly distinguishes between the 
bush and background trees and assigns unique labels to 
each (Figure ll(b)), even though they overlap/touch in 
the 2-D image. This allows for combined color/texture 
and shape-based classification that could correctly clas- 
si@ low bushes as traversible obstacles. A 2-D obstacle 
detector on the other hand would label all touching pixels 
(including the background trees and bush) as one single 
obstacle, that would result in overall misclassification if 
color/texture and obstacle shape data were fused. 

Figure 11: Obstacle regions located using (a), (b) our 
3 -0  obstacle detector and (c) prior 2 -0  obstacle de- 
tector. 

Further results on a terrain with a large non-traversable 
mound is shown in Figure 12b,c. The prior obstacle de- 
tector is unable to detect the mound at all (Figure 12d) 
since it’s normal does not intersect the slicing plane n 
defined by the column points of the image plane and the 
focal point of the camera. A few sections that are detected 
are discarded as false positives in the area-based blob 
removal stage. 

The last results (Figure 13) show a narrow path in a 
wooded area along a trail lined with bushes. These bushes 
are correctly located as obstacles along with the trees as 
seen in Figure 13b,c. The 1-D obstacle detection algo- 
rithm (Figure 13d) misses the bushes on the right, which 
is not critical since these bushes are small. Fusion of color 
with shape-based reasoning is expected to result in classi- 
fication of the small bushes on the right as traversable, 
which will simplify navigation of the vehicle along nar- 
row paths. 

(c) ( 4  
Figure 13: Obstacle regions in image (a) located using 
(6). (c) our 3-0 obstacle detector and (4 prior 2 - 0  ob- 
stacle detector. 

7. Conclusions and Future Work 
In this effort, we have detailed a new 3-D obstacle de- 

tection algorithm for locating and segmenting obstacles in 
the scene for autonomous terrain vehicle navigation, and 
a new 3-D reasoning algorithm to reject false obstacles. 
The 3-D reasoning technique uses geometrical measures 
that are automatically derived from the 3-D obstacle de- 
tector without any extra computational overhead. Results 
are presented on scenes of natural terrain that the military 
autonomous vehicle (HMMWV) is expected to traverse 
during day andor night conditions. Our technique is seen 



to outperform prior obstacle detection results currently 
used in real-time JPL autonomous vehicles. 

Further improvements to our 3-D obstacle detection 
and reasoning algorithm will include fbsion of shape- 
based and color or texture information to better classify 
surrounding terrain into different terrain types 
(dryJnorma1 vegetation, bush, grass, rocks, telephone 
poles, fences, etc.). This would enable better classifica- 
tion of traversable objects (small-medium bushes, low- 
lying grass, tall grass), and non-traversable objects (rocks, 
poles, trees, tall bushes, steep slopes). Our method can be 
extended to analysis of multiple frames as the vehicle 
moves, where incremental 3-D obstacle detection and 
reasoning could be applied to successive frames to update 
detected obstacles swiftly. 

The 3-D obstacle detector is currently being integrated 
with a dynamic terrain modeling simulation tool where 
knowledge of the class and geometrical structure of each 
obstacle, derived from our obstacle detector, will be used 
to model the dynamics of the load-bearing surface as the 
vehicle moves over each traverseable object. This is use- 
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