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Abstract. Supersonic turbulence fragments the interstellar medium into dense sheets, 
filaments, cores and large low density “voids”, thanks to a complex network of highly 
radiative shocks. The turbulence is driven on the large scale predominantly by super- 
novae. While on large scale (disk thickness) the magnetic energy is in approximate 
equipartition with the kinetic energy of the turbulence, on the scale of a few pc the 
turbulent kinetic energy exceeds the magnetic energy. 

The scaling properties of supersonic turbulence are well described by a new analyt- 
ical theory, which allows to predict the structure functions of the density and velocity 
distributions in star-forming clouds up to very high order. 

The distribution of core masses depends primarily on the power spectrum of the 
turbulent flow, and on the jump conditions for isothermal shocks in a magnetized 
gas. For the predicted velocity power spectrum index p = -1.74, consistent with 
results of numerical experiments of supersonic turbulence as well as with Larson’s 
velocity-size relation, one obtains by scaling arguments a power law mass distribution 
of dense cores with a slope equal to 3/(4 + p) = 1.33, consistent with the slope of the 
Salpeter stellar initial mass function (IMF). Results from numerical simulations confirm 
this scaling. Both the analytical model for the stellar IMF and its numerical estimate 
show that turbulent fragmentation can also explain the origin of brown dwarfs. The 
analytical predictions for the relative abundance of brown dwarfs are confirmed by the 
observations. 

The main conclusion is that the stellar IMF directly reflects the mass distribution 
of prestellar cores, due predominantly to the process of turbulent fragmentation. 

1 Introduction 

Turbulence in the interstellar medium (ISM) of the Milky Way - and more 
generally turbulence in the discs of other galaxies - is of crucial importance for 
both the structure and evolution of the galaxy. The importance of turbulence is 
both direct, through its influence on the pressure equilibrium and stratification, 
and indirect, through its influence on the star formation process. 

The vertical pressure equilibrium and stratification of the ISM is determined 
by the level of turbulence, together with the temperature distribution of the 
medium (which is in turn probably tightly coupled to the turbulence), and it 
is likely that even the distributions of magnetic fields and cosmic ray particles, 
which also contribute to the pressure and stratification, are integral parts of the 
same process; it is unlikely that the near equipartition of the energy content of 
turbulence, magnetic fields, and cosmic ray particles is a mere coincidence. 
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It has long been realized that turbulence in the interstellar medium, in partic- 
ular in the cold, molecular cloud components, is highly supersonic [43-45,23,24]. 
More recently, it has been realized that the supersonic nature of the turbulence 
is a boon, rather than a nuisance, when trying to understand the properties of 
the ISM, the cold molecular clouds, and star formation [54,59,22]. It turns out 
that supersonic turbulence is in many respect similar to ordinary, subsonic tur- 
bulence, and that it thus has a number of generic, statistical properties. Much 
like ordinary turbulence, its decay time is of the order of the dynamical time, 
even in the MHD-case [46,?,47,73,59]. And much like ordinary turbulence, it is 
characterized by power law velocity power spectra and structure functions over 
an inertial range of scales [8,10,11]. 

An important difference between supersonic and subsonic turbulence is the 
distribution of density. A supersonic medium is, by definition, highly compress- 
ible; on average its gas pressure Pg is small relative to the dynamic pressure pu2. 
As a consequence, a supersonic medium is characterized by a wide distribution of 
densities. A turbulent and isothermal supersonic medium has a log-normal den- 
sity probability distribution (PDF) [77,55,64], with a dispersion of linear density 
proportional to the Mach number [55,50,53]. Cold molecular clouds are indeed 
approximately isothermal, and are known to have a very intermittent density 
distribution, consistent with the properties of isothermal supersonic turbulence 
[56]. Deviations from isothermal conditions are in general of the type where com- 
pression leads to even lower temperatures (effective gas gamma less than unity) 
[68], resulting in a density PDF skewed towards greater probability at high den- 
sities. The PDF may be described as a skewed log-normal, with a high density 
asymptote that formally tends to a power law in the limit T + 0 [68,50]. 

Effectively then, supersonic turbulence acts to fragment the ISM, causing 
local density enhancements also over a range of geometrical scales. Molecular 
clouds themselves represent relatively large scale density enhancements, prob- 
ably caused by the random convergence of large scale ISM velocity features 
[4,5,30]. Inside molecular clouds smaller scale turbulence leads to high contrast 
local density enhancements in corrugated shocks, intersections of shocks, and in 
knots at the intersection of filaments. Such small scale density enhancements are 
‘up to grabs’ by gravity; if their density is sufficiently high, relative to their tem- 
perature and the local magnetic field strength, they form pre-stellar cores, and 
eventually collapse to form stars. The decisive importance of turbulence in this 
process makes it possible to predict the distribution of masses of the pre-stellar 
cores, and hence the distribution of new borne stars, the initial mass function 
(IMF) [61,63]. 

The process of star formation is indeed crucial to understand. Only by un- 
derstanding star formation, qualitatively and quantitatively, can we understand 
galaxy formation. We need to understand evolution effects to answer questions 
such as “Was star formation different in the Early Universe?”. We need to un- 
derstand environmental effects to answer questions such as “DO other galaxies 
have different ‘Larson laws’?’’ 
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We also need to understand star formation to answer questions related to 
Gamma-Ray Bursts; e.g., “Are Very Massive Stars progenitors of Gamma-Ray 
Bursts?”, and “What environment does the blast wave associated with Gamma- 
Ray Bursts encounter”? 

Finally, we would like to understand star formation as such, because it is 
a neat problem - one that involves supersonic, selfgravitating MHD turbulence 
and thus was thought to be enormously difficult. With access to supercomputer 
modeling the problem has become tractable, and it has turned out a posteriori 
that it is even partly amenable to analytical theory. 

In the subsequent sections of this tutorial star formation and turbulence in 
the interstellar medium is discussed in more detail. Section 2 discusses super- 
nova driving of the ISM, Section 3 discusses properties of supersonic turbulence, 
Section 4 summarizes a new theory of supersonic turbulence, while Section 5 dis- 
cusses star formation and the initial mass function. Conclusions are summarized 
in Section 6. 

2 

With turbulence being of such fundamental importance in determining the struc- 
ture and star formation efficiency of the interstellar medium it is important to 
understand what its primary sources are, and what its overall energy budget is. 

First, an estimate and lower limit of the energy input needed to sustain 
interstellar turbulence is given by Kolmogorov’s scaling expression for the energy 
transfer rate in a turbulent cascade [34], 

Supernova driving of the Interstellar Medium 

€ - p U 3 / L ,  (1) 

where U and L are velocity amplitudes and length scales, respectively. In Kol- 
mogorov’s classical theory this quantity is assumed to be invariant across the 
inertial range, and for our purposes this is adequate; subsequent enhancements of 
Kolmogorov’s theory [69] and modifications for supersonic conditions [ll] would 
not change the following estimates significantly. 

Observationally, the velocity dispersion in the ISM adheres to Larson’s scaling 
law, 

with a M 0.4 [43,44,24], which means that an estimate based on (1) only depends 
very weakly on the scale L on which the estimate is based. On scales L - 1 kpc, 
the turbulent velocity dispersion is of the order U - 10 kms-l [43], which 
leads to the estimate - 5 1050 e r g k ~ c - ~  Myr, using an average ISM density - 1.5 g ~ m - ~  [13]. 

For comparison, the rate of energy input to the ISM from supernovae is of 
the order of erg k p ~ - ~  Myr, based on a rate of one SN per 70 years in a 
galactic volume spanned by a radius of 15 kpc and a disk thickness of 200 pc [3]. 
Thus, less than one percent of the average supernova energy input is necessary 
to sustain the turbulent cascade of energy in the ISM. 
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Two questions come to mind: 1) Is there at all a turbulent cascade, and 2) 
is the energy from supernova at all available for feeding such a cascade? 

The answer to the first question is definitely affirmative; whatever its source, 
the observed velocity field at large scales can do nothing but drive a cascade 
towards smaller scale, since there is no dissipation mechanism that operates at 
such large scales. As has recently been shown [10,11], it makes little difference 
whether turbulence is subsonic or supersonic; similar cascades arise in both cases, 
only details such as power law exponents differ. The predicted scaling of the 
velocity dispersion with size is consistent with the observed (Larson’s law) scaling 
[43,44,24]. Most of the observed scatter around the expected scaling (e.g., Fig. 
9 in [24]) is probably due to cloud-to-cloud variations - observations for a single 
cloud (Polaris) define a remarkably well defined scaling over more than three 
orders of magnitude in size [52]. A complementary piece of evidence for power 
law behavior comes from the observed relation between age difference and spatial 
separation [22]. 

The answer to the second question is less obvious, but in the end also affir- 
mative. One might think that supernova energy input occurs at small scales, and 
hence cannot be a source at large scales for the turbulent cascade. However, as 
has been demonstrated by detailed numerical simulations [41,29,3], supernovae 
are indeed capable of sustaining a turbulent cascade with velocity dispersions 
consistent with observed values. The transfer of energy to large scales occurs 
through the expansion of supernova bubbles and super-bubbles; i.e., via the hot 
component of the ISM. The hot component coexists with cooler components (or 
rather a continuous distribution of temperatures), and the expansion of the hot 
component into channels and chimneys creates kinetic energy on large scales, 
available for cascading to smaller scales, also in the cooler components. 

The numerical models demonstrate that supernova-driving of the interstellar 
medium is a viable and probably dominating mechanism, at least in the disc 
of our galaxy. The detailed numerical models are also broadly consistent with 
analytical and semi-analytical models of supernova feedback and turbulent self- 
regulation in galactic discs [17,74]. 

One may ask whether other sources of energy input could be significant. 
Winds from hot stars is one candidate that may contribute [78,?]; regions that 
create supernovae of type I1 are likely to also contain hot, early type stars. Jets 
from new-borne stars have been mentioned as an energy input candidate, but it 
is unlikely to be significant on scales above a few pc. 

Larson’s original paper [43] lists irregularities and asymmetries in the rotation 
curve as larger scales that fit into the general power law, at L N 2 - 10 kpc. This 
could be taken as an indication that such irregularities, stemming for example 
from large scale density waves, could also be a source of driving for the turbulent 
cascade. But the relation could also go the other way; irregularities on scales of 
several kpc could be the imprint of old super-bubbles, stretched in the direction 
of rotation by the differential rotation. 

In other contexts, such as star-burst galaxies, the balance between contri- 
butions to the driving may be different; kinetic energy input from collisions or 
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close interactions between galaxies may be an important energy input channel 
there, for example. 

3 Turbulent cascade of the Interstellar Medium 

When regarded as an isolated phenomenon, molecular clouds have traditionally 
given rise to concerns about the source of their turbulence, their life times, and 
about their support against gravity [70,30]. 

3.1 

Molecular clouds are known to be significantly supersonic, with observed turbu- 
lent velocities of the order km s-l, while typical sound speeds at molecular cloud 
temperatures are - 0.2-0.3 kms-l. The supersonic velocities were assumed to 
give rise to very rapid dissipation in shocks, and hence explaining how the ob- 
served velocities are sustained was regarded as a problem. A popular suggestion 
for a solution to the problem was that the observed velocities are essentially 
magneto-hydrodynamic waves, with very low dissipation rates [2,81]. 

But in light of the conclusions of the previous section there is really no reason 
to be concerned about how the turbulence of molecular clouds is sustained; 
supply of kinetic energy at molecular size scales is available from the turbulent 
cascade; i.e., simply from larger scale motions. In fact, a molecular cloud is 
probably borne precisely because the larger scale velocity field happens to have 
a local maximum of convergence there [4,5,30]. 

Molecular clouds as part of a turbulent cascade 

3.2 Supersonic turbulent cascades 

Figure 9 shows examples of power spectra of supersonic turbulence, at two val- 
ues of the numerical resolution. An inertial (power law scaling) range is present, 
and extends to progressively higher wavenumbers at higher numerical resolution. 
How is it possible that supersonic turbulence gives rise to a turbulent cascade 
much like that of incompressible turbulence? One clue comes from the dissi- 
pation rate of supersonic turbulence. Numerical experiments revealed it to be 
similar to that of incompressible turbulence, if expressed in terms of dynamical 
times TdYn = l?/vrms(L?), even for MHD-turbulence [7,46,?,47,59,73]. In quali- 
tative terms one reason why the dissipation rate is not as high as was naively 
expected is that shocks in three-dimensional supersonic turbulence are typically 
oblique rather than head-on, and that fragmentation decreases the efficiency of 
interaction [67,54]. 

The ratio of compressional to solenoidal kinetic energy is small in isotropic 
supersonic turbulence; typically Ec/Es - 0.1-0 .2  [lo] (cf. Fig. 9). To appreciate 
why this is so it is helpful to consider the velocities on either side of a shock sheet 
formed by two interacting large scale streams. By definition, the gas upstream 
of the two stand-off shocks on either side of the sheet have no casual connection, 
and their orientations are therefore random with respect to each other. 
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Fig. 1. The solenoidal power spectrum, compensated by k1.74, and the ratio of com- 
pressional to  solenoidal power in M z 10 numerical experiments with resolution 2503 
(diamonds) and 5003 (stars), using random solenoidal driving at  1 5 A 5 2. Dashed 
lines show comparison slopes with spectral indices -1.64, -1.74, and -1.84, respectively. 

In terms of a coordinate system with one axis perpendicular to the plane of 
the sheet, two of the three velocity components are parallel to the sheet and 
hence incompressible, and only one is perpendicular (compressional). The com- 
pressional component is the one that gives rise to the shock, with its associated 
stagnant region inside the shock sheet. It follows that one should indeed expect 
the compressional component to, on the average, carry less than one third of the 
kinetic energy, consistent with what is found in the numerical experiments. 

More generally, one may think of three-dimensional supersonic turbulence as 
an ensemble of shock sheets, and their associated intersections in filaments and 
knots. The typical history of a trace particle in such a flow is that it participates 
in a series of oblique shocks where, in each shock, the particle looses some of its 
kinetic energy. 

If the system consisted of an ensemble of stationary, plane-parallel shock 
sheets a fluid parcel would first hit one sheet, where its perpendicular kinetic 
energy would be essentially lost. It would then slide along the sheet until it 
hit the filamentary intersection with another sheet, and finally slide along the 
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Fig. 2. Density in an arbitrary cut through a numerical experiment with M z 10 
turbulence at a resolution of 500x500x500. a) Linear scaling, normalized to the local 
maximum of the density. b) Logarithmic scaling, normalized to the local maximum and 
minimum of the density. 

filament until it ended up in the stagnant region of a knot-like intersection of 
filaments. 

In a more general picture shock sheets are neither stationary nor plane- 
parallel, which allows trace particles to participate in a more extended series of 
shocks. As its kinetic energy is gradually reduced, so is the scale over which new 
shocks are likely to be produced. 

Figure 1 illustrates the structure of the density field in supersonic turbulence, 
modeled at a resolution of 5003. The left hand side panel shows linear density. 
Due to the large density contrast, only a few shock sheets and filaments are 
visible. The right hand side panel shows logarithmic density, and illustrates the 
general presence of intermittent density structure over a range of scales and 
density levels. 

The history of a fluid parcel in the real ISM might be as follows: It achieves 
initial, large kinetic energy by either being part of the ejecta from a supernova 
or, more likely, by being hit by the ejecta from a supernova. It becomes further 
compressed as the stream to which it belongs collides with other streams. As 
density increases cooling becomes significant, and the temperature decreases. 
The parcel may eventually end up as part of a molecular cloud. Inside the cloud, 
the process repeats itself, on successively smaller scales, creating in the end a 
shock core massive enough to form a star. More likely, though, the fluid parcel 
ends up in a structure too small to collapse by self-gravity, where it survives 
until being hit by the blast wave from another supernova, or the wind from a 
new-borne massive star. 
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Fig. 3. Histograms of extinction (left panels) and plots of dispersion of extinction in 
cells versus the mean cell extinction (right panels). The top panels show the result from 
a super-Alfvknic model while the middle panels are from an equipartition model [59]. 
The bottom panels are observational data for the cloud IC5146 [42] 
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Fig. 4. Histograms of integrated antenna temperature of synthetic CO spectra [59], 
for a super-Alfvhnic model (thick line), for an equipartition model (thin line), and for 
the Perseus cloud (dotted line) 

3.3 Super-AlfvBnic conditions 

The proposal that magneto-hydrodynamic waves are main contributors to the 
velocity field in molecular clouds is now obsolete for several independent reasons. 
First, with the velocity field of molecular clouds part of a turbulent cascade there 
is no longer a problem to sustain the motions. Second, with the demonstrations 
that MHD-turbulence decays more or less as rapidly as hydrodynamic turbulence 
[7,46,?,47,59,73], the presumed 'advantage' of MHD-turbulence has gone away. 
Third, with observational and theoretical evidence that star formation takes 
place on a time scale not much longer than a crossing time [22] the required life 
times of molecular clouds are much shorter than was assumed in earlier work. 

The notion that the velocity field in molecular clouds is essentially AlfvBn 
waves lead to the assumption that the kinetic and magnetic energy in molecular 
clouds are in near equipartition. Although inverting observations to obtain the 
magnetic field strength, density and velocity in the same structures is notori- 
ously difficult (cf. the discussion in Section 4.1 of [27]), equipartition remained 
a popular null-hypothesis. 

With access to numerical simulations it is possible to use the more robust 'for- 
ward analysis' method, where synthetic diagnostics computed from the results 
of numerical simulations are compared directly with the corresponding obser- 
vational diagnostics. Comparisons of extinction statistics, synthetic molecular 
lines, the antenna temperature - line width relation, and the statistical upper 
envelope relation between density and magnetic field strength (cf. Figs. 2-5) all 
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Fig. 5. Scatter plots of equivalent width versus velocity integrated antenna tempera- 
ture for two observed regions (two upper panels), for a super-Alfvenic model, and for 
an equipartition mode. The diamond symbols show the mean value of the equivalent 
width in each interval of integrated antenna temperature and the "error bars" show 
the one u distribution around the mean 

lead to the same conclusion; models with equipartition between magnetic and 
kinetic energy are inconsistent with the observations while models where the 
kinetic energy dominates over the magnetic energy (super-AlfvCnic models) are 
consistent with the observations [56-591. 

A direct illustration of the consistency of super-Alfvknic conditions with Zee- 
man observations of magnetic field strength is given in Fig. 6.  Note that several 
cores with B in excess of 100 pG are found, even though the average B in the 
simulation is only 2.4 p.G. This is a good example of the power of forward com- 
parisons in situations with strong intermittency; it would be very difficult to  
recover the mean field strength, or the mean magnetic energy, directly from the 
observations, which sample only the very small fraction of the cloud volume filled 
by the densest regions. Further illustrations are given in Figs. 7-8, which show 
comparisons of velocity statistics with observations. 

Figure 7 is a comparison of the correlation of non-thermal line width with 
size in NH3 cores from the compilation by Jijina, Myers & Adams [35] and in 
cores selected from a simulation of supersonic and super-AlfvCnic turbulence [62]. 
The least squares fit to the observational data yields the power law exponent 
0.56 f 0.22 and the fit to the data the exponent 0.57 f 0.15. Figure 8 shows the 
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Fig. 6. The B - n relation: observations and theoretical models. The thick contour 
lines are from the a super-Alfvbnic model and the thin contour lines are from an 
equipartition model [59] 

Fig. 7. Magnetic field strength versus H2 column density. Asterisks represent Zeeman 
splitting measurements [14] (detections and uppper limits) with a least squares fit 
(dashed line). Squares represent cores from a super-AlfvCnic numerical experiment 
(average B = 2.4 pG) [62], with a least squares fit (solid line). The dotted-dashed line 
marks equality between magnetic and gravitational energies 
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Fig. 8. Non-thermal line width of observed (squares, with dashed line least squares fit) 
and modeled (stars, with solid line least squares fit) NH3 cores versus their size [35,62]. 
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Fig. 9. Rotational velocity (upper panel) and velocity dispersion (lower panel) for 
numerical cores. 
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correlation of rotational velocity (upper panel) and internal velocity dispersion 
(lower panel) with size, for the numerical cores only. The rotational velocities 
are very low and of the order of the sound speed, as found in the observational 
data. In both panels of Fig. 8 the asterisk symbols that correspond to a size 
of almost 3 pc provide the values of rotational velocity and velocity dispersion 
computed over the whole simulated volume. Although the least squares fits are 
computed only for the cores, the values for the whole system are consistent with 
the fits. 

3.4 The magnetic flux problem 

A “magnetic flux problem” is often mentioned in this context. It is argued that 
since the average density of molecular clouds is at least 100 times larger than 
the average density in the galactic disk, and assuming magnetic flux freezing, 
the average magnetic field strength of molecular clouds should be much larger 
than the average galactic values of a few pG. As demonstrated by Fig. 6 there 
is in fact no real problem - observations of core magnetic fields are completely 
consistent with predictions from models with average magnetic field strengths 
of a few pG - there is at most a conceptual / perceived problem. 

This conceptual problem has a straightforward solution, which, ironically, is 
most easily demonstrated by the equipartition model. It has been shown in many 
numerical works that supersonic turbulence, even with equipartition of kinetic 
and magnetic energy (the traditional model for molecular clouds) generates a 
complex density field, with very large contrast sheetlike and filamentary density 
structures. These density enhancements do not correspond to significant varia- 
tions of the magnetic field strength in equipartition models, since in them strong 
compression can occur only along magnetic field lines. To the extent that tur- 
bulence on large scales (disk thickness) has approximate equipartition of kinetic 
and magnetic energy, molecular clouds can still easily form, as a consequence of 
compressions along magnetic field lines. 

Once a cloud is formed by large scale equipartition turbulence, it has a mean 
magnetic field strength close to the galactic value, and its internal dynamics 
is super-Alfvenic, because of the much increased density. Equipartition on the 
large scale, therefore, is not a problem for the origin of super-Alfvknic clouds. 

The argument applies recursively; should the super-Alfvhic cloud by chance 
create a region with local equipartition, further increase of the density is still 
possible, by inflow of mass along magnetic field lines. One sees the statistical 
outcome of this in the B-n relation (Fig. 5 ) ;  for any given density there is a 
wide distribution of magnetic field strengths, up to an upper envelope given by 
approximate equipartition. 

Inflow along magnetic field lines is also likely to occur in the phase when 
gravitation has taken over, after local cores are formed along filaments and in 
corrugated sheets. In that situation the magnetic field has already been com- 
pressed, and is oriented predominantly along the same filaments and sheets that 
also contain abundant mass at high density. 
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3.5 

The scenario where star formation takes place in essentially a crossing time [22] 
also alleviates earlier concerns about how to support molecular clouds against 
gravitational collapse. The gravitational binding energy of molecular clouds is 
often comparable to their turbulent kinetic energy, and hence quite a bit larger 
than their thermal energy [44,24]. This raised the question of the support of the 
clouds against gravitational collapse. Could the turbulent velocities be translated 
into a turbulent pressure that was able to support the clouds against collapse 
[12,?,?,33]? Or did the solution lie in the observed, strong fragmentation of the 
medium [67,54]? 

In the ‘turbulent fragmentation & star formation in a crossing time’ paradigm 
it is natural to find some molecular clouds with roughly virial mass, as well as 
some with substantially less than virial mass, while there are essentially none 
with much larger than virial mass (cf. Fig. 7 of [24]). Turbulent fragmentation 
creates clouds, initially without regard to gravity. Some of the clouds that are 
produced are gravitationally unbound (but may contain sub-structures that are 
gravitationally bound). Some other clouds are massive enough to be gravita- 
tionally bound (at least until their first supernovae blow out a major part of the 
cloud gas). Clouds that are created with a mass larger than virial start to col- 
lapse, which increases the velocity dispersion of their sub-structures until they 
appear to be essentially virial. 

The latter case represents the most direct and simple mechanism by which 
turbulence prevents global collapse of molecular clouds; i.e., through fragmen- 
tation rather than through “turbulent pressure”. The mechanism may be illus- 
trated by considering that extreme intermittency caused by strongly supersonic 
turbulence and cooling could create conditions where individual density max- 
ima move in essentially ballistic orbits relative to one another [67]. Even under 
less extreme conditions intermittency may cause individual density maxima to 
collapse, while the cloud as such does not [54,55,33,?]. 

Gravitationally bound and unbound clouds 

3.6 Power laws and equipartition 

As mentioned above, even highly supersonic turbulence is characterized by power 
laws [10,11]. However, because of the strong intermittency of density and its 
correlation with the velocity field, the spectrum of kinetic energy is not the 
same as the power spectrum of velocity. 

It is appropriate to define the spectrum of kinetic energy as the power spec- 
trum of p l k ,  since the sum of squares of its Fourier components is equal to 
the kinetic energy. Empirically, from numerical simulations, one finds that the 
spectrum of kinetic energy is quite a bit more shallow than the power spectrum 
of velocity. The latter has a power exponent consistent with the theoretical ex- 
pectation ,8 = -1.74 [lo]. The former has a power exponent /3k.e. x -1.1.  

The power spectrum of the magnetic field is approximately parallel to that 
of velocity in the high-k part of the inertial range, and hence the spectrum of 
magnetic energy is steeper than the spectrum of kinetic energy. This may appear 



Star Formation and the Initial Mass Function 15 

strange, at first. Why would the magnetic field have a power spectrum similar 
to that of velocity, when magnetic energy, i B 2 ,  is measured in the same units 
as kinetic energy ipu2 and not in the units of velocity power u2? A possible 
explanation is that B2 is weighted more towards the kinetic energy of the bulk 
of the volume. Assuming a lognormal PDF of density, with a dispersion of linear 
density [50] 

where /3 M $, the most common density is 
c p = P M ,  (3) 

(P> 
(1 + p2M2)4 ’ Po = (4) 

which is smaller than the average density (p) .  Thus, if the magnetic energy is 
in equipartition with the kinetic energy at those densities, rather than at the 
higher densities towards which the average kinetic energy is weighted, this would 
explain both why the spectrum of B is similar to that of u and why the average 
magnetic energy is below equipartition with the kinetic energy. 

With a difference in the power law exponents a gap develops from the (ob- 
served) equipartition at large scales (w 100 pc). A power law index difference of 
0.65 implies Emag/Ekin < 0.1 at pc scales, which is consistent with the forward 
analysis of numerical simulations [59]. 

Note that the discussion above is complementary to the one at the end of 
Sect. ?? - both views are helpful for understanding why small scale ISM motions 
are super-Alfvhic. 

4 A new analytical theory of supersonic turbulence 

Due to the complexity of the Navier-Stokes equations, mathematical work on 
turbulence is often inspired by experimental and observational measurements. 
Since geophysical and laboratory flows are predominantly incompressible, tur- 
bulence studies have been limited almost entirely to incompressible flows (or to 
infinitely compressible ones, described by the Burgers equation). Little attention 
has been paid in the past to highly compressible, or super-sonic turbulence. 

Turbulent flows are traditionally described statistically by the structure func- 
tions of their velocity field [25]. The structure functions are defined as 

SP(!) = (lu(z + C) - u(z))lP) IX LC(P) , (5) 

where u is the component of the velocity field perpendicular (transversal struc- 
ture functions) or parallel (longitudinal structure functions) to the vector C. 
In the inertial interval the structure functions obey scaling laws and the ex- 
ponent C(p) can be determined. The power spectrum of the velocity is the 
Fourier transform of the second order structure function, and may be expressed 
as E ( k )  IX k-0 cc 

One may think that the study of high order structure functions is interesting 
only for testing models of intermittency in turbulent flows, and not very useful 
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in the context of ISM turbulence and star formation. Actually, the intermittent 
nature of turbulence is crucial in modeling the process of star formation driven 
by turbulent fragmentation. Stars are formed in the densest regions of turbulent 
flows. These regions contain only a few percent of the total mass and fill an almost 
insignificant fraction of the total volume of a star forming cloud. High order 
moments defining the tails of statistical distributions of velocity and density 
are therefore very important in the process of star formation. Furthermore, low 
orders density structure functions, which are obviously important to describe 
basic properties of turbulent fragmentation, can be shown to depend on velocity 
structure functions of very high order [ll]. 

The scaling of the velocity structure functions in incompressible turbulence 
are best described by the She-Leveque formula [69], 

The scaling exponents are computed relative to the third order, 5(p)/C(3), be- 
cause according to the concept of extended self-similarity [6,16] the relative ex- 
ponents are universal and better defined than the absolute ones. 

Boldyrev [8] has proposed an extension of the She-Leveque's formalism [69] 
to the case of supersonic turbulence. Based on the physical interpretation of 
(6) by Dubrulle [16], a fundamental parameter in the derivation of the velocity 
structure functions is the Hausdorff dimension of the support of the most singular 
dissipative structures in the turbulent flow. In incompressible turbulence the 
most dissipative structures are organized in filaments along coherent vortex tubes 
with Hausdorff dimension D = 1, while in supersonic turbulence dissipation 
occurs predominantly in sheet-like shocks, with Hausdorff dimension D = 2. The 
new velocity structure function scaling proposed by Boldyrev [8] for supersonic 
turbulence is 

co = p / g +  1 - (,),I3 . 
C(3) (7) 

This velocity scaling has been found to provide a very accurate prediction for 
numerical simulations of supersonic and super-Alfvhnic turbulence [lo], and has 
been used to infer the structure of the density distribution in turbulent clouds 
[ I l l .  

5 Star formation and the Initial Mass Function 

At least three unrelated ways of explaining the process of star formation and 
the origin of the stellar initial mass function (IMF) can be found in the litera- 
ture: i) Ambipolar drift contraction of sub-critical cores [70,1]; ii) opacity-limited 
gravitational fragmentation [32,26,79,75,36,65,72,71,80]; and iii) turbulent frag- 
mentation [?,44,67,18,77,54,60,61]. 

The first type of models rely on the assumption that both protostellar cores 
and their parent clouds are long lived systems in near equilibrium, supported 
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against their gravitational collapse by magnetic field pressure. As discussed 
above, this assumption has been proven incorrect based on observational data 
and is inconsistent with the turbulent nature of star-forming clouds [59,22,30,60]. 
Furthermore, these type of models do not address the problem of the formation 
of massive stars or brown dwarfs, and have traditionally focused more on the 
evolution of individual protostars, without providing a self-consistent picture for 
the origin of the initial conditions. 

The second type of models is also inconsistent with the properties of star- 
forming clouds, because it applies the concept of gravitational fragmentation to 
the large scale, in the attempt of modeling the formation of a whole stellar popu- 
lation. The concept of gravitational instability is based on a comparison between 
the gas thermal and gravitational energies to define the smallest unstable mass, 
or Jeans’ mass. However, star-forming clouds, as any region of the cold ISM 
above a scale of approximately 0.1 pc, contain a kinetic energy of turbulence 
that is much larger (typically 100 times larger) than their thermal energy, mak- 
ing the comparison of thermal and gravitational energies irrelevant on the large 
scale. Attempts to redefine the Jeans’ mass [?,?I assuming that turbulence can 
provide pressure support against the gravitational collapse are flawed, because 
they miss the basic point that supersonic turbulence is actually fragmenting the 
gas. The main effect of the large kinetic energy of turbulence, relative to the ther- 
mal energy, is that the gas density and velocity fields in star-forming regions are 
highly non-linear, against the assumption of the gravitational instability model. 
In other words, clouds are already fragmented by turbulence, quite independent 
of their self-gravity. 

The third type of models, which we refer to as turbulent fragmentation mod- 
els, focus on the importance of the observed supersonic turbulence in molecular 
clouds and are therefore consistent with the large scale dynamics of star-forming 
regions. The idea of star formation driven by supersonic turbulence was pro- 
posed twenty years ago by Larson [44], but has become popular only in the 
last few years, thanks to the progress of numerical simulations of supersonic 
magneto-hydrodynamic (MHD) turbulence. 

According to the model of turbulent fragmentation, protostellar cores are 
formed from gas compressed by shocks in the supersonic turbulent flow [60]. 
While scale-free turbulence generates a power law mass distribution down to 
very small masses, only cores with a gravitational binding energy in excess of 
their magnetic and thermal energy can collapse. The shape of the stellar IMF is 
then a power law for large masses, since the majority of large cores are larger than 
their Jeans’ mass. At smaller masses, the IMF flattens and then turns around 
according to the probability of small cores to be dense enough to collapse, which 
is determined by the PDF of gas density. 

5.1 The Initial Mass Function 

The mass distribution of dense cores formed in a supersonic turbulent flow can 
be derived on the basis of the two following assumptions: i) The power spectrum 
of the turbulence is a power law; ii) the typical size of a dense core scales as 
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the thickness of the postshock gas. The first assumption is a basic result for 
turbulent flows and holds also in the supersonic regime, as discussed ,above. 
The second assumption is reasonable because the postshock cores are assembled 
by the turbulent flow in a dynamical time, of the order of or shorter than the 
free-fall time of the cores. Cores of virtually any size can therefore be formed, 
independent of their Jeans’ mass. 

These assumptions are used in [61] together with the jump conditions for 
MHD shocks (density contrast proportional to the Alfvknic Mach number of the 
shock), in order to relate the mass distribution of dense cores, N ( m ) ,  to the 
power spectrum of turbulent velocity, E(k)  oc k-p .  The result is the following 
expression for the mass distribution of dense cores: 

N ( m )  d In m o( m-3/(4--P)d In m . (8) 

If the turbulence spectral index p is consistent with the observed velocity dispersion- 
size Larson relation [44] and with our numerical and analytical results [8,10], then 
B M 1.74 and the mass distribution is 

N ( m )  d log m o( m-1.33d log m , (9) 

which is almost identical to the Salpeter stellar IMF [66]. 
While the majority of massive cores are larger than their Jeans’ mass, m ~ ,  

the probability that small cores are dense enough to collapse is determined by 
the PDF of gas density. Because of the intermittent nature of the Log-Normal 
PDF, even very small (sub-stellar) cores have a finite chance to be dense enough 
to collapse. If p ( m ~ )  d m ~  is the Jeans’ mass distribution obtained from the PDF 
of gas density [55], the fraction of cores of mass m with gravitational energy in 
excess of their thermal energy is given by the integral of p ( m ~ )  from 0 to m. 
The mass distribution of collapsing cores is therefore 

The mass distribution is plotted in Fig. 10, for p = 1.8. In the top panel the 
mass distribution is computed for three different values of the largest turbulent 
scale LO,  assuming Larson type relations [44] to rescale the average gas density, 
(n) , and the rms Mach number, M , as a function of size, LO. The mass distribu- 
tion is a power law, determined by the power spectrum of turbulence, for masses 
larger than approximately 1 ma. At smaller masses the mass distribution flat- 
tens, reaches a maximum at a fraction of a solar mass, and then decreases with 
decreasing stellar mass. The mass distribution peaks at approximately 0.4 ma, 
for the values M = 10, (n) = 500 ~ m - ~ ,  TO = 10 K and @ = 1.8, typical of 
nearby molecular clouds. Collapsing sub-stellar masses are found, thanks to the 
intermittent density distribution in the turbulent flow. This provides a natural 
explanation for the origin of brown dwarfs. 

Note that the power law shape of the IMF for mass values larger than 1 mo 
is not affected by the average physical properties of the system. On the other 
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Fig. 10. Mass distribution of gravitationally unstable cores from equation (10). Top 
panel: Mass distribution as a function of the largest turbulent scale LO, assuming 
Larson type relations (for rescaling (n) and M with LO), TO = 10 K and ,f3 = 1.8. 
Middle panel: Mass distribution as a function of the rms Mach number of the flow, 
assuming (n) = 500 ~ m - ~ ,  To = 10 K and p = 1.8. Bottom panel: Mass distribution 
as a function of (n), assuming M = 10, TO = 10 K and p = 1.8. 
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hand, the abundance of brown dwarfs is very sensitive to the average gas density 
and the rms Mach number of the flow. The middle and bottom panels of Fig. 10 
show the dependence of the mass distribution on the rms Mach number of the 
flow and on the average gas density respectively. One can see in the middle panel 
that for an average gas density of (n) = 500 cm-3 and an rms Mach number 
M = 5, typical of a molecular cloud complex such as Taurus, brown dwarfs 
are very rare, while for the same average gas density and an rms Mach number 
M = 10, typical of a molecular cloud complex such as Orion (the density may 
be even larger), brown dwarfs are very abundant (even more abundant if the 
IMF were plotted in units of linear mass interval). This prediction is in fact 
unambiguously confirmed by the observations [38], 

The thermal Jeans’ mass is a more strict condition for collapse than the mag- 
netic critical mass. The magnetic critical mass depends on the core morphology 
in relation to the magnetic field geometry and strength. The latter correlates 
with the gas density with a very large scatter [59]. It is possible therefore that 
magnetic pressure support against the gravitational collapse limits the efficiency 
of star formation, while its effect on the shape of the mass distribution is of 
secondary importance. 

Observations show that the stellar IMF is a power law above 1-2 ma, with 
exponent around the Salpeter value x = 1.35, roughly independent of environ- 
ment [19,21], gradually flattens at smaller masses, and peaks at approximately 
0.2-0.6 ma [31,15,39,37,40,38]. The shape of the IMF below 1-2 ma, and par- 
ticularly the relative abundance of brown dwarfs, may depend on the physical 
environment 1381. These observational results are all consistent with our theo- 
retical IMF. 

It has been argued that only a small fraction of the mass of each collapsing 
core may end up into the final star, due to mass loss in protostellar winds, with 
a major effect on the stellar IMF. However, stellar winds could be important 
for the origin of the stellar IMF only if the ratio of initial core mass to final 
stellar mass were comparable to the total mass range for stars (- lo4, from - 100 Ma to - 0.01 Ma), as pointed out by Elmegreen [20]. This is highly 
unlikely, because i) the correct slope and mass range of the IMF is already 
achieved by turbulent fragmentation alone and ii) observational results indicate 
that the mass distribution of prestellar cores is indistinguishable from the stellar 
IMF [48,49,76,51], as predicted in earlier work on turbulent fragmentation and 
the origin of the stellar IMF [54]. 

5.2 

The mass distribution of prestellar cores can be measured directly in numerical 
simulations of supersonic turbulence. With a mesh of 2503 computational cells, 
and assuming a size of the simulated region of a few pc, it is not possible to follow 
numerically the gravitational collapse of individual protostellar cores. However, 
dense cores at the verge of collapse can be selected in numerical simulations by 
an appropriate clumpfind algorithm. Such an algorithm should scan all density 
levels and recognize when a large core is fragmented into smaller and denser 

Mass distribution of prestellar cores in numerical simulations 
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Fig. 11. Mass distribution of collapsing cores in the range 0.2-100 Ma,  derived from 
a 1283 numerical simulation 

ones, in which case the large core should not be counted. Cores should also be 
excluded if their gravitational energy is not large enough to overcome thermal 
and magnetic support against the collapse, since only collapsing cores should be 
selected. 

A mass distribution of collapsing cores, derived from the density distribution 
in a numerical simulation is shown in Fig. 11. The computational box with 1283 
cells has been scaled to two scale ranges, suitable for sampling cores in the inter- 
vals 0.2-2 M a  and 2-100 Ma,  respectively. The mass distribution above 1 Ma 
is a power law consistent with our analytical result and with the observations. 
Below 1 Ma the histogram flattens and then turns around at approximately 
0.3 Ma, also consistent with the analytical theory and the observations. The 
cut-off at - 0.2 Ma is due to the finite numerical resolution; the grid size, rms 
Mach number, and mean density together impose a limitation on the mass of 
collapsing cores. 

Stretching the mass interval of sampled cores further into the brown dwarf 
regime requires larger numerical resolution. Figure 12 shows the mass distribu- 
tion of collapsing cores derived from two snapshots of a 2503 simulation. The 
average gas density has been scaled to 500 cm-3 and the size of the computa- 
tional box to 10 pc. These values have been chosen to be able to select cores 
in a range of masses from a sub-stellar mass to approximately 10 M,. With 
this particular values of average gas density and size of the computational box, 
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Fig. 12. Mass distribution of collapsing cores in the range 0.05-10 M a ,  derived from 
a 2503 numerical simulation 

the smallest mass that can be achieved numerically is 0.057 Ma.  Brown dwarfs 
masses (< 0.08 Ma) are therefore included. With an even larger numerical mesh, 
or assuming a larger average density (and a smaller size), even smaller masses 
would be selected. Turbulent fragmentation thus provides a natural explanation 
for the origin of brown dwarfs. This was found from the analytical model of the 
IMF presented above and is here confirmed from the numerical mass distribution. 

Observed star-forming clouds appear very filamentary, as the projected den- 
sity field of supersonic turbulent flows. We have performed accurate comparisons 
of statistical properties of turbulent flows with observational data, by computing 
synthetic spectral maps of molecular transitions [57,58,60]. The synthetic spec- 
tral maps are obtained by computing the non-LTE radiative transfer problem 
using the density and velocity fields of the MHD simulations. We have shown 
that fundamental statistical properties of supersonic turbulence are unambigu- 
ously found in the observational data of star-forming clouds [60]. 

In star-forming clouds, prestellar cores and young stars tend to concentrate 
in the densest filaments and cores. Since filaments and cores of the same nature 
are found in the numerical simulations, it is interesting to visualize the position 
of the collapsing cores selected numerically, relative to the gas density distribu- 
tion. In Fig. 13 a voxel projection of the density field is shown, where all the 
numerically selected cores have been highlighted as bright spheres. The size and 
brightness is a function of the core mass. The brightness is also a function of the 



Star Formation and the Initial Mass Function 23 

Fig. 13. Voxel projection of the density field of a snapshot of a 2503 numerical sim- 
ulation of supersonic and super-AlfvCnic turbulence. Collapsing cores are highlighted 
as bright spheres, with brightness and size varying as a function of the core mass. 
The brightness also depends on the column density of gas between each core and the 
observer, in order to mimic the effect of dust extinction. Slightly extended patches of 
bright emission are “unresolved” stellar clusters. 

optical depth of the gas between the observer and the stars, to mimic the effect of 
dust extinction. Figure 13 shows beautiful filamentary structure in both the gas 
and the stellar distribution, very reminiscent of observed star-forming regions. 
It is quite amazing that a numerical simulation of randomly driven supersonic 
and super-Alfvhic turbulence with periodic boundary conditions is able to pro- 
duce at the same time i) density structures morphologically and statistically 
consistent with the observations; ii) prestellar cores correlated with the gas dis- 
tribution in a way qualitatively similar to the observations and with a value of 
magnetic field strength typically observed; and iii) a mass distribution of the 
same prestellar cores that agrees with the observed stellar (and prestellar cores) 
mass distribution over the whole range of stellar masses, from brown dwarfs to 
massive stars. 
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6 Conclusions 

The main conclusion from the preceding sections is that the statistics of star 
formation is primarily controlled by supersonic turbulence, rather than by grav- 
ity. Star formation takes place in cold molecular clouds, which are part of a 
turbulent cascade in the interstellar medium. The ultimate energy input to the 
cascade comes from supernovae, with a possibly significant contribution from 
local variations of the galactic rotation curve (density waves). The clouds owe 
their existence to random convergence of the interstellar medium velocity field, 
which creates local density enhancements over a range of scales. The internal, 
supersonic and super- Alfvknic velocity field in molecular clouds is responsible 
for their fragmentation, thus preventing global collapse but triggering local col- 
lapse at the many local density maxima whose mass exceeds the local Jeans’ 
mass. Such prestellar cores are formed as sheet corrugations and filamentary 
density enhancements, and are taken over by self-gravity only after they have 
been shaped by the turbulence. 

The velocity field of the cascade is dominated by power in solenoidal (shear- 
ing) motions, even though it is supersonic and super-Alfvhic. Its spectrum of 
kinetic energy is less steep than its velocity and magnetic field power spectra, 
which explains how conditions can be super-Alfvhic on small (molecular cloud) 
scales, even if there is rough equipartition between magnetic and kinetic energy 
density on large (disk thickness) scales. 

A Salpeter like IMF is the result of the near-self-similar, power law nature 
of turbulence in molecular clouds, in combination with density jump amplitudes 
determined by MHD-shock jump conditions. 

Star formation (at least in our galaxy) bites its own tail; it is driven by 
supernovae and at the same time the birth of massive stars gives rise to new 
supernovae that re-enforce the driving. External sources of turbulence, such as 
kinetic energy from galaxy collisions and merging may be the primary driving 
agent in star-burst galaxies. 

Different physical conditions (primarily higher temperatures and lower metal 
abundances) in the Early Universe would lead to higher mass at the low-mass 
cut-off, and a much weaker magnetic field would lead to a steeper IMF slope. 
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