APl

The Mission Data System’s
Software Architecture Framework

Dr Nicolas Rouquette
Principal Software Architect
Jet Propulsion Laboratory
mailto:nicolas.rouquette@jpl.nasa.gov

5/15/2002 NFR -1

mailto:nicolas.rouauette@ip
http://nasa.gov

JPL

« Systems engineering is outward « Software engineering is inward
looking looking
— Mission scenarios — Languages, libraries, operating
— Functional decomposition systems...
— System analysis — Concurrent threads, processes,
— Performance requirements memory management...

— Resource allocations — Real time execution

— Command and telemetry — Patterns, abstractions, general
dictionaries | \taveema) algorithms...

— Flight rules and constraints "™ _ Data representation,

— Control laws serialization...

— Failure modes analysis ~— Interprocess communication
— Fault protection - — Deadlocks, access violations,
— Test procedures exceptions...

Ps

Hlaniinator Ring. . '¥ Wheals and Suspension

5/15/2002 NFR -2

The principle risk to mission success is miscommunication
—What systems engineers want can be hard to express
—What software engineers build can be hard to understand

5/15/2002 NFR -3

| = R

Abstract system and software engineering concerns at the level
of architecture where they can be related & compared easily

A language to describe systems:
state analysis

Heterogeneous Architecture

\ Style Combination

A language to describe software:
component/connector architecture style

5/15/2002 NFR -4

5/15/2002

.1? A high level view of state architecture

Telecommand

5/15/2002 NFR -6

« 1st Heritage: xArch (http://www.isr.uci.edu/projects/xarch/)

— DARPA-sponsored research
@ UCI (Dashofy, van der Hoek)
@ CMU (Garlan, Schmerl)
— XML schemas for describing architecture instances
« Key elements: Components, Connectors, Interfaces, Links
« 2nd Heritage: xADL2.0 (http://www.isr.uci.edu/projects/xarchuci/)
— Separates several kinds of architectures

At the type level (things that can be built)
» At the instance level
— Prescription (things that shall be built)
~ Description (things that are built)
« MDS
— Extensions of xADL (parametric elements, prescription patterns)
— A C++ runtime system (bootstrapped, extensible)
— Architecture profiling (model-based transformation systems)

5/15/2002 NFR -7

http://www.isr.uci.edu/proiects/xarch
http://www.isr.uci.edu/proiects/xarchuci

)

b A i DS sty

S |

l i ga
ﬁ} N R 4 < - Zundnger | :E Type Definition

(language: ADL)

} Implementation
(language: C++)

-stateQuery @ } Prescription

svmmelmoimnce Controller/Wheel${N}Distance (language: CSL)

\

xADL:Componelﬂ

5/15/2002

e

P MDS’ focus on Software Architecture

« Central motivation
— Bridging the gap between system and software engineering cultures
* At the core, it is a communication mismatch problem
* Two syndromes
— Resolving the communication mismatch at the software design level
— “Class-A" flight software culture relies heavily on wizards and gurus
« Two approaches
— Heterogeneous architecture style combination
 State architecture style
— Communicate about any system aspect in a consistent language
 Extensible component/connector architecture style
— Communicate about software aspects at a higher level of abstraction
— Architecture Hoisting
* Elevating software design decisions up to a higher level of visibility
— The architectural level is an abstraction that has broad visibility
* Increasing software dependability & reliability

— Shift risk management from the implementation level (low visibility) to
5/15/2002 the architecture level (high visibility) NFR -9

Oﬁ/lapping state analysis onto software\‘

- State architecture is a constructive process g Components ’

- Controllers - Connectors

- Estimators - Interfaces

- Timelines - Ports

- Timepoint - Sub

- Resources architectures

- Constraints

- Goals ~
a o

System engineers need feedback from the software

- distinguish between prescription => the system as required
& description => the system as built

- compare predicted vs. actual properties (-illities, performance, etc...)

5/15/2002 NFR -10

@’ Heterogeneous Style Combination:
JPL Mapping State ftware Architecture

(2 D)
- State . - D)
- Controllers Functional - Components
- Estimators Entities - Connectors
- Timelines - Interfaces
O T int)
Timepoin ~ Cross-Cutting Ports
- Resources Concepts & Concerns - Sub
- Constraints architectures
- Goals -
- G)
A)
Elements of Elements of
State Analysis Patterns Relations Software Architecture
N— -

Framework Design & Architecture

For Product-Line Engineering across Discipline Areas |
5/15/2002 NFR -11

ol | = |

I 8 Cross-Cutting Concerns)
Discipline I
7 — Initialization
Components Interfaces & Ports Connectors — Named Object Registry
0P A | °°> [o i df= — Embedded Web
- Client/Server
—t — Component Architecture
Domain Objects, Data & Libraries — Component Scheduler
— Virtual Clock
— Time Management
Each discipline provides reusable ... disciplines face — Event Logging Facility
design architectural elements... similar issues ... — MDS Directory Access
Protocol
— Data Management &
Transport
J

... that have solutions
in the MDS framework

5/15/2002 | NFR -12

SW Implementation
IS a reduced fraction
of what it used to be

Implementation
- Components

- Connectors

- Out-of-scope items

5/15/2002 NFR -13

| =]

Architecture Type Modeling -- InterfaceTypes

e 4 extensions
— Interface definition with a set of methods each defining:
e A return type
« A set of method arguments (type/name/qualifiers)
« A set of method qualifiers (e.g., constness)
— Parametric modeling => maps to C++ templates
— Interface Inheritance => maps to C++ interface inheritance
— Communication Profiles
s Idea borrowed from Mehta et al's connector taxonomy (ICSE 2000)
« Each profile is a combination of policies
3 policies defined (so far)
— Synchronization asynchronous, synchronous, both

— Interceptors none, partial (method name), full (closure)
— Exception none, partial (method name), full (closure)
* Optimizations
— At code generation time => using profile-based transformations
— At compile time => using policy-based class design

5/15/2002 NFR -14

Car Design: Modeling a simple interface
| = |

«mdslnteffact;Type»
StateNotificationimerface
{Mds Fw.53 Blate.Gsy)

+changed(gsy : GraphStateVariableOhjectRefs, items - ﬂlds::Fvn:Dm::Vms::ltemVecRef) void

\

namespace Mds
namespace Fw {

namespace Sa {
namespace Stat
namespace G
struct Igterface

virtual void changed (GraphStateVariableObjectRef& gsv,
Mds: :Fw: :Dm: :Vhis: :ItemVecRef itemsg)

=0; // This is an abstract method!
virtual ~Interface() ;

}i

} } } } } // Mds::Fw::Sa::State: :Gsv

5/15/2002

NFR -15

| =

o - -

RefCountStateValueF amilyType : class !
|

I5tater unclionTyp

IRefCountStateFu
<<mdsinterfaceTypes>
StatelUpdateinerface

(Mds Fw.Sa State)

e class
nctionType

]

class |

+updateState(a_function . StateFunctionType&) : void

5/15/2002

template<class traits»>
struct Interface
typedef typename traits::StateFunctionType
StateFunctionType;
virtual void updateState
(StateFunctionType& a_ function)=0;

virtual ~Interface();

NFR -16

—a Communication Policies for Interface Types

BasisStatevVarComponent

<=hinding»»
R
ﬁaﬁwx\ StateQueryinterface
A

Taxonomy of possible connections mechanisms

Exception Interception Synchronization
SVMheeiS{N}DistanTe support support mechanisms
Al ~ A A

« A profile is a set of policy combinations, e.g: Validatio
* The runtime system enforces mechanism compatibility across interfaces
« The generated code is optimized for the policies in effect

5/15/2002 NFR -18

IBL Architecture Type Modlig — ComponentTypes

« 3 extensions
— Roles
* |dea borrowed from xACME’s property & constraint extensions
* Arole is an enumerated value symbol (e.g.,: side = left)
* Roles decorate component ports (signatures in xADL) and components
* Roles serve two purposes
— As a means to express simple constraints on valid prescriptions

— As a basis for anonymous, role-based programming across connectors
(e.g, “block the left wheel, turn the right wheel”)

— The “Zorro” pattern of structural & implementation inheritance & specialization
* Reuse the code from the architecture type definitions across implementations
* Independently extend components with additional ports & behavior

— Parametric modeling
 Similar extension to that of parametric interfaces

5/15/2002 NFR -19

JIPL Example of the “Zorro” pattern

1st-level
Reuse

_________ rD;pe:d;r;cy; un:uo;'l‘f;e N —1
rDependencyFunctionType | { : DapendencyFunctionTypeReasult;
— ! DependencyFunctionTypeResult; I: DependencyvalueType
q)) I : DependencyalueType | | :Dapendenf:sﬂ}aiueTypeResun |
> b j : DependencyalueTypsResult | { :StateFunct!onType |
G) i StateF unctionType { : StateFunctionTypeResult
- 3 | StateFunctionTypeResut ! | StatevalueType !
'CI O] : tateValueType } :StateValg_eTLpeResE_It _ m;
c Y ! statevalueTypeResul [crapnsiaevaiComponent ~]
AN

:':C)we -----------]} j} .

stateQuery dﬂeﬂﬂm

Component Component
Type Models Implementations

5/15/2002 NFR -20

1Z- 44 ¢00¢/S1/S

(ASO BIRITES M SPH) (soaleIg es My SPR)

sser | adilanieasouspuatiag
85813 adAianieAsiels
ssey? : adijuogaun Jajes!

R o e e et e e —

A {SS€12 - adALuofaun JAouapusdaq
|
|
|

<<BUIpUIe> << BUIPUIG»»

\/

allr

 Architecture hoisting:
— Shifting concerns from software engineering to architecture engineering
« Example at the prescription level

— Conceptual architecture => what the system should be
— Execution architecture => how it should work
— Goal:
« Manage these two aspects of prescription separately & independently
« Example
— System engineer: => | need 6 controllers & 6 estimators
« This is a conceptual architecture concern
— Software engineer: => There can be only 3 threads

 This is an execution architecture constraint
— Resolving these two views involves:
» Negotiating tradeoffs
» Configuring resources for schedulability & performance

5/15/2002 NFR -22

IPL Conceptual Architecture Prescription

———* This view describes information
e - - flow among components via
interfaces & connectors

— ltis an item that should be
under separate configuration
management from other
prescription aspects

~ The contents of this view is
strongly tied to the identification
of states & items in state
analysis.

— If the analysis does not change,
this view should not change
* |ssue:

— Can we find a reasonable way
- e to define a pattern like this?
N — Scripting languages make this
easy

5/15/2002 NFR -23

IPL Execution Architecture Prescription

» Many things needed besides threads
— Asynchronous communication
— Synchronization guards
— Scheduling information (rates, ordering, etc...)

5/15/2002 NER .24

J?lLocally Synchronous & Asynchronous Communication

Component Scheduler Execution/Scheduling
% Thread Pool =|= = = = | ~C\onnector

L

Component’s Scheduler’s
thread “queues” h i thread “dispatches”
the communication \ the communication
. ~
T Asynchronous --r®
Component Component
Connector
Component’s

thread “carries” the
communication through

Component {§ynchronous

- p
Component

Connector

5/15/2002 NFR -25

IPL Threads & Synchronization w/ guarded ports

Component Scheduler Execution/Scheduling

Thread Pool =|= = = == o ~annector

Scheduler’s
thread “dispatches”
the communication

Component’s
thread “queues”
the communication

\
Component Asynchronous [~
Connector

Component’s
thread “carries” the
communication through

~
Component

Synchronous
Connector

Component

5/15/2002 NFR -26

C

| = |

Putting it all together in a configuration...

5/15/2002

I :
¢ v

| |
Queue Queue
~TI= || ~II=
AsynchronousA J Y
Connector / /),_
ous
Connector

us

L

f

Component

~

L]

Asynchronous

Ll

Asynchronous
Connector

\/

Synchronous
Connector

—

Connector

NFR -27

@ Putting it all together in a configuration...

JPL MDS

| |

—n |
Queue Queue
-] || -11I=
--------- Asynchronous ‘ I {/ \
Connector / Component Asynchronous}l
------ Asynchronous . Connector
Connector I
Guard Synchronous
Connector
......... Asynchronous ,
Connector H Component L Asynchronous [
Connector

_________ Synchronous T
Connector

5/15/2002 NFR -28

Frameworks & Architecture

, Deployment Architecture

Architectural
Elements

Component

(includes) (includes)

Architecture

Communication

Interface

Components Ports

Local
- Coordination
(includes) - -

Execution/
Scheduling
Ports

Component Scheduler| .~

Contfoi

Level 0 Services

Asynchronous
Mechanisms |

Remote _
Coordination

Middleware: Distributed Events, Messaging, Brokers, etc..

TcPip! | Corba 'SpaceLm 'SOAPU(RMI r f '

5/15/2002

NFR -29

IPL Distributed Architecture

Middleware

Component/Connector Architecture View

5/15/2002 NER 30

IPL Conclusion

« System & Software Engineering
— It's been a problem for the last 30 years of space exploration
— Many forces drive us to re-examine and change this relationship
« Architecture Hoisting
— It is more than just using different architecture views (e.g., Krutchen S 4+1)

— Itis a deliberate effort to shift engineering effort from

« Software engineering where it is hard
to
 Architecture engineering where it is easier

« Extensible Architecture Description Languages
— It's in hyper-growth phase
— Tool availability & support can be a problem
At the modeling level (UML is woefully inadequate)
» Model-based transformation systems are necessary to get full benefit
+ Programming languages are lagging (interfaces are still 31-class citizens)

5/15/2002 NFR -31

IPL Communication Policies Example =

«<mdsinterfaceType»»
StateNotificationhiterface
{Mds Fw.Ba Blale.Gsv)

+changed{ gsv: GraphStatevariablaObjectRefs, items : Mds: Fw Dm: vhis ltemVecRef) : void

]mn.mmmml } ol]

I vnotity.changes(..) . ! I i
({ 2:p->changed(..} | |
N~ raw D> ‘

\/ notify.changed{...);

. o
g . . 16t

notifications | notify — Sretum _ |
T T T | }
H i i
bl i i |
| | |

!

« Port-based communication
— An output port has a pointer ‘p’ to the other port on the link
— An input port has a pointer ‘p’ to the entity that implements the interface

« Taxonomy of port binding configurations
— { method call, indirect invocation } x { method call, indirect invocation }

5/16/2002 NFR -1

e

JIPL Prescription-time Optimizations

* Port bypass

— Pass-through property
* No interceptors
* No exception handlers
» Direct method call

— Proxy exchange & port binding protocol
» Each port on either side of a prescribed link creates a proxy of itself
« Each port receives a proxy of the port on the other side of the link
» Proxies & ports can be queried for pass-through property

mas] (@] (=] [E] F EES

I tinotify.changed(...) ! ! tnotiychanged..) |

|
i
Zp-»changed(..} ol U
2:_»'_tantu_m_~ o
] 1@5 Jreturn __ _U
cdmetun |
]
l
|

. Vnofifychanged(..) .

Input Bypass

Input/Output bypass - Output Bypass !

5/16/2002 NFR -2

Why Parametric Interfaces ?

| = IR

« Separation of design concerns towards facilitating reuse
— Communication protocol design => one set of interface methods
— Compile-time polymorphism & optimization => several type specializations

[o o e e

RefCountStatevaluef amilyType : class’
IstateFunctionType ; class i
IRefCountStateFunctionType : class |

'<‘smd"TraitD’eﬂﬁiﬂn

StatelUpdateinterface
(Mds Fw.8a Btate}

=<hinding»»

B

i
i

5/15/2002 NFR -17

s

exception link

notifications notify

.
-------------------------------- -

é _—| Interceptor link

tracer

« Variations
— Full interceptors & exception => provides access to method arguments
— Partial interceptors & exception => provides access to method name
» Benefits
— Exception handlers: Separate of exception detection vs. exception recovery

— Interceptors: infuse aspect-oriented style into the component/connector style

5/16/2002

1:notify. changed{...)

-

!

€1 Zreturn (exception)

|
|
i

ctelontifications: ehandier
| | | | [] | |
i i 1 1
i | i |
Zheforeinterceptors(..y | ! 1 !
S | | |
 wrewm_ _ _ _] | , :
. | | | |
4:p->changed(.) : 5:p->changed(.) I |
! Bithrow(..)
7.return (exception) I } f
E - fo e o i
Sevent(..) ! 1 .
) ! 1 :U
Qraturn
e e el il Rl i -+ -
t
|

11.afterinterceptors(...)

1Z:retum

10:hrow (HandledExceptibn(.))

]

|
|
i
]
i

NFR -3

