
JPL

Evaluation of Java with
real-time extensions for

flight systems

Kirk Reinholtz

Jet Propulsion Laboratory
Califomia Institute of Technology

Mission Data System

4th Quality Mission Software Workshop
Dana Point, CA, May 7-9 2002

Why Java for Flight Systems?
Accelerates the adoption of current best-software practices.

- Programmers adopt design patterns methodology since standard
class libraries usage is based on design patterns.

Java appears to enhance productivity and reduce defects.

- Plentiful evidence of widespread adoption
Java is easier to use safely than is C++

- C++ is more complicated and difficult to use effectively
Java is a complete platform.

- Standard class library includes collections, threading, networking
and all other commonly needed capabilities.

1

Why Java for Flight Systems? (cont)
Java has many capabilities that must be added to C++

- Garbage collection
- Serialization of code and data
- Dynamic linking
- Reflection
- Dynamic optimization
- Compact code representation
- Support for mixed language systems
- Various IPC models
- Components

... -

Major Concerns
Concern: Java is not deterministic.

Concern : Java’s performance is inadequate.

Concern: Java is a greater risk that C++.

Concern: Java is not ready for current MDS developments.

Concern: Weak floating-point model.

2

Non-deterministic behavior

Performance and Resources

Mixed-language Issues

Integrating Java with existing JPL and vendor capabilities

Tool Chain Support

Training/Experience

Verification

Hardware Impacts

3

No n - de te r m i n is t ic Be h avi o r
Questionl: What do you do about non-deterministic cost of garbage
collection?

Question 2: How do you do priority-based scheduling on vanilla JVM?

Question 3: How do you handle non-deterministic cost of object
creation?

Question 4: What do you do about heap fragmentation? Closed-loop
control of a spacecraft is a real-time process

No n -de t e rm i n ist ic Behavior
Question 1 : What do you do about non-deterministic cost
collection?

- Approach
Analysis

- Result
Vanilla Java has non-deterministic garbage collection
Forthcoming RTSJ provides deterministic garbage collection

Must work around in the short term
Use RTSJ GC and memory management in the long term

Vanilla Java does not allow control over execution of the GC
Use standard idioms that avoid the creation of garbage

- Conclusion

- Mitigation

- Object pools
- Object recycling
- Local variables

of garbage

4

N on -dete rm i n ist ic Behavior
Question 2: How do you do priority-based scheduling on vanilla JVM?

Vanilla Java specification does not specify behavior of priorities: can even

RTSJ specifies sufficiently tightly to allow full use of priority mechanisms

- Conclusion
Requires near-term workaround

Use vendor-specific information
Minimize and track use of priority mechanisms until RTSJ is implemented

No n -de te r m in is t ic Behavior
Question 3: How do you handle nondeterministic cost of object
creation?

- Approach
Analysis

- Result
Time to execute “new“ is non-deterministic in vanilla Java
Forthcoming RTSJ provides deterministic object creation

- Conclusion
Requires near-term workaround
RTSJ memory management provides good solutions

Don’t use vanilla Java in tight real-time situations
Use standard idioms to avoid untimely object creation

- Mitigation

5

No n -d e t e r m in is t ic Behavior
Question 4: What do you do about heap fragmentation?

- Approach
Analysis

- Results
Not a problem with Java, just with particular GC algorithm implementations
Not a new problem: C and C++ have the same issue
Java enables heap defragmentation
- Language specification enables transparent solutions

RTSJ provides ways to avoid fragmentation in the first place

Not a problem for non real-time applications
For real-time applications, make sure vendor has a defragmenfng GC
Use RTSJ memory management features to minimize fragmenting of the heap

Use standard idioms to avoid creating fragmented heap

- Conclusion

- Mitigation

Multi-process and multi-language issues
Question 1 : What inter-process communication (“IPC) mechanisms
are available in Java?

Question 2: How does Java call non-Java code?

Question 3: What are the issues with JNI?

Question 4: How do we do IPC between Java and C++ threads?

6

Multi-process and multi-language issues

Question 1 : What Inter-process communication (“IPC) mechanisms
are available in Java?

- Approach
Analysis

- Result
Java Remote Method Invocation (“RMI”)

CORBA
Via JNI, any capabilities in underlying operating system e.g. message queues

Not anissue

None required

- Conclusion

- Mitigation

Multi-process and multi-language issues

1 Question 2: How does Java call nonJava code?

- Approach

- Result
Analysis

Java provides Java Native Invocation (“JNIn)
Currently specified for C and C++

Java can call C and C++ code
- Conclusion

- Mitigation
Nonerequired

7

Multi-process and multi-language issues
Question 3: What are the issues with JNI?

- Approach
Analysis

- Results
Performance
- May be a little worse than a nomal method call, but not necessarily so.
- Data accesses may be expensive, due to format conversions
- Check your vendor documentation

- Each side has access to all the capabilities of the other side
- Interface is a little clumsy (in the name of portability)

- Inflicts C/C++ risks on Java

Generality, ease of use

Robustness

M ul ti-process and m ul ti-language issues
Question 3: What are the issues with JNI? (continued)

- Results (continued)
Exceptions
- C/C++ code can raise Java exception
- Java exception can be passed to C/C++ code

- Zero-copy access to Java objects
>> JNI provides for requests for zero-copy access to Java objects
v> Vendor not obliged to provide zero-copy access

- If we had a full-blown GC capability in C++, how would it interact with
Java GC

Y Java and C++ heaps are separate, so there will be no interactions
Debugging
- Debugging covered in later slides

- Conclusion
JNI is ready for use today

8

Integrating Java with existing JPL and Vendor
capabilities

Question 1 : How do we accommodate existing C or C++
implementations that we do not have time to redo in Java or cannot do

Segments of the DS-1 code were re-implemented in Java to expose Java to C
interface issues and to expose JVM to vxworks issues (Phase 1)

Java to C (via JNI) interfaces worked well
The W o r k s Java environment allowed Java threads and W o r k s tasks to
work together with mixed Java and C threads at different priorities
Exposed limitations of the multi-language debugging tool set

- Conclusion
No additional risk

none

9

Integrating Java with existing JPL and Vendor
capabilities

Question 2 : Are there any language or architectural issues that
complicate or preclude using legacy code ? !
- Approach

Phase 1 tested interactions with RTOS and DS-1 flight code.
Examined the following multi-language capabilities: cross-language
exceptions, cross-language IPC, CORBA compatibility and cross-language
memory management.

Java code functioned flawless inside the DS-1 flight code. Deeply nested C
calls made debugging difficult.
Cross-language exceptions and cross-language IPC work. Java is compatible
with CORBA. Java and C++ manage memory in separate heap spaces.

Avoid deeply nested calls across the JNI.
No additional risks

none

- Results

- Conclusion

- Mitigation

Integrating Java with existing JPL and Vendor
capabilities

Question 3: Is Java appropriate for numerical applications like NAV?
- Approach

- Result

Evaluate current implementation and future plans of support for the IEEE floating point
standard

Java has limited floating point capabilities. Only single precision (32 bit) and double
precision (64 bit) per IEEE-754
- Some navigation areas might require >= 80 bit

JVMs must guarantee machine independent floating point results
- Default is no floating point hardware use. JVM floating point is done in software.
- Pelformance is much less than with hardware support
- Java Grande Group is currently formulating solutions, but not in the near-term

- Conclusion

- Mitigation
If Java is used for numerical applications, use it cautiously.

Do prototyping to understand numerical behavior of the language.
Choose the right tool for the job.

FIX: There’s a JSR on this, note it

10

Performance and Resources
. Question 3: What’s the impact of using Java in a resource constrained

Analyze optimization techniques used by Java compilers

Byte codes are a compact representation of a program. Java programs have a small
footprint compared to C++ programs.
The Java kernel (aka JVM) is larger. Depending on the size of the trusted classes, the
breakeven point is somewhere between .5 and 5 megabytes.
Dynamic compilers convert byte codes to machine codes as needed. Footprint size can
be traded against performance.
Compiled byte codes can be cached to improve performance. Performance can be traded
against footprint size.
Current dynamic compilers do not allow users to change optimization strategies
dynamically.

Risk can be eventually retired. Short term mitigation needed now.

Optimize for best overall balance of footprint and performance.
Explore static compiler path

- Conclusion

Performance and Resources
Question 5: What’s the performance impact of runtime checking?

Evaluate approach to run-time checking on several JVMs

The language requires arrays be checked for validity. JVMs must support runtime
checking to be compliant.
Runtime checks decrease performance.
Runtime checks can only be removed by converting the byte codes to machine code with a
static compiler.
Runtime checking is a good thing. Removes the risk of out of bounds arrays and
dereferenced pointers. These errors can be handled gracefully with the Java exception
mechanism

- Conclusion
No additional risk

High performance code segments can be written in C++ if Java performance is
inadequate.

1 1

Training and Experience
Question: How long does it take to become an effective Java
programmer?

- Approach
Query vendors at Java One. Report on MDS activity.

Many offerings of 5 day classes.
EasytoLeam
A many MDS developers are already familiar with Java. They have been
prototyping in Java without training. (Compare to C++: training but no
prototyping.)
Java is being taught at universities. New hires are likely to know Java.

Risk that can be retired eventually but need short term mitigation

j - Result

I
I

- Conclusion

- Mitigation
I Provide training for MDS developers

Verification
Question: Can Java be reliably verified?

- Approach
Report produced by the Automated Software Engineering group at NASA Ames

- Result
With respect to verifiability, the study group saw no apparent disadvantages of Java vs.
C++ for non-real time. In general Java is a superior to C++ with respect to verifiability.
Java WORA bytecodes are easier to verify than plalform dependent C++ object code.
Java has strong typing and runtime checks
Java has no pointer calculus
Java has a built-in thread model. A specific verification solution can be built for the Java
thread model.
Ames is actively developing a verification environment for Java
However, Java is less mature than C++ and doesn’t have the same tool support

- Conclusion

- Mitigation
A benefit

none

12

Summary
Java is technically ready

- Java is gaining widespread industry support
Java offers considerable benefits today and the promise of greater
benefits in the near term

- Enhanced productivity, greater reliability
Put the development infrastructure in place for Java development

Plan for and select applications for development

- Careful selection should be possible so that near term

Progress toward having multi-language implementations in the long
term

commitments can still be met

13

