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Motivation

e Jones-Tryon model & Kalman filter ==> TA(NIST) time scale (early 1980s)
* Poor short-term stability observed
* Aims

* Reproduce TA(NIST) time scale behavior

* Understand it

* Improve it

* Succeeded with 2-state clocks (white FM + RWFM): made KPW (Kalman
plus weights) algorithm (PTTI 2001)

* Extend to 3-state clocks with RRFM (random walk of drift)
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Jones-Tryon Clock Model
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Kalman Filter
Clock difference measurements on # clocks at a sequence of dates:
X, (1) =x(8)-x(¢), i=2,..,n

Kalman filter ==> estimates X, (¢)=[%;(¢),;(¢).2; (t):lT , i=1,..,n

Because measurements are noiseless, estimates satisfy the measurement equations:
X (1)=%(t)-%(¢), i=L..,n

This leads to the natural Kalman time scale (TA(NIST)),
Xek (t) = xi(t)_)ei(t)

(the same for all i)
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Natural Kalman Time Scale, lllustrated
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Eight Imaginary Clocks
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Basic Time Scale Equation

Form modified by Breakiron (1991) to include drift
Recursive definition of average time scale
x,(t)= Zw [ )—x;(t—1)- T_)A/i(l‘—’t)—%’tzfi(t—’t):l
Calculated offsets from physical clocks

X (1) =x,;(t—1)+ gwi (t)[xl.j ()—x;(t—1) -1, (¢t —1) - 172, (¢ - ’C):l

Departure from usual practice: p; and Z; (the Kalman estimates)

are relative to a noiseless 1deal clock, not the time scale.
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KPW Algorithm

Clock ¢’s assumed to be known

1. Initialize the Kalman filter with state estimates and error
covariances.

2. Run the Kalman filter on the clock difference
measurements.

3. Throw out the Kalman phase estimates.

4. Use the Kalman frequency and drift estimates in the
BTSE, with weights inversely proportional to the white
FM noise variances.

The Kalman filter runs independently of the time scale.
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Eight-Clock Example with KPW Scale
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Conclusions

* Jones-Tryon Kalman filter estimates phase states poorly ==> TA(NIST)

is noisy in short term. But the filter estimates frequency and drift states
well.

* KPW scale uses only the frequency and drift state estimates. It works
well with 3-state clocks in simulation playpen. Observed to be quieter

than any component clock at all averaging times, except for extreme
ensembles.

* Possible foundation of practical real-time time scale; needs practical
add-ons:

* Ensemble changes

* Outliers, jumps in phase and frequency
* Adaptive estimation of ¢’s

* Steering

* Add white PM and measurement noise
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