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Abstract 

The KPW (Kalman plus weights) time scale algorithm uses a Kalman 
filter to provide frequency and drift information to a basic time scale 
equation. The Kalman filter is the same as the one previously used for 
the TA(N1ST) scale. This paper extends the algorithm to three-state 
clocks and gives results for a simulated eight-clock ensemble. 

1 Introduction 
The purpose of a time scale is to create a virtual clock from an ensemble 
of physical clocks whose differences from each other are measured at a se- 
quence of dates, where by “date” we mean the displayed time of a clock 
as determined by counting its oscillations. The virtual clock is defined as 
an offset from one of the physical clocks, the offset being computed from 
the measurement data by some algorithm. The usual goal of the algorithm 
design is to produce a virtual clock that is more stable than any of the phys- 
ical clocks in both the short term and the long term, as measured by some 
standard stability measure such as Allan deviation or Hadamard deviation. 
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A straight Kalman filter approach to this problem has been tried at least 
twice [10][5]. The noise of each clock is modeled as a sum of white FM, ran- 
dom walk%M (RWFM), and random run FM (RRFM, random walk of drift) 
with known noise levels. The entire ensemble is modeled by a linear stochas- 
tic differential equation, whose state vector is estimated in a straightforward 
way by a Kalman filter from the clock difference measurements. Because the 
measurements are assumed noiseless, if we offset the tick of each clock by 
its Kalman phase estimate, we arrive at a single point on the time axis. I t  
makes sense to regard this point as the estimated ensemble time, and to use 
the sequence of these values as a time scale. This time scale, realized as 
TA(NIST), was reported to follow the clock with the best long-term stabil- 
ity, regardless of its short-term stability [12]. The goals of the present study 
are to reproduce this result and to find a better way to use this Kalman 
filter in a time scale algorithm. 

In a previous paper [7], the author carried out this program for two-state 
clocks, which have white FM and RWFM noise only. In the present paper, 
the results are extended to three-state clocks, which also contain RRFM. 
The modified KPW (Kalman plus weights) algorithm can be summarized as 
follows. 

1. Initialize the Kalman filter and run it on the clock models and differ- 
ence measurements. 

2. Throw out the Kalman phase estimates. Their pathological behavior 
is the reason for the poor short-term performance of TA(N1ST). 

3. Use the Kalman frequency and drift estimates in a basic time scale 
equation (BTSE) whose weights are inversely proportional to the white FM 
variances of the clocks. The Kalman filter is allowed to run independently 
of the BTSE calculation. 

In the following sections, the components of the algorithm are described 
in more detail. Although much of this material might be familiar, it serves 
to establish notation and introduce an occasional conceptual alteration. Re- 
sults are shown from a simulation of an imaginary ensemble of eight clocks. 
In this simulation, the measured Hadamard deviation of the KPW scale is 
about a factor of two below the lower envelope of the Hadamard deviations 
of the clocks. 

2 Jones-Byon clock model 
Let the ensemble have n clocks. At date t ,  the ith clock has state vector 

xi (t> = 1.2 ( t )  , Yi ( t )  , xi (t)lT , 
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where zi ( t )  is the phase (or time) state with all three noises, yi ( t )  is the 
normalized RWFM + RRFM frequency state, and zi ( t )  is the RRFM drift 
state. These states are to be regarded as residuals from some ideal clock 
whose rate is constant; for example, the ideal clock could be defined by 
extrapolating from the time and rate of one of the physical clocks at an 
initial date t o .  

The evolution of the state of the ith clock from measurement date t - r 
to measurement date t is described by the stochastic difference equation 

xi ( t )  = ( r )  Xi (t  - 7) + Wi (t ,  r )  , (1) 

where 

and the process-noise vector W ( t ,  r )  has covariance matrix 

r o o  7-313 7212 0 r5/20 r4/8 r 3 / 6  

0 0 0  r3 /6  r2/2 r 
Q i  (7)  = qxi [ 0 0 0 1  +qyi [ ; 0 o ]  +qzi [ r4/8 r 3 / 3  r2/2 

The q factors (differential variances), which specify the noise levels, are 
related to the Hadamard variance of the clock [9] by 

The clock difference measurements at date t are 

xil ( t )  = xi ( t )  - x1 ( t )  , i = 2, .  . . ,n. 

3 Kalman filter and natural time scale 

The model and measurements determine a Kalman filter, which will not be 
described here [6]. For each measurement date t ,  the filter produces state 
estimates for each clock, 

Xi ( t )  = 1% ( t )  , oi ( t )  , ii @ ) I T  , 
T 

and an error covariance matrix P ( t )  = E ( X  ( t )  - 2 ( t ) )  ( X  ( t )  - X ( t ) )  , 
where X ( t )  is the overall state vector of length 3n. As a general property of 
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Kalman filters, if the measurements are noiseless, then the estimated state 
also satisfies the measurement equations, i.e., 

zil ( t )  = 2i ( t )  - 21 ( t )  , i = 2 , .  . . , n. 

It follows that the quantity 

XeK ( t )  = xi ( t )  - 2i ( t )  

(which is just the phase estimate error) does not depend on i. We call XeK ( t )  
the natural Kalman time scale; it is this scale that became TA(N1ST). Its 
instability is high in the short term because the phase estimates are poor; it 
seems that the white FM noise in the system is wrongly distributed among 
the clocks. 

3.1 Initializing the Kalman filter 
The Kalman filter must be given an initial state estimate and error covari- 
ance matrix. For two-state clocks, it seems that a simple method based on 
two measurements will start the filter smoothly enough [7]. When drift is 
involved, it is harder to get reasonable estimates from suboptimal schemes 
involving three or four measurement dates. The author finally realized that 
we can make the Kalman filter itself do the work of assigning an initial error 
covariance by running it with no data, just the covariance updates. We start 
the filter with a zero error covariance, and run it until the error covariance 
matrix pyz of the y and z states settles down. It is not necessary to wait 
until it actually converges (if it ever does). Why just the y and z states? 
Because the z covariances diverge strongly; the Kalman filter seems to know 
that it is doing a poor job of estimating the clock phases. In fact, we now 
set to zero all the elements of P that involve an z state; it can be proved 
that doing so leaves the future y and z estimates unchanged. We can regard 
the initial pYz as generating Type B uncertainties [l] of the initial y and z 
states, however they may actually be obtained. 

For the simulations in this study, the initial y and z estimate errors were 
generated as zero-mean Gaussian random variables whose covariance is the 
initial $pz that was determined from the above procedure. 

3.2 Square-root filtering 

Since the publication of Gelb’s book (61, several factorization methods for 
Kalman filtering have been developed [3][8]. These methods, which are al- 
gebraically equivalent to the conventional Kalman mechanization, work by 
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propagating a Choleski factor of the error covariance matrix p )  not P 
itself, In exchange for a modest increase in complexity there are several ad- 
vantages: the numerical computations are more stable, singular and nearly 
singular covariance matrices are not a problem, and the covariance matrices 
do not have to be symmetrized. Having programmed one of these methods 
in Matlab, the author has used it throughout this study with no problems. 

4 Basic time scale equation 

Most practical time scale algorithms use a form of the basic time scale 
equation (BTSE) [2]. To include drift estimates, we use the modification 
introduced by Breakiron [4]. The BTSE has several equivalent forms. One 
is a recursive definition of the time scale ( t )  in terms of the non-observable 
quantities xi ( t ) :  

n 
1 2  xe ( t )  = x e  ( t  - 7)+x wi (t> [xi ( t )  - xi ( t  - T I  - 7fii (t  - 7) - 27  i i  (t - T)] . 

i=l 

(2) 
How the scale behaves depends on how the weights wi (t) (which add to 1) are 
chosen, and how the estimates & ( t  - 7 )  and 2i (t  - T) are determined from 
previous observations. By subtracting any xj ( t )  we obtain a calculation 
of the offset xej ( t )  = 2 6  ( t )  - xj ( t )  in terms of observed and computed 
quantities: 

n 

xej (t> = x e j  ( t  - .)+E ~i (t> [ ~ i j  ( t )  - ~ i j  (t - 7 )  - 7 ~ i  ( t  - 7 )  - + T 2 i i  (t  - 7)I , 
i=l 

where xij ( t )  = xi ( t )  - Xj ( t ) .  
Most BTSE time scales determine $i ( t  - 7) and i i  ( t  - 7) as estimates of 

the departure of the frequency and drift of the i th clock from the previously 
computed time scale. Here, we allow these quantities to represent the esti- 
mated departures from an ideal noiseless clock; this allows the Kalman filter 
y and z estimates to be used. It is important to observe that information 
from the BTSE is not fed back to the Kalman filter, which is kept as pure as 
possible; its only job is to produce good frequency and drift estimates from 
the clock models and measurements. 
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5 The weights 

All the components of the KPW algorithm have now been specified. It 
remains to argue why it is a good idea to make the weights inversely pro- 
portional to the qzi. Assume that wi ( t )  does not depend on t .  Define new 
phase estimates Zi ( t )  recursively by 

j.i ( t )  = j.i ( t  - T )  + ~ e i  (t - T )  + $ T 2 z i  (t - T )  . (3) 

If & ( t )  and i i  ( t )  are good estimates of yi (t)  and zi ( t ) ,  then, in view of the z 
components of ( l ) ,  it is reasonable to  regard j.i ( t )  as a good estimate of the 
phase of clock i without its white FM noise. Using (3) in (2) and summing 
over the measurement dates gives 

In view of what we just said, we regard the quantity in brackets as an es- 
timate of the white FM portion of the phase of clock i, and regard the 
summation as approximating a linear combination of independent random- 
walk processes with differential variances qzi. This says that z e  ( t )  is ap- 
proximately a random walk whose differential variance is minimal when the 
weights are inversely proportional to the differential variances of the white 
FM clock noises. This approximation works best when T is small enough 
that white FM dominates the observed short-term clock noises. 

6 Simulation example 

One of the simulation examples in the author’s previous paper [7] on two- 
state clocks reproduces an imaginary eight-clock ensemble that was simu- 
lated by Stein [ll]. The odd-numbered clocks all have the same q’s; simi- 
larly for the even-numbered clocks. For the purpose of the present paper, 
an RRFM term was added to  the odd-numbered clocks. A run of 1.8 x lo8 
seconds of hourly measurements was simulated. The results are shown in 
Fig. 1, in which Hi is an abbreviation for clock i. Figure l ( f )  shows the theo- 
retical Hadamard deviations as smooth curves and the measured Hadamard 
deviations as points. Figure l(a) shows the KPW time scale along with the 
true clock phases. Figure l (b)  is a short-term picture of the KPW scale and 
the natural Kalman scale; the latter is much rougher. Figure l(c) shows the 
total frequency of the KPW scale and two clocks. (Total frequency is the 
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difference quotient of the phase.) Figure l(d) and (e) show how well the 
Kalman filter estimates the frequency states (RWFM and RRFM only) and 
the drift states. Finally, Fig. l ( f )  shows the measured stability of the KPW 
scale (connected circles) and the natural Kalman scale (crosses). Although 
the two scales are almost identical in long term, the natural Kalman scale is 
almost as noisy in short term as the even-numbered clocks. The KPW scale 
is about a factor of 2 below the lower envelope of all the clocks, except at 
the largest values of T ,  where the confidence is low. 

7 Conclusions 

The results of [7] have successfully been extended to three-state clocks with 
white FM, random walk FM, and random run FM noise. The natural 
Kalman time scale TA(NIST), which uses the Kalman phase estimates, is 
almost as noisy in short term as the noisiest clock. The KPW time scale, 
which uses the Kalman frequency and drift estimates, seems to perform well 
at all averaging times, at least in a simulation playpen in which each clock 
is governed by its assumed model. The author has not tried the algorithm 
on real clock data. 

The KPW algorithm could be the foundation of a practical real-time time 
scale algorithm, which would also have to handle clock insertion and deletion, 
outliers, jumps, adaptive q estimation, and adjustment of the weights. In 
addition, the ensemble model should be expanded to include white PM noise 
and measurement error. 
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Fig. 1. Results of eight-clock simulation 




