Origin of directional epistasis
in RNA folding

Claus O. Wilkel, Richard E. Lenski2, and Christoph Adamil
1Digital Life Laboratory 136-93

California Institute of Technology
Pasadena, CA 91125

2Center for Biological Modeling
Michigan State University
East Lansing, MI 48824

Decay Functions
e Investigate fitness decay functions w(d).

e Decay functions give change in average fitness with genetic
distance d from some reference sequence.

e In RNA case: w(d) is the number of neutral folds divided by
the total number of sequences at distance d.

Fitness

Null hypothesis
(no epistasis):
w(d) ~ exp(—ad)

With epistasis:
w(d) ~ exp(—adP)

B > 1. synergism

B < 1: antagonism
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Exponential decay is caused by the tre-like structure of the geno-

type space (circles: viable sequences, crosses:

inviable sequences).
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Correlation between o and 3

Measured o and 3

for 100 random RNA
sequences of length 76
(RNA folding done
with Vienna package).

Result:
a and g are strongly
correlated.
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— Sequences for which single mutations have a large effect are
strongly antagonistc, sequences for which single mutations have z
small effect are only slightly antagonistic or even synergistic.



Origin of correlation

high a —

high density of neutral
sequences —»

density decreases as d
increases — high g8

likewise:
low a — low 8.

Distribution

The parameter m
measures the change
in neutrality with
distance d from

the reference
sequence.
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Why is 8 always < 1, when neutrality changes (m) go both ways?
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Origin of shift in g3

Hypothesis:
bution of 3.

background of compensatory mutations shifts distri-

Here, compensatory mutations are defined as those that lead from
an inviable sequence to a viable one that is not part of the original
neutral network.

Knowledge of neutrality at distance d allows us to disentangle com-
pensatory mutations from other mutations.

Adjusting for Compensatory Mutations
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Adjusted o and j Conclusions

12 ‘ , ‘ e Strength and direction of epistasis depend on position of chosen
The adjustment results _ | reference sequence in genotype space.
in an upwards shift of 3.

e Synergistic epistasis: reference sequence is in center of a dense
The epistasis parameter a cluster of viable sequences.
is almost unaltered after

the adjustment.
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e Antagonistic epistasis: reference sequence is outside of a dense

0.7 cluster of viable seguences.
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decay parameter e Background of compensatory mutations leads to excess of an-
tagonistic epistasis.
—9— —-11—
Distribution of g References
2 ‘ ‘ ‘ T I. L. Hofacker et al. Fast folding and comparison of RNA secondary
We use two different ad!usted(::;?;id) o structures. Monatshefte f. Chemie, 125:167—188 (1994).
methods of adjustment s dsedmenea =
;’ C. O. Wilke and C. Adami. Interaction between directional epis-
In both cases, a £ . tasis and average mutational effects. Proc. R. Soc. London B,
significant percentage ‘:;; 268:1469-1474 (2001).
of cases has 8 > 1. £ sl N
adIRRRT T
. [
oL i 188
0.7 0.8

0.9 1.0 11 12
epistasis parameter B

(Measured: (8) = 0.89 £+ 0.01, Adjusted M1: (8) = 1.05 £ 0.01,
Adjusted M2: (8) = 0.98 £0.01)

—-10— —12—



Origin of directional epistasis
in RNA folding

Claus O. Wilkel, Richard E. Lenski?, and Christoph Adamil
1Digital Life Laboratory 136-93

California Institute of Technology
Pasadena, CA 9112&

2Center for Biological Mcdeling
Michigan State University
East Lansing, Ml 48824

Decay Functions
e Investigate fitness decay functions w(d..

e Decay functions give change in average fitness with genetic
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the total number of sequences at distance d.
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the tre-like structure of the geno-

type space (circles: viable sequences, crosses: inviable sequences).
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Why is 8 always < 1, when neutrality changes (m) go both ways?
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Origin of shift in 3

Hypothesis: background of compensatory mutations shifts distri-
bution of 3.

Here, compensatory mutations are defined as those that lead from
an inviable sequence to a viable one that is not part of the original
neutral network.

Knowledge of neutrality at distance d allows us to disentangle com-
pensatory mutations from other mutations.

Adjusting for Compensatory Mutations
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Adjusted o and g Conclusions
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