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Abstract- The Web Interface for Telescience (WITS) pro- 
vides downlink data visualization and uplink activity plan- 
ning for multiple Mars lander and rover missions. WITS also 
provides a ground data system (GDS) for terrestrial rover op- 
erations. The architecture of the WITS system that enables 
its multi-mission use is described. WITS has been used as 
the GDS for the Rocky7, FIDO, and Rocky8 rovers at JPL. It 
was used for command sequence generation for the Mars Po- 
lar Lander mission robotic arm and robotic arm camera and 
will be used for science activity planning in the 2003 Mars 
Exploration Rover (MER) mission. It is also planned for use 
in the 2007 Phoenix Mars lander mission and 2009 Mars Sci- 
ence Laboratory (MSL) rover mission. WITS is currently 
being integrated with the Mission Data System (MDS) for 
use in the MSL mission and with the Coupled Layer Archi- 
tecture for Robotic Autonomy (CLARAty) system for use as 
the GDS for terrestrial technology development landers and 
rovers. 
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1. INTRODUCTION 
A pair of tools, the Web Interface for Telescience (WITS) [ 13, 
and the Parallel Telemetry Processor (PTeP) [2], have been 
developed to provide multi-mission ground operations capa- 
bility for landers and rovers. WITS is used for both Mars mis- 
sion operations and terrestrial rover operations. PTeP is used 
for terrestrial rover operations. Multi-mission in the context 
of this paper means both Mars flight missions and operations 
for terrestrial rovers. 

WITS provides collaborative downlink data visualization and 
uplink activity planning for Mars lander and rover missions. 
Downlink data visualization and uplink activity planning are 
integrated so that users can plan lander and rover activities 
within downlink data, e.g., select targets to drive to and use 
the targets as parameters in drive activities. The tool provides 
collaborative planning so that different users and groups of 
users can work simultaneously to quickly generate the daily 
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Figure 1. Landermover Ground Operations Process 

activities for the spacecraft. PTeP provides automated down- 
link data processing. 

A simplified ground operations flow diagram for Mars lander 
and rover missions is shown in Figure 1 .  The set of tools that 
are used on the ground (i.e., by operators on Earth) is called 
the ground data system (GDS). A lander or rover spacecraft 
downlinks data such as images via Downlink Communication 
to the ground operations center. Downlink Data Processing 
processes the data to generate data products that operations 
tools can use. For example, stereo image pairs are processed 
to produce range maps, camera models, linearized images, 
and 3D terrain files. Downlink Data Visualization is used to 
view the status of the spacecraft and to view the data products. 
Uplink Activity Planning generates high level activities for 
the spacecraft. Uplink Command Planning generates the low 
level commands that will be uplinked to the spacecraft. Se- 
quence Integration and Validation integrates command sub- 
sequences to produce the complete command sequence to be 
uplinked to the spacecraft and validates the sequence. Uplink 
Communication is subsequently used to send the validated 
command sequence to the spacecraft. 

As indicated in Figure 1, PTeP is used for downlink data 
processing for terrestrial research rovers. PTeP provides the 
functionally-equivalent capability of flight mission downlink 
data processing, but is able to provide this complex function- 
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Figure 4. Phoenix Lander 

Figure 2. Mars Polar Lander at Desert Field Test 

Figure 3. MER Mission Rover 

ality at low cost for terrestrial research rover tests. 

WITS provides different functionality for different missions 
and research rovers. WITS was used for Robotic Arm and 
Robotic Arm Camera command sequence generation for the 
Mars Polar Lander (MPL) mission which was to begin sur- 
face operations in December 1999 [3]. Subsequent to fail- 
ure to achieve communication with the lander, the operations 
process was validated in a desert field test, shown in Figure 2. 
WITS also provided terrain visualization and arm simulation 
for the MPL mission. 

For the 2003 Mars Exploration Rover mission, depicted in 
Figure 3, WITS is the primary science operations tool for 
downlink data visualization and uplink science activity plan- 
ning [ 11. The WITS adaptation for MER is called the Science 
Activity Planner (SAP). 

For the 2007 Phoenix Mars lander mission, depicted in Fig- 
ure 4, WITS will provide terrain visualization and Robotic 
Arm command sequence generation and simulation. 

For the 2009 Mars Science Laboratory mission, depicted in 
Figure 5, WITS will provide downlink data visualization and 
science activity planning. 

Figure 5. MSL Mission Rover 

The WITS architecture described in this paper is the third 
generation of the architecture. The first WITS architecture 
was used for the Rocky7 (Figure 6) research rover opera- 
tions and for the 1997 Mars Pathfinder mission public out- 
reach [4]. WITS was run as a Java applet within the Netscape 
web browser. There were several problems with this archi- 
tectual approach. First, the user downloaded the applet from 
the JPL server each time WITS was started, which took too 
long. Second, the data, such as panorama images, was deliv- 
ered to the applet over the Intemet only when the user opened 
a view that used the data, which caused more delays. Third, 
there were difficulties in maintaining compatible versions of 
Java2D, Java3D, and the web browser. 

The second generation WITS architecture was used for FIDO 
research rover terrestrial field tests [5] (Figure 7) and for the 
MPL mission [3]. WITS was provided as a Java application 
that was downloaded onto a users computer once and then 
run locally to the computer. This eliminated the start-up de- 
lay. The database was automatically distributed to each client 
WITS computer using the Multi-mission Encrypted Com- 
munication System (MECS) (formerly called WEDDS) [6]. 
Therefore both the application and data were automatically 
loaded onto users’ computers before they needed them so the 
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Figure 6. Rocky7 Rover 

Figure 8. Rocky8 Rover 

Figure 7. FIDO Rover at Desert Field Test 

application started and accessed data very quickly. 

While the second generation WITS solved important archi- 
tectural problems, there were various implementation ap- 
proaches that needed improvement. The activity dictionary, 
which provides definitions of activities available for insertion 
into a sequence, was specified in a custom textual format. 
The data views were opened as independent windows which 
tended to hide previously opened data views and made it dif- 
ficult for users to manage the data views. The 2D panoramas 
and 3D terrain visualization views loaded separate image tex- 
tures which caused excessive memory usage problems. The 
3D view used only one level of detail which caused it to use 
too much memory when providing a high level of detail over 
a large area. 

The third generation architecture of WITS, described in this 
paper, includes the architectual improvements of the second 
generation system and provides improved implementations of 

capabilities. This version is used for the MER mission where 
it is called the Science Activity Planner (SAP) [l]. The ver- 
sion also supports Mission Data System (MDS) [7], [SI and 
CLARAty system [9] based ro . It will ‘also support the 
Phoenix mission operations sys MDS is the software en- 
vironment for the MSL mission. MDS is currently used on 
the Rocky7 rover and will be used”on the Rocky8 (shown in 
Figure 8) rover to test MSL technologies and then on YSL 
mission rovers. CLARAty is the software environmen 
for research rovers such as Roclj8 and FIDO. WIT 
mission-specific adaptations for each application. 

Several implementation improvements were incorporated in 
the third generation architecture. Uplink and downlink 
browsers are used to organize views, as described below, 
so views do not overlap and get lost. Extensible Markup 
Language (XML) is used to represent the activity dictionary. 
Commercial off-the-shelf (COTS) tools are used extensively. 
There is greatly improved 2D [lo], [ l ]  and 3D [ll])  visual- 
ization compared to the previous implementation. 

2. WITS FUNCTIONALITY 
Interaction in WITS is done within WITS browsers. The 
browsers have a selection tree on the left and a work area 
on the right. There are two primary browsers: the Downlink 
Browser and the Uplink Browser. The browsers automatically 
open when a user logs into WITS. The Downlink Browser is 
shown in Figure 9. The Uplink browser is shown in Figure 10. 

Downlink Data Visualization 

The Downlink Browser is used to select and view downlink 
data products. Just like a Web browser can have a list of book- 
marks on the left side of the window and the remaining space 
is for viewing a Web page, the downlink browser arranges 
links to data products in a tree on the left and creates a view 
on the right when a link is selected. 

The downlink selection tree on the left of the downlink 
browser contains all of the data products in the rover database. 
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Figure 10. Uplink Browser 

represent objects in the terrain and targets are associated with 
features. 

After clicking on an image, WITS will try to lookup the range 
of the point in the image. If there is range for the point, then 
a circular blue annotation, or glyph, is drawn at the clicked 
point and also in every other open view that contains that 
point. Glyphs are annotations that are drawn on top of im- 
ages, like the blue circle, targets, and image footprints. 

If a selected point has range data, then a target or feature can 
be created there via menu items. A dialog prompt will appear 
for entering a name for the target or feature. For targets, the 
user also associates the target with a feature by selecting a 
feature from a pull-down list of features in the dialog prompt. 
Targets and features appear listed in the Targets view of the 
Uplink Browser. 

Uplink Planning 

The Uplink Browser is used to create and edit activity plans, 
as shown in Figure 10. Activity plans consist of targets, ob- 

servations, and activities, and are stored in the Rover Markup 
Language (RML) format, which is based on XML. The left 
side of the Uplink Browser is an uplink selection tree that 
allows the user to load a previously saved RML plan. This 
selection tree is organized by sols and theme groups. A plan 
is opened fiom the selection tree by double-clicking on it. 

The right side of the Uplink Browser is a WITS view grid. 
Like the Downlink Browser’s view grid, the topology of this 
area can be selected from a menu of options. The selected 
topology shown in Figure 10 has one view pane on top and 
two view panes below. Different plans can be opened in the 
different view grid view panes. 

When the user clicks on an item within a plan (for instance, an 
activity), details on that item are displayed in a smaller float- 
ing window called the Details Dialog (see Figure 10, upper 
right). The details dialog allows the user to edit attributes of 
the currently selected item. The Details Dialog can be shown 
or hidden using the icon on the Uplink Browser toolbar that 
looks like a pencil on paper. 
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Plan merging is accomplished using observation and activ- 
ity click and drag. Observations and activities can be copied 
from one plan into another plan by clicking on an element 
and dragging it into another plan. When an observation is 
dragged from one plan into another plan, all of its activities 
are copied with it. 

The activities in the plan are visualized in the Panorama and 
Image views when possible using activity glyphs. For imag- 
ing activities, the activity glyphs are footprints on the terrain 
where the images will be taken. Glyphs for the images in 
the current plan are shown in Figure 9 with yellow outlines. 
Glyphs for a vertical spectrometer scan are also shown in Fig- 
ure 9 as yellow circles with the same angular extent as the 
spectrometer. 

State simulation is provided to assist in evaluating a plan. In 
state simulation, when the user selects an activity in the plan, 
the rover position and configuration is updated in the 3D view 
with the predicted rover state at the end of that activity. A user 
can quickly click through the plan to get an idea of what the 
rover is going to do. 

3. SOFTWARE ARCHITECTURE 
Software Organization 

WITS is written entirely in the Java programming language 
as a Java application. Java applications are implemented as 
a set of code files called “classes,” each of which can be in- 
stantiated into an object at runtime. Java classes are typically 
organized in nested directories called “packages.” WITS con- 
sists of approximately 650 classes divided into 150 packages. 
There are “core” packages that are used by multiple missions 
and mission-specific packages. Capabilities are developed 
as generically as possible for efficient development of the 
core packages and to maximize the percentage of the system 
within the core packages. 

The vast majority of the WITS classes are responsible for 
functions that are not specific to any particular mission’s 
needs. These classes, and the packages they are located in, 
make up “Core WITS’ (Figure 1 1). The remaining classes are 
devoted to capabilities that are only applicable to a particular 
mission, i.e., which must be re-implemented for each mission 
to account for the differences between them. The term “mis- 
sion” used here refers to an actual Mars flight mission or a 
research effort that is fielding a vehicle on Earth. By concen- 
trating as much development as possible in Core WITS, mul- 
tiple missions benefit from each other’s investment in WITS. 

The WITS packages (core and mission-dependent) are further 
divided into three main categories, as listed below. 

1. Uplink- Functions specific to the generation of activity 
plans for transmission to the spacecraft. 
2. Downlink- Functions responsible for the visualization and 
analysis of data acquired by the spacecraft. 

1 core 1 “CORE” 
Common 

Mlssion- 
Independent T CapablMies Upllnk Downlln k 

Mission 
WiTS Upilnk . Downlln k 

“MISSION” 

I u 

Figure 11. Package Inheritance Diagram 

Core 

Misslon 

Figure 12. Ancestry of a Mission-specific Class 

3. Common- Functionality that is applicable to both the Up- 
link and Downlink packages of WITS. Includes base classes 
for most of the classes in the Uplink and Downlink packages. 

Figure 11 illustrates the high-level organization of WITS 
packages into the categories described above. Classes in the 
Core Common package serve as parents for classes in the 
Core Downlink and Core Uplink packages. Each of the Core 
packages contains classes that serve as parents for classes in 
the three mission-dependent packages. 

An example of the ancestry of one mission-specific class is 
shown in Figure 12. At the top of this diagram is the View 
class, which is the base class for over 20 classes in WITS de- 
voted to the display of uplink and downlink data loaded from 
disk to a user. View is extended by TreeTableView, which 
provides a graphical display of hierarchical information with 
spreadsheet-like columns. TreeTableView is extended by 
both Uplink and Downlink views, but in Figure 12 we focus 
next on its extension to UplinkTreeTableView, which adds 
undohedo capabilities, and ObservationsView, which is fo- 
cused on those features particular to the construction of an 
activity plan for execution by a spacecraft. Some WITS mis- 
sions simply use ObservationsView as their activity editing 
interface, but the FIDO research rover requires that its activ- 
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ity plans be written in a particular format that is different from 
the formats used by the rest of the WITS missions. To pro- 
vide a menu item to allow a user to request that an activity 
plan be written out in this format, a simple extension of Ob- 
servationsview called FIDOObservationsView was created. 

Preventing Cross-Mission Impacts 

Sharing of code across multiple missions is a benefit of 
WITS, but care must be taken to reduce the likelihood that 
a change made in support of one mission has a negative effect 
on another. For instance, consider that mission A is a Mars 
flight project in the final stages of development. Meanwhile, 
mission B is a research task dedicated to exploring advanced, 
experimental rover technologies. It would be unacceptable 
for mission B to make experimental changes to WITS code 
that could endanger the stability of mission A, but we prefer 
to not restrict mission B’s development for the sake of mis- 
sion A. 

Two rules for WITS development ameliorate the aforemen- 
tioned problem. First, mission-dependent code for differ- 
ent mission must never interact. A mission-dependent class 
added for mission B cannot depend, directly or indirectly, on 
a mission-dependent class for mission A and vice-versa. This 
way, if mission B adds a feature in its mission-dependent de- 
velopment area, there is no chance that it will have a negative 
effect on mission A. Second, Core WITS must not directly 
depend on a mission-dependent class. This rule is a bit more 
tricky than the last. In Java, a class X typically references an- 
other class Y that it depends upon in an explicit, direct man- 
ner. This direct reference causes class Y to be automatically 
compiled when class X is compiled, and furthermore requires 
that class Y be present whenever class X is used. In our exam- 
ple above, if Core WITS directly depended on one of mission 
B’s classes, then mission A would be forced to include mis- 
sion B’s code, which would expose the flight mission to any 
bugs that may exist in the research task’s class. To rephrase 
this rule, Core WITS must be able to be compiled in absence 
of any mission-dependent classes. 

. 

The second rule leads to the question “How then, can Core 
WITS compile for a specific mission without directly ref- 
erencing mission-specific code?’ Two methods are used. 
First, there is a special Core class called “Mission” that each 
WITS mission must extend. This class is a gateway to nu- 
merous mission-dependent functions and serves as a check- 
list for adapting WITS to a new mission. At a minimum, 
a new mission must provide a working implementation for 
every capability of the “Mission” class. At runtime, WITS 
asks the Core Mission class to retum the specialized version 
of the Mission class for the currently active mission. This 
is accomplished without a direct reference to the specialized 
Mission class through the use of a feature of the Java pro- 
gramming language called introspection. Note that introspec- 
tion is only needed to bridge the gap to the specialized ver- 
sion of the Mission class since that class is free to directly 
reference any mission-dependent classes since it is itself a 

mission-dependent class. 

The second method used to access mission-dependent code 
from Core WITS without a direct reference capitalizes on 
WITS use of the Castor XML binding framework. Cas- 
tor is an open source data binding framework for Java 
(www.castor.org). Castor automatically maps an XML doc- 
ument on disk to a set of WITS Java classes. Typically, all 
of these classes are in Core WITS, but Castor’s default map- 
ping behavior can be overridden with a mission-dependent 
mapping file that is loaded by the specialized version of the 
Mission class mentioned above. By providing a mapping file, 
a mission can cause an element of an XML document to be 
mapped to a mission-dependent class instead of a Core WITS 
class. 

4. DOWNLINK DATA PROCESSING 
A challenge for providing WITS to multiple missions is to 
adapt WITS to use the downlink data products from the mul- 
tiple missions. Downlink data differs in content and form for 
different spacecraft and also between different instruments of 
a given spacecraft. A convenient high-level downlink data ab- 
straction is the “dataset”, which collects data at a given point 
in time during spacecraft operations. With instrument data, 
this generally means the product of a given instrument such 
as images or spectra and the metadata that describes the state 
of the instrument and the spacecraft at the time of acquisi- 
tion. In the case of images, WITS groups a set of images, 
their metadata, and any derived data products that are use- 
ful to construct from the raw images together into an Image- 
Content. The Imagecontent object follows the general WITS 
design of Content in which it is constructed and marshaled 
as an XML file that can at any time be unmarshaled into the 
application and put to use. The Imagecontent contains the lo- 
cations in the database of all image data (generally in the form 
of files on a filesystem) and all known metadata about the in- 
strument and spacecraft at the time of acquisition, as well as 
derived data products from the original images. Examples of 
derived data products are radiometrically calibrated images 
and 3D terrain reconstructions from stereo image pairs. 

Raw spacecraft telemetry itself is compressed as much as pos- 
sible to facilitate the low bandwidth available in actual remote 
operations away from the Earth. Creating data products that 
are human readable is therefore a practical necessity. Also, 
the time constraints of the daily mission operations cycle for 
missions to Mars such as Pathfinder and MER benefit from 
organizing these data products into a systematically search- 
able database. 

The Parallel Telemetry Processor (PTeP) is used to create and 
maintain the WITS database. There are two distinct steps: 
creating the files in the database and cataloging the files. 
PTeP is used to create the files and a separate part of PTeP, 
the DataStateManager (DSM), is used to catalog the files for 
a specific mission. PTeP is used to create the database files 
for terrestrial rover applications, but other tools are used for 
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this function in flight missions. The DSM is used for both 
terrestrial applications and flight missions. 

As WITS has a generalized design that enables it to operate 
in a mission-independent fashion on the whole but to employ 
mission-dependent code where needed, so does PTeP have a 
core processing component which performs the task of read- 
ing raw downlink data, passing it through a sequence of pro- 
cessing stages, and organizing the resulting products into a 
database. The sequence of processing stages may be arbi- 
trary in number and may produce any number of data prod- 
ucts from the original input data. The database that PTeP 
creates currently takes the form of a hierarchical filesystem 
where each data product is stored as a separate file. 

The database files are grouped into Imagecontent datasets 
by the DataStateManager (DSM). The DSM is responsible 
for creating Imagecontent XML files that define the datasets 
that are viewable from WITS. It also produces Missionstate 
XML files that encode the spacecraft and instrument metadata 
that is associated with the images, and TableOKontents XML 
files that allow WITS to present the datasets on the filesystem 
as an optimized, queriable database. The TableOKontents in 
the WITS Downlink Browser can be re-sorted very quickly to 
present datasets in order of time, location, or instrument, or 
combinations thereof. 

The mission-dependent functionality of PTeP is needed if a 
given mission has specifically defined formats for its data 
products that must be parsed in a unique fashion. Missions 
often inherit data product format conventions. For the FIDO 
and CLARAtyRocky8 missions, the telemetry format is very 
similar. However, some missions involve the use of other 
software systems that perform part or all of the telemetry pro- 
cessing. For instance, the MDSRocky7 mission takes in the 
raw telemetry and stores the resulting products in a relational 
database. However, it does not create all of the desired de- 
rived data products for activity planning, such as range maps 
for targeting and 3D terrain reconstruction for arm motion 
planning and traverse analysis. For this mission, the PTeP 
processor queries the ddtabase for a set of products over a 
particular time interval. These results take the form of a bi- 
nary query results file (BQR). The BQR file is then separated 
into datasets, and PTeP derived related data products from the 
original images and stores them all on a filesystem. Finally, it 
runs the DSM on the files to create the XML objects for use 
in WITS. In the case of MER, the mission elected to do all of 
its downlink data processing with other existing tools, and so 
only the DSM is needed to define the XML objects for use in 
WITS. 

Implementation of PTeP in the Java language enables com- 
puter platform-independence with certain qualifications. Of- 
ten, the stages of data processing for a given type of instru- 
ment data are defined by a sequence of existing tools such as 
a stereo correlation program that produces a range map, or 
a terrain generation utility that produces triangulated terrain 

maps. These utilities are called from the PTeP processing 
control loop that is implemented in Java. It can be used on any 
system that supports Java, provided that all of the tools that 
are needed to create the full range of required data products 
for operations planning are also available for that platform. 

5. CONCLUSIONS 
The architecture of the WITS system has been developed to 
enable WITS to be used for multiple terrestrial rovers and 
Mars lander and rover missions. For terrestrial rovers WITS, 
along with PTeP, provides a complete ground data system. 
For Mars lander and rover missions, WITS provides a combi- 
nation of downlink data visualization, activity planning, and 
command generation depending on the needs of the mission. 
The code has been organized to maximize common function- 
ality across multiple missions. 
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