
Multi-mission Activity Planning for Mars Lander
and Rover Missions

Paul G. Backes, Jeffrey S. N o i s , Mark W. Powell, Marsette A. Vona
Jet Propulsion Laboratory, Califomia Institute of Technology, Pasadena, Califomia

Paul .G .B ackes@j pl .nasa. gov

Abstract- The Web Interface for Telescience (WITS) pro-
vides downlink data visualization and uplink activity plan-
ning for multiple Mars lander and rover missions. WITS also
provides a ground data system (GDS) for terrestrial rover op-
erations. The architecture of the WITS system that enables
its multi-mission use is described. WITS has been used as
the GDS for the Rocky7, FIDO, and Rocky8 rovers at JPL. It
was used for command sequence generation for the Mars Po-
lar Lander mission robotic arm and robotic arm camera and
will be used for science activity planning in the 2003 Mars
Exploration Rover (MER) mission. It is also planned for use
in the 2007 Phoenix Mars lander mission and 2009 Mars Sci-
ence Laboratory (MSL) rover mission. WITS is currently
being integrated with the Mission Data System (MDS) for
use in the MSL mission and with the Coupled Layer Archi-
tecture for Robotic Autonomy (CLARAty) system for use as
the GDS for terrestrial technology development landers and
rovers.

TABLE OF CONTENTS

1 INTRODUCTION
2 WITS FUNCTIONALITY

4 DOWNLINK DATA PROCESSING
5 CONCLUSIONS

3 SOFTWARE ARCHITECTURE

1. INTRODUCTION
A pair of tools, the Web Interface for Telescience (WITS) [13,
and the Parallel Telemetry Processor (PTeP) [2], have been
developed to provide multi-mission ground operations capa-
bility for landers and rovers. WITS is used for both Mars mis-
sion operations and terrestrial rover operations. PTeP is used
for terrestrial rover operations. Multi-mission in the context
of this paper means both Mars flight missions and operations
for terrestrial rovers.

WITS provides collaborative downlink data visualization and
uplink activity planning for Mars lander and rover missions.
Downlink data visualization and uplink activity planning are
integrated so that users can plan lander and rover activities
within downlink data, e.g., select targets to drive to and use
the targets as parameters in drive activities. The tool provides
collaborative planning so that different users and groups of
users can work simultaneously to quickly generate the daily

0-7803-81 55-6/04/$17.00/@2004 IEEE
lEEEAC papcr # 1498

Lander/Rover

"i

Downlink Data Visualization

1 < .-
0 1

' I i
I i

I MER,
; MSL
I j

ROV- L

I LanderlRwer 1

I

Figure 1. Landermover Ground Operations Process

activities for the spacecraft. PTeP provides automated down-
link data processing.

A simplified ground operations flow diagram for Mars lander
and rover missions is shown in Figure 1 . The set of tools that
are used on the ground (i.e., by operators on Earth) is called
the ground data system (GDS). A lander or rover spacecraft
downlinks data such as images via Downlink Communication
to the ground operations center. Downlink Data Processing
processes the data to generate data products that operations
tools can use. For example, stereo image pairs are processed
to produce range maps, camera models, linearized images,
and 3D terrain files. Downlink Data Visualization is used to
view the status of the spacecraft and to view the data products.
Uplink Activity Planning generates high level activities for
the spacecraft. Uplink Command Planning generates the low
level commands that will be uplinked to the spacecraft. Se-
quence Integration and Validation integrates command sub-
sequences to produce the complete command sequence to be
uplinked to the spacecraft and validates the sequence. Uplink
Communication is subsequently used to send the validated
command sequence to the spacecraft.

As indicated in Figure 1, PTeP is used for downlink data
processing for terrestrial research rovers. PTeP provides the
functionally-equivalent capability of flight mission downlink
data processing, but is able to provide this complex function-

1

Figure 4. Phoenix Lander

Figure 2. Mars Polar Lander at Desert Field Test

Figure 3. MER Mission Rover

ality at low cost for terrestrial research rover tests.

WITS provides different functionality for different missions
and research rovers. WITS was used for Robotic Arm and
Robotic Arm Camera command sequence generation for the
Mars Polar Lander (MPL) mission which was to begin sur-
face operations in December 1999 [3]. Subsequent to fail-
ure to achieve communication with the lander, the operations
process was validated in a desert field test, shown in Figure 2.
WITS also provided terrain visualization and arm simulation
for the MPL mission.

For the 2003 Mars Exploration Rover mission, depicted in
Figure 3, WITS is the primary science operations tool for
downlink data visualization and uplink science activity plan-
ning [11. The WITS adaptation for MER is called the Science
Activity Planner (SAP).

For the 2007 Phoenix Mars lander mission, depicted in Fig-
ure 4, WITS will provide terrain visualization and Robotic
Arm command sequence generation and simulation.

For the 2009 Mars Science Laboratory mission, depicted in
Figure 5, WITS will provide downlink data visualization and
science activity planning.

Figure 5. MSL Mission Rover

The WITS architecture described in this paper is the third
generation of the architecture. The first WITS architecture
was used for the Rocky7 (Figure 6) research rover opera-
tions and for the 1997 Mars Pathfinder mission public out-
reach [4]. WITS was run as a Java applet within the Netscape
web browser. There were several problems with this archi-
tectual approach. First, the user downloaded the applet from
the JPL server each time WITS was started, which took too
long. Second, the data, such as panorama images, was deliv-
ered to the applet over the Intemet only when the user opened
a view that used the data, which caused more delays. Third,
there were difficulties in maintaining compatible versions of
Java2D, Java3D, and the web browser.

The second generation WITS architecture was used for FIDO
research rover terrestrial field tests [5] (Figure 7) and for the
MPL mission [3]. WITS was provided as a Java application
that was downloaded onto a users computer once and then
run locally to the computer. This eliminated the start-up de-
lay. The database was automatically distributed to each client
WITS computer using the Multi-mission Encrypted Com-
munication System (MECS) (formerly called WEDDS) [6].
Therefore both the application and data were automatically
loaded onto users’ computers before they needed them so the

2

Figure 6. Rocky7 Rover

Figure 8. Rocky8 Rover

Figure 7. FIDO Rover at Desert Field Test

application started and accessed data very quickly.

While the second generation WITS solved important archi-
tectural problems, there were various implementation ap-
proaches that needed improvement. The activity dictionary,
which provides definitions of activities available for insertion
into a sequence, was specified in a custom textual format.
The data views were opened as independent windows which
tended to hide previously opened data views and made it dif-
ficult for users to manage the data views. The 2D panoramas
and 3D terrain visualization views loaded separate image tex-
tures which caused excessive memory usage problems. The
3D view used only one level of detail which caused it to use
too much memory when providing a high level of detail over
a large area.

The third generation architecture of WITS, described in this
paper, includes the architectual improvements of the second
generation system and provides improved implementations of

capabilities. This version is used for the MER mission where
it is called the Science Activity Planner (SAP) [l]. The ver-
sion also supports Mission Data System (MDS) [7], [SI and
CLARAty system [9] based ro . It will ‘also support the
Phoenix mission operations sys MDS is the software en-
vironment for the MSL mission. MDS is currently used on
the Rocky7 rover and will be used”on the Rocky8 (shown in
Figure 8) rover to test MSL technologies and then on YSL
mission rovers. CLARAty is the software environmen
for research rovers such as Roclj8 and FIDO. WIT
mission-specific adaptations for each application.

Several implementation improvements were incorporated in
the third generation architecture. Uplink and downlink
browsers are used to organize views, as described below,
so views do not overlap and get lost. Extensible Markup
Language (XML) is used to represent the activity dictionary.
Commercial off-the-shelf (COTS) tools are used extensively.
There is greatly improved 2D [lo], [l] and 3D [ll]) visual-
ization compared to the previous implementation.

2. WITS FUNCTIONALITY
Interaction in WITS is done within WITS browsers. The
browsers have a selection tree on the left and a work area
on the right. There are two primary browsers: the Downlink
Browser and the Uplink Browser. The browsers automatically
open when a user logs into WITS. The Downlink Browser is
shown in Figure 9. The Uplink browser is shown in Figure 10.

Downlink Data Visualization

The Downlink Browser is used to select and view downlink
data products. Just like a Web browser can have a list of book-
marks on the left side of the window and the remaining space
is for viewing a Web page, the downlink browser arranges
links to data products in a tree on the left and creates a view
on the right when a link is selected.

The downlink selection tree on the left of the downlink
browser contains all of the data products in the rover database.

3

P

Figure 10. Uplink Browser

represent objects in the terrain and targets are associated with
features.

After clicking on an image, WITS will try to lookup the range
of the point in the image. If there is range for the point, then
a circular blue annotation, or glyph, is drawn at the clicked
point and also in every other open view that contains that
point. Glyphs are annotations that are drawn on top of im-
ages, like the blue circle, targets, and image footprints.

If a selected point has range data, then a target or feature can
be created there via menu items. A dialog prompt will appear
for entering a name for the target or feature. For targets, the
user also associates the target with a feature by selecting a
feature from a pull-down list of features in the dialog prompt.
Targets and features appear listed in the Targets view of the
Uplink Browser.

Uplink Planning

The Uplink Browser is used to create and edit activity plans,
as shown in Figure 10. Activity plans consist of targets, ob-

servations, and activities, and are stored in the Rover Markup
Language (RML) format, which is based on XML. The left
side of the Uplink Browser is an uplink selection tree that
allows the user to load a previously saved RML plan. This
selection tree is organized by sols and theme groups. A plan
is opened fiom the selection tree by double-clicking on it.

The right side of the Uplink Browser is a WITS view grid.
Like the Downlink Browser’s view grid, the topology of this
area can be selected from a menu of options. The selected
topology shown in Figure 10 has one view pane on top and
two view panes below. Different plans can be opened in the
different view grid view panes.

When the user clicks on an item within a plan (for instance, an
activity), details on that item are displayed in a smaller float-
ing window called the Details Dialog (see Figure 10, upper
right). The details dialog allows the user to edit attributes of
the currently selected item. The Details Dialog can be shown
or hidden using the icon on the Uplink Browser toolbar that
looks like a pencil on paper.

5

Plan merging is accomplished using observation and activ-
ity click and drag. Observations and activities can be copied
from one plan into another plan by clicking on an element
and dragging it into another plan. When an observation is
dragged from one plan into another plan, all of its activities
are copied with it.

The activities in the plan are visualized in the Panorama and
Image views when possible using activity glyphs. For imag-
ing activities, the activity glyphs are footprints on the terrain
where the images will be taken. Glyphs for the images in
the current plan are shown in Figure 9 with yellow outlines.
Glyphs for a vertical spectrometer scan are also shown in Fig-
ure 9 as yellow circles with the same angular extent as the
spectrometer.

State simulation is provided to assist in evaluating a plan. In
state simulation, when the user selects an activity in the plan,
the rover position and configuration is updated in the 3D view
with the predicted rover state at the end of that activity. A user
can quickly click through the plan to get an idea of what the
rover is going to do.

3. SOFTWARE ARCHITECTURE
Software Organization

WITS is written entirely in the Java programming language
as a Java application. Java applications are implemented as
a set of code files called “classes,” each of which can be in-
stantiated into an object at runtime. Java classes are typically
organized in nested directories called “packages.” WITS con-
sists of approximately 650 classes divided into 150 packages.
There are “core” packages that are used by multiple missions
and mission-specific packages. Capabilities are developed
as generically as possible for efficient development of the
core packages and to maximize the percentage of the system
within the core packages.

The vast majority of the WITS classes are responsible for
functions that are not specific to any particular mission’s
needs. These classes, and the packages they are located in,
make up “Core WITS’ (Figure 1 1). The remaining classes are
devoted to capabilities that are only applicable to a particular
mission, i.e., which must be re-implemented for each mission
to account for the differences between them. The term “mis-
sion” used here refers to an actual Mars flight mission or a
research effort that is fielding a vehicle on Earth. By concen-
trating as much development as possible in Core WITS, mul-
tiple missions benefit from each other’s investment in WITS.

The WITS packages (core and mission-dependent) are further
divided into three main categories, as listed below.

1. Uplink- Functions specific to the generation of activity
plans for transmission to the spacecraft.
2. Downlink- Functions responsible for the visualization and
analysis of data acquired by the spacecraft.

1 core 1 “CORE”
Common

Mlssion-
Independent T CapablMies Upllnk Downlln k

Mission
WiTS Upilnk . Downlln k

“MISSION”

I u

Figure 11. Package Inheritance Diagram

Core

Misslon

Figure 12. Ancestry of a Mission-specific Class

3. Common- Functionality that is applicable to both the Up-
link and Downlink packages of WITS. Includes base classes
for most of the classes in the Uplink and Downlink packages.

Figure 11 illustrates the high-level organization of WITS
packages into the categories described above. Classes in the
Core Common package serve as parents for classes in the
Core Downlink and Core Uplink packages. Each of the Core
packages contains classes that serve as parents for classes in
the three mission-dependent packages.

An example of the ancestry of one mission-specific class is
shown in Figure 12. At the top of this diagram is the View
class, which is the base class for over 20 classes in WITS de-
voted to the display of uplink and downlink data loaded from
disk to a user. View is extended by TreeTableView, which
provides a graphical display of hierarchical information with
spreadsheet-like columns. TreeTableView is extended by
both Uplink and Downlink views, but in Figure 12 we focus
next on its extension to UplinkTreeTableView, which adds
undohedo capabilities, and ObservationsView, which is fo-
cused on those features particular to the construction of an
activity plan for execution by a spacecraft. Some WITS mis-
sions simply use ObservationsView as their activity editing
interface, but the FIDO research rover requires that its activ-

6

ity plans be written in a particular format that is different from
the formats used by the rest of the WITS missions. To pro-
vide a menu item to allow a user to request that an activity
plan be written out in this format, a simple extension of Ob-
servationsview called FIDOObservationsView was created.

Preventing Cross-Mission Impacts

Sharing of code across multiple missions is a benefit of
WITS, but care must be taken to reduce the likelihood that
a change made in support of one mission has a negative effect
on another. For instance, consider that mission A is a Mars
flight project in the final stages of development. Meanwhile,
mission B is a research task dedicated to exploring advanced,
experimental rover technologies. It would be unacceptable
for mission B to make experimental changes to WITS code
that could endanger the stability of mission A, but we prefer
to not restrict mission B’s development for the sake of mis-
sion A.

Two rules for WITS development ameliorate the aforemen-
tioned problem. First, mission-dependent code for differ-
ent mission must never interact. A mission-dependent class
added for mission B cannot depend, directly or indirectly, on
a mission-dependent class for mission A and vice-versa. This
way, if mission B adds a feature in its mission-dependent de-
velopment area, there is no chance that it will have a negative
effect on mission A. Second, Core WITS must not directly
depend on a mission-dependent class. This rule is a bit more
tricky than the last. In Java, a class X typically references an-
other class Y that it depends upon in an explicit, direct man-
ner. This direct reference causes class Y to be automatically
compiled when class X is compiled, and furthermore requires
that class Y be present whenever class X is used. In our exam-
ple above, if Core WITS directly depended on one of mission
B’s classes, then mission A would be forced to include mis-
sion B’s code, which would expose the flight mission to any
bugs that may exist in the research task’s class. To rephrase
this rule, Core WITS must be able to be compiled in absence
of any mission-dependent classes.

.

The second rule leads to the question “How then, can Core
WITS compile for a specific mission without directly ref-
erencing mission-specific code?’ Two methods are used.
First, there is a special Core class called “Mission” that each
WITS mission must extend. This class is a gateway to nu-
merous mission-dependent functions and serves as a check-
list for adapting WITS to a new mission. At a minimum,
a new mission must provide a working implementation for
every capability of the “Mission” class. At runtime, WITS
asks the Core Mission class to retum the specialized version
of the Mission class for the currently active mission. This
is accomplished without a direct reference to the specialized
Mission class through the use of a feature of the Java pro-
gramming language called introspection. Note that introspec-
tion is only needed to bridge the gap to the specialized ver-
sion of the Mission class since that class is free to directly
reference any mission-dependent classes since it is itself a

mission-dependent class.

The second method used to access mission-dependent code
from Core WITS without a direct reference capitalizes on
WITS use of the Castor XML binding framework. Cas-
tor is an open source data binding framework for Java
(www.castor.org). Castor automatically maps an XML doc-
ument on disk to a set of WITS Java classes. Typically, all
of these classes are in Core WITS, but Castor’s default map-
ping behavior can be overridden with a mission-dependent
mapping file that is loaded by the specialized version of the
Mission class mentioned above. By providing a mapping file,
a mission can cause an element of an XML document to be
mapped to a mission-dependent class instead of a Core WITS
class.

4. DOWNLINK DATA PROCESSING
A challenge for providing WITS to multiple missions is to
adapt WITS to use the downlink data products from the mul-
tiple missions. Downlink data differs in content and form for
different spacecraft and also between different instruments of
a given spacecraft. A convenient high-level downlink data ab-
straction is the “dataset”, which collects data at a given point
in time during spacecraft operations. With instrument data,
this generally means the product of a given instrument such
as images or spectra and the metadata that describes the state
of the instrument and the spacecraft at the time of acquisi-
tion. In the case of images, WITS groups a set of images,
their metadata, and any derived data products that are use-
ful to construct from the raw images together into an Image-
Content. The Imagecontent object follows the general WITS
design of Content in which it is constructed and marshaled
as an XML file that can at any time be unmarshaled into the
application and put to use. The Imagecontent contains the lo-
cations in the database of all image data (generally in the form
of files on a filesystem) and all known metadata about the in-
strument and spacecraft at the time of acquisition, as well as
derived data products from the original images. Examples of
derived data products are radiometrically calibrated images
and 3D terrain reconstructions from stereo image pairs.

Raw spacecraft telemetry itself is compressed as much as pos-
sible to facilitate the low bandwidth available in actual remote
operations away from the Earth. Creating data products that
are human readable is therefore a practical necessity. Also,
the time constraints of the daily mission operations cycle for
missions to Mars such as Pathfinder and MER benefit from
organizing these data products into a systematically search-
able database.

The Parallel Telemetry Processor (PTeP) is used to create and
maintain the WITS database. There are two distinct steps:
creating the files in the database and cataloging the files.
PTeP is used to create the files and a separate part of PTeP,
the DataStateManager (DSM), is used to catalog the files for
a specific mission. PTeP is used to create the database files
for terrestrial rover applications, but other tools are used for

7

this function in flight missions. The DSM is used for both
terrestrial applications and flight missions.

As WITS has a generalized design that enables it to operate
in a mission-independent fashion on the whole but to employ
mission-dependent code where needed, so does PTeP have a
core processing component which performs the task of read-
ing raw downlink data, passing it through a sequence of pro-
cessing stages, and organizing the resulting products into a
database. The sequence of processing stages may be arbi-
trary in number and may produce any number of data prod-
ucts from the original input data. The database that PTeP
creates currently takes the form of a hierarchical filesystem
where each data product is stored as a separate file.

The database files are grouped into Imagecontent datasets
by the DataStateManager (DSM). The DSM is responsible
for creating Imagecontent XML files that define the datasets
that are viewable from WITS. It also produces Missionstate
XML files that encode the spacecraft and instrument metadata
that is associated with the images, and TableOKontents XML
files that allow WITS to present the datasets on the filesystem
as an optimized, queriable database. The TableOKontents in
the WITS Downlink Browser can be re-sorted very quickly to
present datasets in order of time, location, or instrument, or
combinations thereof.

The mission-dependent functionality of PTeP is needed if a
given mission has specifically defined formats for its data
products that must be parsed in a unique fashion. Missions
often inherit data product format conventions. For the FIDO
and CLARAtyRocky8 missions, the telemetry format is very
similar. However, some missions involve the use of other
software systems that perform part or all of the telemetry pro-
cessing. For instance, the MDSRocky7 mission takes in the
raw telemetry and stores the resulting products in a relational
database. However, it does not create all of the desired de-
rived data products for activity planning, such as range maps
for targeting and 3D terrain reconstruction for arm motion
planning and traverse analysis. For this mission, the PTeP
processor queries the ddtabase for a set of products over a
particular time interval. These results take the form of a bi-
nary query results file (BQR). The BQR file is then separated
into datasets, and PTeP derived related data products from the
original images and stores them all on a filesystem. Finally, it
runs the DSM on the files to create the XML objects for use
in WITS. In the case of MER, the mission elected to do all of
its downlink data processing with other existing tools, and so
only the DSM is needed to define the XML objects for use in
WITS.

Implementation of PTeP in the Java language enables com-
puter platform-independence with certain qualifications. Of-
ten, the stages of data processing for a given type of instru-
ment data are defined by a sequence of existing tools such as
a stereo correlation program that produces a range map, or
a terrain generation utility that produces triangulated terrain

maps. These utilities are called from the PTeP processing
control loop that is implemented in Java. It can be used on any
system that supports Java, provided that all of the tools that
are needed to create the full range of required data products
for operations planning are also available for that platform.

5. CONCLUSIONS
The architecture of the WITS system has been developed to
enable WITS to be used for multiple terrestrial rovers and
Mars lander and rover missions. For terrestrial rovers WITS,
along with PTeP, provides a complete ground data system.
For Mars lander and rover missions, WITS provides a combi-
nation of downlink data visualization, activity planning, and
command generation depending on the needs of the mission.
The code has been organized to maximize common function-
ality across multiple missions.

ACKNOWLEDGEMENTS
The research described in this paper was carried out at the
Jet Propulsion Laboratory, California Institute of Technology,
under a contract with the National Aeronautics and Space Ad-
ministration.

REFERENCES

151

r61

171

Paul G. Backes, Jeffrey S. Norris, Mark W. Powell,
Marsette A. Vona, Robert Steinke, and Justin Wick. The
science activity planner for the mars exploration rover
mission: Fido field test results. In Proceedings IEEE
Aerospace Conference, Big Sky, Montana, March 8-1 5
2003.
Jeffrey S. Norris, Paul G. Backes, and Eric T. Baum-
gartner. PTeP: The parallel telemetry processor. In Pro-
ceedings IEEE Aerospace Conference, Big Sky, Mon-
tana, March 2001.

Paul G. Backes, Kam S. Tso, Jeffrey S. Norris, Gre-
gory K. Tharp, Jeffrey T. Slostad, Robert G. Bonitz, and
Khaled S. Ali. Internet-based operations for the mars
polar lander mission. In Proceedings IEEE Interna-
tional Conference on Robotics and Automation, pages
2025-2032, San Francisco, California, April 2000.

Paul G. Backes, Kam S. Tso, and Gregory K. Tharp.
The web interface for telescience. Presence, 8(5):529-
537, October 1999.

Paul G. Backes, Jeffrey S. Noms, Mark Powell, Kam S.
Tso, Gregory K. Tharp, and P. Chris Leger. Sequence
planning for the fido mars rover prototype. In Proceed-
ings IEEE Aerospace Conference, Big Sky, Montana,
March 8-15 2003.
Jeffrey S. Norris andPaul G. Backes. Wedds: The WITS
encrypted data delivery system. In Proceedings IEEE
Aerospace Conference, Big Sky, Montana, March 2000.
D. Dvorak, R. Rasmussen, G. Reeves, and A. Sacks.

8

Software architecture themes in jpl’s mission data sys-
tem. In Proceedings IEEE Aerospace Conference, Big
Sky, Montana, March 2000.
D. Dvorak, R. Rasmussen, and T. Starbird. State knowl-
edge representation in the mission data system. In Pro-
ceedings IEEE Aerospace Conference, Big Sky, Mon-
tana, March 200 1.
LA. Nesnas, A. Wright, M. Bajracharya, R. Simmons,
and T. Estlin. Claraty and challenges of developing in-
teroperable robotic software. In IROS, Nevada, October
2003.
Mark W. Powell, Paul G. Backes, Marsette A. Vona, and
Jeffrey S. Noms. Visualization of coregistered imagery
for remote surface operations. In Proceedings IEEE
Aerospace Conference, Big Sky, Montana, March 8-15
2003.
Marsette A. Vona, 111, Paul G. Backes, Jeffrey S. Nor-
r is , and Mark W. Powell. Challenges in 3d visualiza-
tion for mars exploration rover mission science plan-
ning. In Proceedings IEEE Aerospace Conference, Big
S k y , Montana, March 8-15 2003.

Paul Backes is a technical group leader
in the Mobility Systems Concept De-
velopment section at the Jet Propulsion
Laboratory, Pasadena, CA, where he has
been since 1987. He received a BSME
degree from UC. Berkeley in 1982, and
MSMEin 1984andPh.D. in 1987inMe-
chanical Engineering from Purdue Uni-

versity. Dr. Backes received the 1993 NASA Exceptional En-
gineering Achievement Medal for his contributions to space
telerobotics (one of thirteen throughout NASA), 1993 Space
Station Award of Merit, Best Paper Award at the 1994 World
Automation Congress, 1995 JPL Technology and Applica-
tions Program Exceptional Service Award, 1998 JPL Award
for Excellence and 1998 Sole Runner-up NASA Software of
the Year Award. He has .served as an Associate Editor of the
IEEE Robotics and Automation Society Magazine.

Jefliey S. Norris is a computer scien-
tist and member of the technical staff of
the Mobility Systems Concept Develop-
ment section at the Jet Propulsion Labo-
ratory. At JPL, his work is focused in the
areas of distributed operations for Mars
rovers and landers, secure data distri-
bution, and science data visualization.

Currently, he is a software engineer on the Mars Exploration
Rover ground data systems and mission operation systems
teams. Jeff received his Bachelor S and Master’s degrees
in Electrical Engineering and Computer Science from MIT

While an undergraduate, he worked at the MIT Media Lab-
oratory on data visualization and media transport protocols.
He completed his Master’s thesis on face detection and recog-
nition at the MIT ArtiJiciul Intelligence Laboratory. He lives
with his wife, Kamala, in La Crescenta, California.

Mark K Powell has been a mem-
ber of the technical staf in the Mobil-
ity Systems Concept Development sec-
tion at the Jet Propulsion Laboratory,
Pasadena, CA, since 2001. He received
his B.S.C.S. in 1992, M.S.C.S in 1997,
and Ph.D. in Computer Science and En-
gineering in 2000 from the University of

South Florida, Tampa. His dissertation work was in the area
of advunced illumination modeling, color and range image
processing applied to robotics and medical imaging. At JPL
his area of focus is science data visualization and science
planning for telerobotics. He is currently serving as a so$-
ware and systems engineer contributing to the development
andoperation of science planningsoftware for the 2003 Mars
Exploration Rover mission. He, his wife Nina, and daughters
Gwendolyn and Jacquelyn live in Tujunga, CA.

a, III is a computer
scientist, software engineer; and elec-
tromechanical hardware developer: He
is a member of the technical staff of the
Mobility Systems Concept Development
Section at the Jet Propulsion Labora-
tory. At JPL. his work is currenth fo-
cused in the areas of high-performance

interactive 3 0 data visualization for planetary exploration,
user-interface design for science data analysis software, and
Java software architecture for large, resource-intensive ap-
plications. Marsette received a B.A. in 1999 from Dart-
mouth College in Computer Science and Engineering, where
he developed new types of hardware and algorithms for
self-reconzgurable modular robots. He completed his M.S.
in 200I at MIT’s Precision Motion Control lab, where he
developed a high-resolution interferometric metrology sys-
tem for a new type of robotic grinding machine. Marsette
was awarded the Computing Research Association Outstand-
ing Undergraduate Award in 1999 for his research in Self-
Reconzgurable Robotics.

9

