
Maximum Likelihood Decoding Analysis of 
Accumulate-Repeat-Accumulate Codes 

Aliazam Abbasfart, Dariush Divsalar* and Kung Yaot 
+Dept. of EE, UCLA 

*Jet Propulsion Laboratory' 

ABSTRACT 

Repeat-Accumulate (RA) codes are the simplest turbo-like codes that achieve good performance. 
However, they cannot compete with Turbo codes or low-density parity-check codes (LDPC) as far as 
performance is concerned. The Accumulate-Repeat-Accumulate (ARA) codes are obtained by adding 
a pre-coder in front of RA codes. These codes not only are very simple, but also achieve excellent 
performance. In this paper, the performance of these codes with (ML) decoding are analyzed and 
compared to random codes by very tight bounds. Some simple codes are shown that perform very 
close to Shannon limit with maximum likelihood decoding. 

1 Introduction 
The advent of Turbo codes; introduced in [ 13; has started a big movement towards the invention of a 

myriad of new code structures. The basic properties of these codes are the ability of iterative decoding and 
using pseudorandom interleavers. A pretty wide class of code structures called Turbo-like codes was 
introduced in [2]. Repeat-Accumulate codes (RA) are perhaps the simplest codes among this class. 
Simplicity of these codes lends itself to a more comprehensive analysis of their performance. Divsalar et al. 
have shown the performance of these codes with ML decoding and proven that they can achieve near 
Shannon-limit performance [2]. Moreover, they have proven that it achieves the Shannon-limit when rate 
goes to zero. 

Irregular Repeat-Accumulate (IRA) codes could achieve much better performance, which was shown 
by Jin [3]. Jin presented a method for designing very good IRA codes for binary erasure and additive white 
Gaussian channels. He showed that they outperform Turbo codes for codes with very large block sizes. 
In this paper first we analyze the performance of RA codes with regular puncturing. We show that with 
puncturing we can construct better codes as far as the performance is concerned. 

Since there is no practical ML decoding algorithm available for block codes with large block size, we 
use the performance bounds to obtain some insight on codes' behavior. In [4] Divsalar provides a tight 
upper bound on frame (word) error rate (FER) and bit error rate (BER) for a (n, k) linear block code 
decoded by Maximum Likelihood criterion over an additive white Gaussian noise (AWGN) channel. It also 
provides a minimum Eb/No threshold with closed form expression. We use this bound throughout the 
paper. 

2 RA codes with puncturing 
Repeat-Accumulate codes are the simplest codes among Turbo-like codes, which make them very 

attractive for analysis. The general block diagram of this code is drawn in Fig. 1. An information block of 
length N is repeated q times and interleaved to make a block of size qN, and then followed by an 
accumulator. 

ACC U 

N 
Fig. 1 : Repeat-Accumulator code block diagram 

1 This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a 
contract with NASA. 



We use the concept of uniform interleaver [5] to compute the overall 
(IOWE). Therefore, we need to compute the IOWE of both repetition 
repetition code it is simply the following: 

input-output weight enumerator 
code and the accumulator. For 

; otherwise 10 

The IOWE of the accumulator is: 

N - d  d-1  
= (  p1)( p / 2 , - 1 )  

To compute the IOWE of the RA codes with puncturing we use the equivalent encoder depicted in Fig. 2 
instead of the accumulator with puncturing. Puncturing uses a periodic pattem 00 ... OX with period p, 
where zeros indicate the puncturing positions. 

Fig. 2: Accumulator with puncturing and its equivalent graph for p=3. 

As we see the equivalent code is a concatenated code of a regular check code and an accumulator, which is 
shown in Fig. 3. 

Check(p) I-kH Acc 
N 

Fig 3. Block diagram of accumulator with puncturing 

Since the check code is regular and memoryless, the presence of any interleaver between two codes does 
not change the IOWE of the overall code. In order to compute the IOWE for this code we insert a uniform 
interleaver between two codes. 
The next step is to compute the IOWE of the check code. The IOWE can be expressed in a simple closed 
form formula if we use the two dimensional Z-transform. The inverse Z-transform results in ACw,+ We start 
with N=l, i.e. we have only one parity-check. We have 

AC(W,D) = Ep(W) + O,(W)D 

Where Ep =Even[ (l+W),] and 0, = Odd[(l+W)p]. 
Since there are N independent check nodes in the code the IOWE can be written in Z-transform as: 

Ac(W,D) = (Ep(W) + O,(W)D)N = l( ;)Ep (W)N-dOp (WYDd 

The IOWE is obtained by taking the inverse Z-transform. The closed form expression for Aw,d for 
arbitrary p is very complicated. Instead we derive the IOWE for p=2,3,and 4, which are practically more 
useful. 



Case p = 2 
Using the general formula in Z-transform we have: 

A“(~)(w,D) = ( i+w2 + W D ) ~  

It can be expanded as following: 

t( !)(I + W2)N-d(2W)dDd = $( !)[ Z( N;d)w2j(2w)d]Dd 

Therefore the IOWE can be expressed as 

0 ; otherwise I 
Case p = 3 

Starting from general formula in Z-transform we have: 

AH3)(W,D) = (1+3W2 + (3W+W3)D)N 

It can be expanded as following 

2( y)(lt3w2)”-”(3w + W3IdDd = 2 (!)[ [ x( “i d)3i W2i)[ x( q)3’ (W)2(d-i))Wd]Dd 

Therefore the IOWE is: 

; otherwise I o  
Case p = 4 

The code for this case can be viewed as a concatenated code as shown in Fig. 4. Because the check code is 
regular and memoryless, we can put any interleaver between the codes without changing the IOWE of the 
overall code. 

Check(2) 

- - - Check(2) Check(2) 

Fig 4. Block diagram of check-4 code and its equivalents 

By using a uniform interleaver and the results found for case p=2 the IOWE can be written as: 



This method can be applied for any p that can be decomposed into two smaller numbers. 
Having computed the IOWE of the check code, we can use the uniform interleaver formula to compute the 
IOWE of the accumulator with puncturing. We have 

Eb/No threshold 

It should be noted that despite the fact that we use a uniform interleaver to obtain the IOWE, we come up 
with the exact IOWE for accumulator with puncturing. 
The next step is to find the IOWE of the RA code with puncturing, which is derived in case of a uniform 
interleaver after repetition as: 

RA(q=2) RAqunc(q=3,p=3) RAgunc(q=4,p=4) Random Code Shannon limit 

2.1 Performance of RA codes with regular puncturing 

Rate 1/2 [ 3.38 dB 1.46 dl3 

EZA codes are usually non-systematic codes, Le. the information block is not sent along with the output 
of the accumulator. However, the RA codes with puncturing should be systematic in order to be decodable 
by iterative decoding. 

Fig. 5 illustrates the normalized distance spectrum of some rate 1/2 codes for a block size of 4000. 
These codes are RA code (q=2), RA code with puncturing (q=3,p=3), (q=4,p=4), and random code. The 
thresholds of these codes for infinite block lengths using Divsalar's bound are compared in Table I. 
Discrepancy between Random code threshold and Shannon limit is due to the upper bound which is slightly 
loose for rate 1/2. 

0.85 dE3 0.297 dB 0.187 dE3 

-0 I 2 

Fig. 5: Normalized distance spectrum of RA codes with puncturing 



Therefore the IOWE of the overall code can be written as: 

3.1 Performance of ARA codes 
The Divsalar BER performance bound for ARA(3,3) and ARA(4,4) for different Ms are compared to 

that of random code for the same block size (4000) in Fig. 8. It is observed that the more number of bits 
accumulates in the precoder, the lower the code threshold becomes. However, the improvement stops at 
certain point, which is M= 115 N for ARA(3,3) and M= 215 N for ARA(4,4). It is obvious that when M=N 
the codes turn into RA with puncturing. It is very interesting that the performance of the ARA(4,4) 
approaches very closely to that of random codes for the same block size in low EbNo region. 

ARA(3 3) ML pmfommcs Dwd 
Block dze -e 

ARAl4 4) ML dormanca b o I M  
lo" Id 

10' 10, 

102 10' 

10' 10, 

104 10. 
a 

10' $ rol 
Y 

10= 10' 

10' 10' 

101 104 

1 0 s  10) 

10,' 
""0 0 2  0 4  0 6  0 8  1 1 2  1 4  1 6  1 8  2 0 4  0 6  0 8  1 1 2  ( 1  1 6  1 8  2 2 2  2 4  

" 0  Ebmo 

Fig. 7: BER bounds for ARA(3,3) and ARA(4,4) codes 



It is very instructive to observe the distance spectrum of these codes (For optimum M). As we see in Fig. 8 
the only difference between the distance spectrum of these codes and a random code is in the low-distance 
region, which causes the error floor. 

Eb/No threshold 
Rate 1f2 

Normallzed Dllance Spectnm 
Block sua = 40W 0.4 I 

ARAqunc(q=3,p=3) ARAqunc(q=4,p=4) Random Code Shannon 
0.509 dB 0.299 dE3 0.297 dJ3 0.187 dB 

I 
0 1000 2000 MW 4W0 5000 6000 7000 SOW 

-04 l  

DiSla”Ce 

Fig. 8: Normalized distance spectrum of A M  codes with puncturing 

4 References 
[ l ]  C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit error correcting coding and 

decoding: turbo codes,” Proc. 1993 IEEE International Conf. On Communications, Geneva, 
Switzerland, May 1993, pp. 1064-1 070. 

[2] D. Divsalar, H. Jin, and R. J. McEliece, “Coding theorems for Turbo-like Codes,” Proc. 36fh Allerton 
Con6 On Communication, Control and Computing, Sept. 1998, pp. 201-210. 

[3] €1. Jin, Analysis and Design of Turbo-like Codes. Ph.D. Thesis, California Institute of Technology, 
Pasadena, 200 1. 

[4] D. Divsalar, “A Simple Tight Bound on Error Probability of Block Codes with Application to Turbo 
Codes,” JPL TMO Progress Report 42-139, Nov. 1999, pp.1-35. 
(http://tmo .jpl.nasa.gov/tmo/progress-report/42- 139/title.htm) 

[ 5 ]  S.  Bennedetto and G. Montorsi, “Unveiling Turbo Codes: Some results on parallel concatenated 
codes,” IEEE Trans. On Information Theory, vol. 42, no. 2, March 1996, pp. 409-428. 

http://tmo



