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Abstract 
In recent years, there have been signgcant strides in in- 
creasing quality of range f m m  stereo using global tech- 
niques such as energy minimization. These methods can- 
not yet achieve real-time performance. However, the need 
to impmve range quality for real-time applications persists. 
AI1 real-time stereo implementations reb  on a simple cor- 
relation step which employs some local similarity metric 
between the left and right image. Typically, the correla- 
tion takes place on an image pair modified in some way to 
compensate for photometric variations between the left and 
right cameras. Improvements and modifications to such al- 
gorithms tend to fall into one of two broad categories: those 
which address the correlation step itself(e.g., shiftable win- 
dows, adaptive windows) and those which address the pre- 
processing of input imagery (e.g. band-passfiltering, Rank, 
Census). Our eforts lie in the latter area. We present in 
this paper a modiJication of the standard band-passfilter- 
ing technique used by many SSD- and SAD-based corre- 
lation algorithms. By using the bilateral filter of Tomasi 
and Manduchi [lJt we minimize blurring at the filtering 
stage. We show that in conjunction with SAD correlation, 
our new method improves stereo quality at range disconti- 
nuities while maintaining real-time performance. 

1. Introduction 
Range from stereo is an area of ongoing interest and activity 
in computer vision. It spans applications from autonomous 
navigation and robotics to medical imaging and visualiza- 
tion for virtual and augmented environments. It also un- 
derlies many research areas such as large-baseline, omni- 
directional and multi-view stereo. For each case we must 
select from a large ensemble of stereo algorithms the one 
which best balances the accuracy and fidelity of the range 
estimate against its computational cost. 

In many areas such as medical imaging or generation 
of digital elevation models (DEMs), there is a need for the 
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highest quality range possible; runtime is secondary or in- 
consequential. Stereo algorithms with these goals tend to 
favor optimization schemes that propagate global informa- 
tion to refine range estimates which cannot be estimated ro- 
bustly from local information. Examples include algorithms 
based on graph cuts [2] and dynamic programming [3]. 

On the other hand, applications such as perception for 
autonomous navigation (e.g., robotics, automotive industry) 
and virtual reality require fast updates of the range estimate. 
These applications require algorithms with low run-times. 
They cannot afford the expense of a global optimization and 
must fall back instead on the best possible analysis of local 
information. 

The key advantage of local approaches is speed and suit- 
ability for hardware implementation. Global optimization 
algorithms commonly require 2 to 3 orders of magnitude 
more time than even the software versions of the local meth- 
ods [4]. Our own SAD implementation runs at 16 fps on a 
Pentium IV 2 GHz processor for images of size 320 x 240 
pixels. In general, if such an algorithm runs in the order of 
tenths of seconds in software implementations, it can com- 
fortably reach video rates using DSP and FPGA implemen- 
tations [5, 61. At the moment, there is no technique for 
achieving simultaneously the high quality range obtained 
from global optimization with the fast run-times of local 
schemes. 

This local analysis typically takes the form of correla- 
tion based matching of blocks between the left and right 
image. The two flavors of correlator generally employed 
are SSD/SAD[7] and normalized cross correlation[8]. In 
the former, the sum of squared or absolute differences' of 
image intensities between local windows is computed, and 
the lowest such score corresponds to a match. In the lat- 
ter, the cross correlation between the windows is highest at 
a match. In general, SAD is easier to compute and is less 
sensitive to outliers than both SSD and cross conelation.[9] 
We validate this in Section 4 by showing that normalized 
cross correlation produces weaker matches than SAD. 

All such local techniques must account in some way for 

'In the case of the census algorithm, it is the Hamming distance rather 
than difference in intensities that is summed. 



photometric variation between cameras in the stereo rig. 
One method commonly employed with cross correlation is 
image normalization, in which each image is modified to 
have local statistics with zero mean and standard deviation 
equal to one. For SSD/SAD, some form of band-pass filter- 
ing is typically used. This may take the form of a Laplacian 
of Gaussian convolution, a difference of Gaussians or a dif- 
ference of averaging filters. These amount to a spatial filter- 
ing in which texture information is preserved while low fre- 
quency background intensity and very high frequency noise 
are suppressed. In practice, only the high pass component 
which accounts for the photometric balance is needed. A 
fundamentally different approach is found in the Rank and 
Census algorithms [IO]. Here the original image is replaced 
by one which directly encodes local image statistics. In the 
Rank case, each pixel is replaced by the number of neigh- 
boring pixels of lower intensity. In the Census case, each 
pixel is replaced by a bit string encoding the intensity of all 
neighboring pixels relative to the central pixel. 

Real-time stereo can be improved by modifying the cor- 
relator, by modifying the pre-processing step to supply the 
correlator with better information, or by some combination 
of the two. Various adaptations of the basic correlation 
scheme have been proposed. These include shiftable [ 1 11, 
overlapping [ 121 and adaptive [ 131 windows. However, any 
of these techniques will benefit from a better pre-processing 
of the image. We show this explicitly in Section 4. 

We develop in this paper a technique for improved pre- 
filtering of imagery for SAD-based stereo. The technique 
consists of replacing the normal band-pass stage, which 
introduces an inherent image smoothing, with an adap- 
tive process based on the bilateral filter, first introduced by 
Tomasi and Manduchi. [ I ]  We show that the results are 
superior to band-pass filtering with SAD as well as to nor- 
malized cross correlation. We do not compare directly to 
Rank or Census, but these are known to suffer from the 
same problems at discontinuities as SSD/SAD and normal- 
ized cross correlation. [6] Furthermore, in our experience 
rank suffers from low information content relative to the 
other algorithms and performs poorly on fine structures. A 
fair comparison with Census would require computation on 
imagery with bit-depth equal to the size of a filter window. 
While this is ideal for hardware implementations, it is less 
suitable for our software based tests. 

In Sec. 2 we discuss how the smoothing effect of the 
standard SAD pre-filter is partially responsible for the low 
quality at range discontinuities. In Sec. 3 we provide the 
necessary background on the bilateral filter and describe our 
adaptations for its use in real-time stereo. We also show 
explicitly the effect of different pre-filtering schemes on a 
synthetic image pair. In Sec. 4 we provide experimental 
results with real data. Finally, we draw our conclusions in 
Sec. 5 .  

2. Standard SSD/SAD Pre-Processing 
Any stereo algorithm must compensate for photometric 
variations between the cameras of the stereo rig. The usual 
approach for SSD/SAD algorithms is to apply a LapLacian 
of Gaussian filter, which suppresses high frequency noise 
(intrinsic Gaussian smoothing) while simultaneously nor- 
malizing the intensity information and preserving texture 
information. This can be well approximated by a Difference 
of Gaussians (DOG) [ 141 in which the original intensity im- 
age Z is replaced by 1‘, the difference of its convolution with 
a large and small Gaussian kemel, i.e. 

In effect, the small Gaussian serves as a low pass filter and 
the differencing serves as a high pass filter. For imagery 
of good quality, the noise suppression provided by the low 
pass filter is generally unnecessary. Thus, we only require a 
high-pass filter, which can be achieved by background sub- 
traction, i.e., 

I’ = I - I * G(nlarge) (1) 

We have found the difference in stereo quality between 
background subtraction, an averaging bandpass filter, and 
convolution with a Laplacian of Gaussian to be negligible. 
In the remainder of this paper, we will use background sub- 
traction as the basis for comparison with our new approach. 

Regardless of the variant used, any of the above methods 
introduces a blurring across image discontinuities. The ef- 
fect is a ringing around foreground objects which results in 
a weakening of correlation match and a bleeding of range 
across the discontinuity. We demonstrate this in Fig. 1 us- 
ing a 15x15 kernel for background subtraction.’ Note the 
ringing or halo effect near the trees. This does not corre- 
spond to any real image content and is simply a side effect 
of the background subtraction. However, it does result in 
mis-estimation of disparity near the trees. A pre-processing 
step that does not blur across range discontinuities is an ob- 
vious step towards improved stereo. However, until recently 
there has been no low-cost mechanism for smoothing in 
homogeneous image regions while sharply preserving, dis- 
continuities. Complex schemes to extract this information 
would conflict with the real-time requirement. In the next 
section, we show that the bilateral filter solves this problem 
without incurring high computational costs. 

Note that correlation itself introduces an additional error 
at range discontinuities. Since the correlation window has 
non-zero extent, it will span objects at two different depths 
if they are adjacent in the image. The result is an averaging 
of correlation scores across boundaries. Larger correlation 

*This is a kernel size we frequently use for real applications and is not 
intended solely to highlight the ringing phenomenon. 
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Figure 1: a) Image of outdoor scene. b) Averaging with 15x15 fi Iter. c) Background subtracted image. Note the ringing artifact around 
the trees. 

windows result in greater density in the range image be- 
cause they provide a larger support for the correlation func- 
tion. However, this increased density is at the expense of 
accuracy, especially at range discontinuities. Since our goal 
is to analyze improvements in the pre-filtering stage, We 
wish to minimize this effect as much as possible and, there- 
fore, restrict ourselves to 7x7 correlation windows. 

We now introduce the bilateral filter and show how it can 
be applied to stereo. 

scene as in Fig. 1, but now using a 15x15 bilateral filter 
with u,. = 5,ud = 10. Observe that tree edges are pre- 
served by the bilateral filter while homogeneous regions are 
blurred. In the background subtracted image, texture is ap- 
parent without the noticeable ringing of the standard back- 
ground subtraction. For stereo, the bilateral filter takes the 
place of Gaussian averaging in the background subtraction 
step. Thus, if the original intensity image is Z and its bi- 
laterally filtered version is B, we replace the image with I' 
subject to 

I ' = I - B  

The resulting process achieves the same normalization ef- 
fect as background subtraction in homogeneous areas, but 

We study the effect on stereo with a synthetic example 
which allows US to control ground truth and which is ex- 

on edges. In Fig. 3 we show the left image of a stereogram 

3 The bilateral filter and its applica- 
tion to stereo 

The bilateral filter[ 11 computes the weighted average ofthe minimizes the blurring artifact at discontinuities. 
pixels within a neighborhood with the weights depending 
on both the spatial and intensity difference between the ten- 

takes a signal f(z) and returns 
tra] pixel and its neighbors. Expressed formally, the filter plicitly designed to the of the new prefilter 

For the case of images, f(z) is the intensity at pixel 2, u d  

is the standard deviation of the spatial component of the 
blurring function and ur is the standard deviation of the in- 
tensity component. 

The bilateral filter can be used as an edge-preserving 
smoother, removing high-frequency components of an im- 
age without blurring its edges. We can control the the spa- 
tial support of the filter, and thus the level of blurring, by 
varying u d .  By varying u,., we can adapt the sensitiv- 
ity of the filter to changes in image intensity. In Fig. 2 
below, we show the same greyscale image of an outdoor 
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Figure 3: Left image of stereogram of pillar in front of back- 
ground plane. 

consisting of uniform random noise. The image is of an 
11 pixel wide column in front of a background plane. The 
background has a disparity of 1 pixel from left to right im- 
age and the column has a disparity of 10 pixels. The column 
is on average brighter than the background. We compute 
stereo using background subtraction and bilateral filtering, 
both with 15x 15 kernels. In the case of the bilateral filter, 



Figure 2: a) Image of outdoor scene. b) Result of applying 15x15 b) Result of applying 15x15 bilateral fi Iter with a, = 5 and 0, = 10. 
Note that homogeneous areas such as the ground are blurred, but fi ne detail and edges are preserved. c) Bilateral background subtraction. 
Texture is evident, but ringing is less prominent. 

we use g d  = 5, and gr is computed by a heuristic described 
below. For comparison, we also compute stereo using nor- 
malized cross correlation. In all cases, a 7x7 window is used 
for correlation, and left-right line of sight checking is en- 
abled. In Fig. 4, we show the result of averaging computed 
disparities over all rows (recall that they should be equal) 

Figure 4: Stereo results averaged over all rows of Fig. 3. Dis- 
played are ground truth(red), background subtraction(green), bi- 
lateral fi Itering(b1ue) and normalized cross correlation(b1ack). Ob- 
serve that bilateral filtering and cross correlation are closer to 
ground truth near the column edges. 

using the three algorithms just mentioned. We also show 
ground truth. Observe that both bilateral pre-filtering with 
SAD and normalized cross correlation are less susceptible 
to edge effects than the standard background subtraction. 
We will show in Section 4 that the bilateral approach also 
preserves the range density typical of SAD and performs 
better than cross correlation on homogeneous regions. 

We now address the crucial issue of runtime. The bilat- 
eral filter is not a filter in the traditional sense because the 
kemel actually depends on the function f in Eqn. 2.  In par- 
ticular, this complicates computation because the bilateral 
filtering process is not separable. However, we have found 
that approximating with a separable filter is adequate. In 
Fig. 5, we show the result of applying a separable approxi- 
mations consisting of a pair of 1 d bilateral filters, one hori- 
zontal and one vertical, to the image in 2.  Observe that the 

Figure 5 :  “Separable” bilateral fi Iter consisting of two passes of 
Id bilateral fi Iter (vertical and horizontal) applied to image in Fig. 
2. Observe that the result is very similar to the 2d fi Iter. 

results are quite similar to the true 2d filter. With this ”sep- 
arable” version of the filter, our real-time system runs at 10 
f p s  on 320x240 imagery using a 2 GHz P4 processor. We 
anticipate that further optimization is possible. 

Selection of ud, the standard deviation of the spatial dis- 
tribution, is dictated in part by the correlation window size 
and is largely independent of image content. However, gT 

necessarily depends on the image. We offer a simple heuris- 
tic. For each pixel, we compute local image variance. We 
then take the mode of this variance over the whole image as 
a reasonable candidate for 0;. 

4. Experimental results 
We show for real stereo imagery that the use of bilateral fil- 
tering with SAD has advantages over both background sub- 
traction with SAD and normalized cross correlation3. We 
will also examine the effect of varying the filter size and 
show that bilateral filtering is consistently better than back- 
ground subtraction. In all cases, we use 1x1 correlation win- 

’Note that for normalized cross correlation we adapt local image statis- 
tics (within a correlation window) to have zero mean and standard devia- 
tion equal to one. This corresponds to metric C, in [8]. Furthermore, the 
image is not pre-fi ltered in any way. 
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dows with left-right line of sight checking enabled and set 
od in the bilateral filter to the kemel size. We use our 
separable approximation of the bilateral filter throughout. 

In Fig. 6 we see the left image of a stereo pair as well as 
ground truth disparity. This image is taken from the recent 
work of Scharstein and Szeliski[l5] and used with permis- 
sion. We begin with a comparison of stereo using back- 

Bilat. 80.4 [ 72.4 
Cross Corr. (I 73.7 1 66.2 

Figure 8: Absolute difference of disparity images from standard 
and bilaterally filtered SAD stereo. The colorbar on the right 
(ranging from 0 to 55) indicates the magnitude of the errors. 

8.0 
7.5 

Figure 6: Left image of cones with ground truth disparity. 

ground subtraction, bilateral filtering and normalized cross 
correlation using 1 1 x 1 1 kemels for the pre-filters. For the 
bilateral filter, we use or = 50. Note that the filter size is 
irrelevant for the cross correlation approach. The results in 
Fig. 7 show sharper definition near edges for both the bilat- 
eral and cross correlation approaches. However, the latter is 
missing more valid range in homogeneous areas. Separate 
diagnostic tools indicate that most of this loss is due to fail- 
ure of the left-right check, most likely arising from shallow 
extrema in the correlation scores. We make these obser- 
vations more concrete in Table 1. We accept as accurate 
those estimates which are within 0.5 pixel of the subpixel 
ground truth shown in Fig. 6. In Fig. 8 we show that this 

/ I  %RangeDetected I %Correct I %Incorrect 1 
I Bck. Sub. 11 78.3 I 68.5 I 9.8 

is independent of kemel size. In Fig. 9 we show both filters 
for kemel sizes of 7x7, 11x1 1 and 15x15. In each case, the 
bilateral filter (second row) produces better stereo at edges 
and on fine structures. We turn now to the real scene in 
Fig. 1 taken from a vehicle during an autonomous naviga- 
tion trial. Unlike the artificial image of the cones, this im- 
age presents a scenario more likely to be encountered by a 
system for which real-time stereo is crucial. The near trees 
present a challenge to conventional SAD stereo. Unlike the 
cone example, ground truth is not available. However, be- 
cause of the larger disparity differences involved and the 
sharper intensity variations between foreground and back- 
ground, the advantages of the bilateral filter are, neverthe- 
less, apparent. We show in Fig. 10 that bilateral filtering 
and normalized cross correlation reproduce the trees more 
accurately, but as with the cone example, cross correlation 
suffers from greater loss of texture in uniform regions. We 
use 15x 15 kernels for the relevant filters to match our real- 
time system in this scenario. The bilateral filter and espe- 
cially the normalized cross correlation lose some disparity 
data on the ground and in the background trees. In both 
cases, this is due to a weakening of the correlation match 
with respect to standard SAD. We illustrate this in Fig. I O  
by showing histograms of the absolute subpixel curvature 
for each algorithm. While raw correlation scores for the 
different algorithms are not comparable, the curvatures of 
quadratic fits to the correlation scores are. They represent 
the sharpness of the fit and can be used directly as a confi- 
dence measure on correlation. We see that of the three vari- 
ants pictured, normalized cross correlation has the weakest 
correlation peaks, and SAD with background subtraction 
the strongest. The bilateral filter represents a trade-off. It 
reproduces the near trees at least as faithfully as normalized 
cross correlation while minimizing the loss of texture 011 the 
ground. Note that the result pictured is typical of the whole 
sequence from which the current image is taken. Finally, 
we prove the claim made in the introduction that bilateral 
pre-processing can benefit not only simple SAD correlation 
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Figure 7: Stereo results on Fig. 6 using a) 11x1 1 background subtraction. b) 11x1 1 bilateral fi Iter c) normalized cross correlation. Edges 
are more faithfully reproduced using both bilateral fi ltering and normalized cross correlation. However, there is greater loss of valid range 
using cross correlation. 

Figure 9: Stereo results on Fig. 6 using background subtraction and a) 7x7, b) 11x1 1 and c) 15x15 kernels. Same image and stereo 
parameters using bilateral fi ltering with e) 7x7, e) 11x1 1 and e) 15x15 fi Iter. In each case, the bilateral results are better near discontinuities 
and for fi ne objects. 

but modified correlators as well. We illustrate this fact by 
using shiftable windows with a 3 pixel horizontal shift in 
conjunction with both background subtraction and bilateral 
filtering. The results are pictured in Fig. 11. As with the 
standard SAD correlator, the shiftable window correlator 
also shows better definition of the near trees using bilateral 
filtering. 

5. Summary and Conclusions 
Real-time stereo algorithms typically rely on a simple cor- 
relation mechanism applied to imagery processed in some 
way to account for photometric variations between cameras. 
Improvements to such algorithms address either the corre- 
lation step or, as with our work, the preprocessing step. As 
we have shown, those modifications which target the latter 

are likely to also benefit the former. We have presented in 
this paper an improvement to the filtering step employed by 
most SAD based correlation algorithms which replaces the 
conventional bandpass filters with background subtraction 
of a bilaterally filtered image. The result suppresses pho- 
tometric variation between cameras, much like other band- 
pass filters, while maintaining much greater fidelity of' data 
at discontinuities in intensity, hence in most discontinuites 
in range. This produces better stereo at these range discon- 
tinuities. We have also shown that our solution has some 
advantages over the alternative cross correlation approach 
in that it has less loss of range in uniform regions. Further- 
more, our method does not sacrifice the real-time perfor- 
mance which drives current correlation based algorithms. 
We are currently working to compensate for the loss of data 
in the background seen in Fig. 10. We believe that a hybrid 
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Figure IO: Stereo result on scene in a) using b) background subtraction c) bilateral fi ltering and d) normalized cross correlation. Tree 
edges are more faithfully reproduced using both bilateral fi ltering and normalized cross correlation. However, there is greater loss of 
valid range, particularly on the ground, using cross correlation. This is explained by examining the curvatures of the subpixel f i t .  We see 
histograms of these for e) background subtraction f) bilateral fi ltering and g) normalized cross correlation. Observe that the mode is highest 
for e) and lowest for 8). 

approach, using bilateral subtraction only in certain regions 
dictated by image statistics and normal background subtrac- 
tion elsewhere, will solve this problem. 
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