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Introduction 
The earth orientation parameters including the length-of-day vari- 

ation (LOD) and polar motion (PM) are routinely estimated by mea- 

surements from various techniques such as the very long baseline 

interferometer (VLBI), satellite laser ranging (SLR) , and global PO- 

sitioning system (GPS). Objective combination of multiple data sets, 

such as weighted least-squares or Bayesian statistical (Kalman filter) 

estimation, requires some quantification of the relative accuracy of 

these measurements. Statistical sampling of measurement error vari- 

ances and covariances is usually dependent on some assumed values 

for the ground-truth earth orientation parameters. Measurement er- 

ror is difficult to evaluate because the true signal (“ground-truth”) 

values to which the error is referenced are usually not known exactly. 

A technique that does not require the ground-truth values is thus de- 

sirable. When multiple independent measurements are available for 

the same signal, the error statistics can be determined algebraically 

under certain assumptions. The Three- Corner Hut (TCH) method 

is such an algebraic technique, applicable when there are three or 

more independent sets of measurements. 



Measurement sets 

data set 

Jet Propulsion Lab, Quick-look GPS 

International GPS Service, Rapid 

International GPS Service, Final 

Joint Center Earth System Technology, SLR 

International VLBl Service, combined multib seli 

Goddard Space Flight Center, multibaseline VLB 

Goddard Space Flight Center, intensive VLBlr 

I Goddard Space Flight Center, multibaseline VLBl LODrs 

International Earth Rotation Service, C 04 

Jet Propulsion Lab, SPACE 2002 

- average time interval. * 

t - LOD obtained by differentiation of UT1 values. 

la bel 

GPS.JQ 

GPS.IR 

GPS.IF 

SLR 

VLBI.IM 

VLBLGM 

VLBl .G I 

VLBI.GL 

C04 

SPACE 

sampling 

noon (UTC) 

noon 

noon 

noon 

every 2.9 days*t 

every 2.7 days*t 

every 1.8 days*+ 

every 2.7 days* 

midnight (UTC) 

noon & midnight 

T - PM values not available/used. 

5 - This data set is a differentiated version of VLBLGM. 



Method 
Let the measured values be y i ,  1 5 i 5 N ,  where the index i specifies 

the measurement type (a particular data set). We consider the standard, 

additive-noise model for measurement process as 

where x is the true signal and wi is a zero-mean white noise process repre- 

senting the measurement error. This model is routinely used in high-level 

processing (e.g., Kalman filtering and least-squares) of the measurements. 

The difference among the measurements yi eliminates the common signal x; 

we define 

for i < j and refer to zij as the difference process. The correlation among the 

difference processes can constrain the statistics of the white noise processes 

as 

where Rij = ( wiwj ), i 5 j, are the noise covariances and the angular bracket 

denotes time average. 

We wish to  compute the covariances Rij from the empirical correlations 

( zijzka ) evaluated from the measurements. Given N measurements, the 

number of distinct covariances Rij is (N + l)N/2. Since only N - 1 linearly 

independent differences zij are available, the number of effective constraint 

equations (3) is only N ( N  - 1)/2,  which equals to  the number of distinct 

auto- and cross-correlations among the N - 1 differences. The unknowns 



out-number the constraints by N .  A key feature of the TCH technique is the 

assumption that N (or more) of the cross-correlations are zero: 

Rij = 0 (4) 

for some i and j where i # j .  For example, in a classic application of the 

Three-Corner Hat technique, there are exactly three statistically-independent 

measurement sets, i.e., N = 3 and R12 = R13 = R23 = 0. The three variances 

Rii, 1 5 i 5 3, are then uniquely constrained by (3). 

Assumption of independence 

There can be some apparent correlation among the noise processes even if the 

measurements are physically unrelated. The TCH technique can fail when 

the assumption of independence among the measurements is not satisfied 

empirically. For example, in the classic case of N = 3 the variances are 

computed as 

where the signal indices i ,  j ,  IC are distinct (not equal to each other). The 

right hand side of ( 5 )  can conceivably become negative depending on em- 

pirical correlation among the measurements, demonstrating that the TCH 

method has no inherent algebraic guarantee for positivity of the variance val- 

ues. On the other hand, if the independence constraint (4) is correct, the 

last three terms of ( 5 )  would be equal to -( z2 ), and correct evaluation can 

be expected. Fidelity of the independence assumption (4) is thus important 

to success of the TCH method. Figure 1 displays a plot of the errors in the 

TCH variance evaluation against the actual correlation present in the noise 



processes, which have been numerically generated using zero-mean Gaussian 

distributions. The error increases almost linearly with the correlation coef- 

ficient. When the correlation is zero as assumed in (4), the average error is 

found to be approximately 1%. 

Choice of independent pairs 

For N > 3, at least N cross-variances Rij must be chosen among the N ( N  - 

1)/2 candidates for application of the independence constraint (4). These 

choices are usually made based on the physical scenarios. For example, the 

errors in GPS and SLR can be assumed uncorrelated on the ground that the 

instrumentation and principle of the two measurements are unrelated. On 

the other hand, the errors in GPS-based data from different analysis centers 

should be assumed correlated as the same instrument is shared by the data 

sets. In addition, there are some algebraic considerations, one of which is as 

follows: 

Lemma 1 A necessary condition for  uniqueness of the TCH solution is  that 

every noise process must  be assumed uncorrelated to at least one other noise 

process. 

This condition is satisfied automatically when N is 3 or 4. Algebraic neces- 

sities such as this need to be matched with physical reasoning as an erro- 

neous assumption of independence can lead to failure of the TCH technique 

as demonstrated previously. For the main eight measurement sets, we as- 

sume that the noise processes are independent across the three instrumenta- 

tion groups of GPS, SLR, and VLBI, while non-zero correlations are allowed 

within each group (Figure 2). 



Result and Summarv 

The noise values for LOD are on the order of 10 to 100 micro- 

seconds, while the signal variability of LOD is approximately 

half to third of a milli-second. The noise values for the x and 

y components of PM (PM-X and PM-Y, respectively) have a 

range of 0.050 to 0.500 milli-arc-second (mas), while the signal 

variability of both components are on the order of 100 mas. 

The columns labeled ID and SA in Table 1 represent the evalu- 

ation errors due to “interpolation and differentiation” and “sta- 

tionarity assumption” , respectively. 

- The SA values are computed as the variability among the 

TCH evaluations when different time-segments of the data 

sets are used. The full data segment is divided uniformly 

into four subsegments, the TCH evaluations are performed 

on each subsegment, and then variability among the variance 

values is computed. The range of such time-variability is 

approximately 10 to 25% for both LOD and PM. 

- To evaluate ID, the SPACE LOD series, which is available 

at both noon and midnight, is appropriately subsampled, 

interpolated, and compared with the missed data. Numerical 



integration is also performed to simulate the UT1 data for 

VLBI. The average daily interpolation (noon to midnight or 

vise versa) is found negligible at 0.76 psec. 

The interpolation error is found much larger for the VLBI 

data sets, which have nominal data intervals of 2 to 3 days. 

Interpolation is performed with a smoothing B-spline scheme 

which allows analytic differentiation and yields more accu- 

rate results than linear interpolation. Interpolation of the 

UT1 values is found to introduce five to six times error (in 

magnitude) than the subsequent differentiation procedure. 

The TCH evaluations for the VLBI-based UT1 series have 

low signal-to-noise ratios in terms of ID error. 

The TCH computation has yielded a set of mostly-intuitive Val- 

ues for the LOD Lk PM measurement error variances (square- 

root variances). Still, our results are not a fair assessment of 

the uncertainty in the VLBI-based measurements, due to strong 

possibility of interpolation errors in the data. Availability of 

daily-sampled VLBI-based data sets could remedy this. 



Errors in variance evaluation 

correlation coefficient among data sets 

Figure 1. Percent errors in variances computed with the three-corner hat method, as a function 

of the correlation coefficient among the data sets. The solid line is the mean of 400 simulations, 

while the dashed lines are the corresponding single-standard-deviation envelops. 

data set 

GPS.JQ 

GPS.IR 

GPS.IF 

SLR 

VLBI.IM 

VLBI.GM 

VLBI.GI 

VLBI. GL 

LOD (psec) 

noon 

38.3 

19.1 

11.8 

132.9 

27.2 

26.2 

47.6 

53.3 

midnight 

38.1 

18.8 

11.4 

132.3 

26.9 

26.1 

50.7 

52.7 

ID 

524.5 

f22 .5  

f14 .4  

4130.9 

SA 

f 4 . 7  

f 5 . 7  

f 3 . 9  

f18 .5  

f 2 . 7  

f 3 . 5  

f13 .7  

f13.6 

PM-X 

0.301 

0.134 

0.080 

0.171 

0.127 

0.522 

PM 

SA 

f0 .041 

f0.034 

f0.025 

f0.018 

f0.009 

*0.217 

nas) 

PM-Y SA 

0.240 f0.039 

0.071 f0.021 

0.049 f0.028 

0.150 f0.026 

0.122 f0.027 

0.295 f0.145 
I 

Table 1. Square-root variances of the measurement errors, evaluated using the Three-Corner Hat 

method. Columns labeled ID and SA display estimates of  the uncertainty in the evaluation. The 

former ( ID)  is associated with numerical errors introduced by interpolation and differentiation, 

while the latter (SA)  is a measure of deviation from stationarity assumption. 



GPS-2 

GPS-3 

VLBI-2 

VLBI-3 

Figure 2. Application of independence constraints among the eight measurement data sets. A 

pair of data sets connected by a straight line is assumed to  be uncorrelated (with respect to  the 

noise processes) during TCH evaluation. 

LOD data set 

GPS. JQ 

GPS.IR 

GPS.IF 

SLR 

VLBI.IM 

VLBI.GM 

VLBI.GI 

GPS.IR 

+.24 

GPS.IF 

+.07 

+.24 

SLR 

+.02 

-.01 

-.07 

VLBI.IM 

- .01 

+.11 

+.17 

-.03 

VLBI.GM 

- .02 

-.07 

-.03 

+.02 

+.88 

VLBI.GI 
~ 

-.03 

- .05 

.oo 
+.01 

+.13 

+.12 

VLBI. GL 

- .02 

-.02 

+.04 

. 00 

+.35 

+.34 

+.07 

Table 2. Correlation coefhcients among the LOD data sets, evaluated with the Three-Corner 

Hat method. 



PM-X data set GPS.IR GPS.IF SLR VLBI.IM VLBI.GM 

GPS.JQ +.50 +.39 -.09 +.02 +.02 

GPS.IR +.67 +.12 +.05 - .05 

GPS.IF +.12 -.06 -.02 

SLR -.05 + . O l  

I VLBI.IM I I  I I I I +.27 I 

Table 3. Correlation coefficients among the PM-X data sets, evaluated with the Three-Corner 

Hat method. 

LOD (psec) PM (mas) 

data set noon midnight SA PM-X SA PM-Y SA 

C04 22.8 22.6 f 4 . 5  0.086 f0.013 0.093 f0.015 

SPACE 17.8 17.3 f 5 . 2  0.047 f0.017 0.066 f0.026 
L 

- .09 

GPS.IR -.07 

GPS.IF 

SLR 

VLBI.IM 

VLBI.GM 

+.09 

-.04 

-.17 

-.16 

+.25 

Table 4. Correlation coefficients among the PM-Y data sets, evaluated with the Three-Corner 

Hat method. 

Table 5 .  Same as Table 1, except square-root variances of the errors in the multi-measurement 

combination series are displayed. 




