
I Programming with Non-Heap Memory
in the Real Time Specification for Java

Daniel Dvorak, Ph.D.
Information Technologies and Software Systems Division
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

Daniel. Dvorak 8 jpl. nasa.gov

Background on real-time applications
Real-Time Specification for Java (RTSJ)
Effect of RTSJ on normal Java style
Scoped Memory Scratchpads
Ending thoughts

1

http://nasa.gov

Most real-time systems are a mixture of hard, soft, and non-real-time

No temporal predictability required

real-time

) - ~ - - Medium temporal predictability required t - G - 7
real-time

+--- High temporal predictability required

A single RTSJ-compliant VM supports all three kinds of activities

Control of a Mars rover involves:
coordinating 6 driving motors
and 2 steering motors
reading from a 3-axis accelerometer
and a 1 -axis gyroscope
taking pictures with 3 stereo cameras
controlling a camera mast
controlling the instrument arm

Rocky 7 rover in the JPL Mars Yard with camera mast raised

2

- - - _ I____ __I____ _I - -

a Java for Real-Time ??? OWSU 2003

Java Technology was not intended for real-time
systems because:

Requires run-time garbage collection

Supports threads, but no scheduling control

Synchronization delays unpredictable

Very coarse timer support

No event processing

LI No safe asynchronous transfer of control
I * I - _ - __ - I - ___ - - ~ I - - _- - - - --

lcr 29 2003 l)W,mk 3

Predictable Execution
;I “hold predictable execution as

first priority in all tradeoffs”

Backward Compatibility
i;) Existing Java programs run

on RTSJ implementations

J No new keywords or other
extensions to Java language

J Priorities considered harmful

a No Syntactic Extensions

4 Leading-Edge Scheduling

The Real-Time
Specifrcation

for Java.”

3

1 Real-time # “real fast”

Real-time (system or code): A system (or code) which requires
that computation have temporal correctness criteria in addition
to functional correctness criteria

Hard real-time: A real-time system which requires that the
temporal correctness criteria are always met (often, incorrectly
defined as ‘less than n time-units latency’)

Soft real-time: A real-time system which requires that the
temporal correctness criteria are almost always met (often,
incorrectly defined as ‘more than n time-units latency’)

,.~ .. l__-l- - ~

i

1 RTSJ Features WSLA 2003

Full Java capability
Threads (RealtimeThread, NoHeapRealtimeThread)
Asynchronous Event handling
High resolution time
Precise Timer support
Asynchronous Transfer of Control
Flexible memory management
LI Makes using Java heap optional

L] Can avoid interference from garbage collector

Raw memory access (e.g., memory-mapped I/O)

4

- Normal Java heap
- Accessible by all threads
- Subject to garbage collecting
- Prone to execution latencies due to GC

- Fixed size memory area that lives until end of app
- Accessible by all threads
- Immortal objects continue to exist exist even when

there are no references
- Never subject to garbage collecting

- Limited size, limited lifetime memory areas
- Scope emptied when all threads exit the area
- Requires designer to consider memory management
- Never subject to garbage collecting

RTSJ

RealtimeThread

&J

- Normal Java thread
- No scheduling control
- Cannot be asynchronously interrupted

- Temporal demands specified (deadline, period)
- Processor demands specified (CPU & memory costs)
- Can run as a periodic, aperiodic, or sporadic
- Can allow for asynchronous interrupts

- Cannot allocate or reference objects

- Can always execute in preference to GC
in heap memory

5

JPL

Use 'new' to allocate objects (in heap)

Freely pass references around

Let GC reclaim unused objects
3 Don't worry about memory management

RTSJ Changes to Style OOPSLA 203

81 Do worry about memory management
J NHRT cannot allocate or access heap objects

u java.lang.Thread cannot allocate Scoped Memory

J Must obey memory area assignment rules

objects

6

I

...............
1 /Memory Area Assignment Rules,,

t, inner scope;

means that object in X can NOT be assigned a reference to
an object in Y because Y can disappear before X

Legend

" -- - - --- - ---- ------_I I__
_ _ I__

IhOXLk 13 i t 29 2007

......
i
1 Real-Time Control Loop

measurements

I * Software

Hardware
I - - I - I - - I

from hardware to hardware
..... - .- .- -. -

l h < , C , l I-I OLT. 29, 2003

7

tate in a persistent manner
manage transient objects allocated during its execution

1~ How do you manage memory
in a way that ...
'2 supports hard real-time?
LI is natural for Java?
;I minimizes need for programmer

D is verifiable w.r.t. memory errors?
discipline?

Component enters a scoped memory area
Subsequent 'new's allocate from scoped, whether in
own code or inside called methods
Transient objects (for current cycle only) will
disappear upon scoped memory exit
Persistent data (across cycles) must be kept in a
private memory pool (requires copying)
Required programmer discipline:

LI Calling components must not hold references to returned
Called components must not hold references to arguments

objects

8

i ~ l Scoped Memory Scratchpad:
Supports natural new-based creation of objects

u Runs hard real-time components in Scoped Memory
u Scope emptying automatically discards transient data
3 Works with 3rd-party libraries that do new
J Framework software can shield application developers from

type of thread and type of memory area

Shared Memory Pool (an alternative):
Get unused objects from a pool in Immortal Memory, release
when no longer used (manual memory management)

3 Pass references from one component to another
o Avoids copying of data (more efficient)
o Vulnerable to memory leaks and double-usage

.. .II___._... . ~ ..._I_l____l..._l_.l.__.-l._.__._--. - . ~ I. .._
k t . 29 2003 II\YXalr 17

@ s RTSJ supports hard, soft, and non real-time
u

@ style and RTSJ’s rules

applications on a single VM having any GC . . .
i~ ... but users encounter a conflict between Java’s 00

s The design trade-space includes efficiency,
m

programmer discipline, verifiability, and style
The approach of “scoped memory scratchpads”
favors verifiability and style
Real-time garbage collectors can alleviate the
conflict for apps where the latency is acceptable
u But GC avoidance enables very predictable execution
J And that’s important in control systems

- - - -_ - _ _ - _ - _ _ _ I_ - - -
) I t 2‘) 2009 I) , < X l l 18

9

Jet Propulsion Laboratory
LI Tim Canham, Vanessa Carson, Dan Dvorak, Mark Indictor,

Kenny Meyer, Alex Murray, Kirk Reinholtz

10

