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Introduction 
MDS in I Minute 

0 The application domain of MDS is: 
mission information, control, and operations . . . 
of physical systems ... 
for unmanned space science missions 

Scope includes flight, ground, and simulation/test software 

Adopts a product line (multi-mission) approach that exploits 
commonalities across missions 

MDS has three aspects: 
An information and control system architecture 

9 A systems engineering methodology 
9 Reusable and adaptable framework software 
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What MDS Provides IMkloNIoIma 
swa- 

L--= 
Fanmu- 

System engineering methodology 
Structured process for disciplined 

Emphasizes model-based design for 

Makes interactions explicit, exposes 

ana I ys i s 

estimation and control 

com plexi ty 

Architectural patterns 
State architecture 
Component architecture 

Frameworks and adapter’s guides 
Reusable building blocks in object- 
oriented design 
Guides for how to adapt it for concrete 
tasks 
Examples of framework usage 

State and component 
architectures are pieces of the 

same design methodology 
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L--?- What MDS is for mJ 
RuonwDn 

Highly reusable core software for flight, ground, and test 
Synergistic systems & software engineering 

Reduced development time and cost 
Improved development processes 
Highly reliable operations 
Increased functionality 

f 
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Wd There Is a Big Gap Between ... w- 

L--- -- 
What Systems Engineers do: 

Define and analyze the capabilities a system must have 
Establish the decomposition of functionality 
Provide key algorithms for accomplishment of these functions 
Integrate, test, operate, and maintain a system 

And what Software Engineers do: 
Define the software architecture of a system 
Provide the tools and techniques for software development 
Design and build and test the software to provide the required 
functions 
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gas- cd Different Languages, 
L--?- Fan".- Different Methods 

Systems engineering is * Software engineering is 
outward looking inward looking 
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Mission scenarios 
F u n ct io na I decomposition 
System analysis 
Performance requirements 
Resource allocations 
Command and telemetry 
dictionaries 
Flight rules and 
co nst ra i n ts 
Control laws 
Failure modes analysis 
Fa u It protection 
Test p roced u res 

0 Languages, libraries, 
operating systems.. . 
Concurrent threads, 
processes, memory 
management.. . 
Real time execution 

0 Patterns, abstractions, 
general algorithms.. . 
Data representation, 
serialization.. . 
lnterprocess communication 
Deadlocks, access 
violations, exceptions.. . 

0.0 Different! 
MDS 10 
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A Taste of State Analysis Ild 
spa- 

a---hv 
u b n c k n r d -  -- 

Standard Questions : 

What do you want t o  achieve? 
Move rover to rock 

Common Framework 
Elements : 

4- 

Goal 

What's the state t o  be controlled? 
Ro vet- position relative to  rock State Variable 

I M  U, wheel rotations/ Measurements 
sun sensor, stereo camera i 

What evidence is there for  that state? 

What does the stereo camera measure? 
Distance to terrain features, 
Ibht level, camera power 
(ON/OFF), camera health 

How do you raise the light level? 

Where is sun relative t o  horizon? 
Waif until the sun is up 

... 

10/14/2003 

Measurement 
Model 

State Effects Model 

I 

Etc. 
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Common elements appear in.. 8 .  

State-Based Architecture --nd 
gplrldr*l*pbn 

L--?- -- 
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Common elements appear in.. .. 
State Architecture (the details) Rw 

--M..b* 
- m o l l -  
Wan" 

issuer 

generates 

controlled 
I..* device 

The color coding is meant to convey similarities, e.g., estimators and controllers are goal achievers, sensors and actuators 
are hardware adapters, measurements and commands are time-tagged items. 
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Software Built to Requirements IM-yld 
8pp- 

L--?- 
RML- 

Architecture designed for 
complex interactions 

emanded by "physics" 

Architecture 

Common Elements 3 
-1 F l  -1 
-1 F-J -1 
rLzq (ELFI F l  1-1 (1 F l  

L 
Systems and Software Engineering use 
same Language 

- No translation, consistent representation 
- Simplified inspection 
- Simplified implementation 
- Verifiable requirements 

I I - -  
C u  Standard Ubrary 

Reu rks 
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State is Central 
A system comprises project assets in the context 
of some external environment that influences them 
The function of mission software is to monitor and control a system 
to meet operators’ intents 
MDS manages all essential aspects of this function via state 

Knowledge of the system, including its environment, 
is represented over time in state variables 
The behavior of the system is represented 
by models of this state 
Interaction with the system is achieved 
via modeled relationshim between state 

and commands), as mediated 
by hardware proxies 
Information is reported, stored, and 
transported as histories of state, 
measurements, and commands 

and interface data (measurements 

A 
Operators’ intent, including flight rules 
and constraints, are expressed as goals 
on system states 

1011 412003 MDS 16 
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State Knowledge 
2zzz-7- FnmeucdM Everything You Need to Know 

Dynamics 

Environment 

Device status 

Parameters 

Vehicle position & attitude, gimbal angles, wheel rotation, ... 

Ephemeris, light level, atmospheric profiles, terrain, . . . 

Configuration, temperature, operating modes, failure modes, . . . 

- nesources 
A vower & energy, propellant, data sto 

Science data, measurement sets, . . . 

Compression/deletion, transport prioi 

0 Data product collections 

0 DM/DT Policies 

Externally controlled f m n r s  

rag 

rity, 

e, bandwic 

... 
I 

CI 

-- .HV.V.V 

Space link schedule & configuration, ... 
... and so on 
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State Determination 
Making Sense of the World 

0 One can act only on one’s knowledge of the system 
Knowledge is what you know, not how you know it 
Observations (e.g., measurements) are not knowledge 

Estimators find “good” explanations for observations and other 

Knowledge may be propagated into the future, given models and 
evidence, given a model of how things work 

plans 

All knowledge is uncertain 

and on how well it is known 

However, one can achieve 
I oca I consistency of know I ed g e 

Judgment must be based both on what is known, 

MDS 19 1011 4/2003 



State Control 
Closing the Loop 

Operators express their intent in the form of goals 
Goals declare what should happen, not how 
Goals may be expressed at any level 

High level goals are elaborated recursively into lower level goals 
Elaboration may be conditional, in order to react to present circumstances 
Coordination of activities is accomplished by scheduling 
Conflicts are resolved, with priority as final arbiter 

* Knowledge of all states is maintained, as required to achieve goals 
Knowledge is compared to goal constraints to test for compliance 

Corrective action is applied, as required to achieve goals ~*zzLh 
may be applied at any level 
Unachievable goals (and their elaborations) 
are dropped individually without sacrificing others 

* Supports fault tolerance, 
critical activities, in situ reactivity, 
opportunistic science, and more 

7 
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Hardware Proxies 
Connectina With the World- 

U 

Provide local software representatives of system hardware 
Delineating the abstract model of the system (including time!) 
Translating raw input/output data into abstract declarations about 
state 

Measurement models relate incoming data to state 
Command models do the same for outgoing data 

1011 

Augments system hardware with supplemental behaviors 
Sampling 
Time and metadata tagging Data buffering and routing 
Data format translation 
Local tight control loops 
Data compression Etc. 

I/O sequencing and synchronization 

Error checking 
Data preprocessing 

0 Isolates state frameworks from 
platform specific interfaces 

Built on ACE middleware 
Real, simulated, or abstract hardware 
Real or virtual time 

412003 MDS 21 



State Analysis Procedure nd 
w- 

L--?- 
PML- 

I + 
How should state 

knowledge be updated? 

+ 1 How well must the state 

Models suggest how states 
should be estimated 

Estimators often use models 

You may identify multiple ways to 
d i rect I y 

know a state, depending on 
circumstances and need 

be known? 
I 

- - -  

Estimators are “goal achievers” 
10/14/2003 MDS 22 



State Timelines 
0 State timelines maintain the value or set of possible values 

They capture both knowledge and intent about state 
(eg., a range) of a state variable as a function of time 

10/14/2003 

Time 
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Cons t rai n t Networks 
Goals and temporal constraints each connect a pair of time 
points Goal 

Time points 
ends) 
A collection 
form a goal 

Temporal Constraint 

w Time points 

are often shared (e.g., one beginning as another 

of connected goals and temporal constraints 
- - - - - _ _ _ _ _  -------- - - - - -  _- - -  

. . 
0 

0 

0 
0 

0 

# e O c  

network 

, I 
/ 

I 
I 

0 
c 0 

I 
I 
I 

I 
/ 
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w Resolving Conflicts w- 

2EZE-Y- 
Rh- 

0 Example: three goals on the same state 

I I 

The constra int4  
- The time interval - Crosshatched areas are 

Goal 1 

+ 
+ 

Goal 2 

Goal 3 

- - t 
Goals I and 2 overlap, so 

they're compatible, as is 
Goal 3 is incompatible with Goal 2, 

but it can wait 

Executable 
Goal 

Timeline 
Time 

10/14/2003 MDS 25 



--- 
- a d -  
-wbm Timeline Execution 

Goals are accepted if successfully placed on the timeline 
for the goal state variable 
Goals are frozen and acted upon when they appear on the timeline 
in the immediate future 

* Goals are acted upon by achievers assigned to each state variable 
Elaborators monitor execution and adapt plans, as necessary 

ow, ... 

... and given the 
present state, . . . 

. . . achieve the goals. 

Knowledge kdzL 
Time 
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=.a Putting It Together W*bhaya 

a-l.bonbnl 
-1-d- -- 

Elaborators, scheduling, . . . 
GoaVevent-driven 
Planning and constraint solving 
Analogous to sequencing, mode 
and configuration control, fault 
responses 

Achievers, DM/DT, ... 
Provide system behaviors 
Managed via goals and temporal constraints 
Fairly conventional real-time monitoring and control processes 

1011 4/2003 MDS 27 
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M---?- Ryan- What are the primitive elements? 
State Variables, Estimators, Controllers, and Hardware Adapters 
are the fundamental elements that make-up the state-based software 
architecture of MDS; aka MDS Diamond 

All control loops use variations of this MDS diamond pattern 

10/14/2003 MDS 29 
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.Id State Knowledge Cont. -- 
LY-7- 
Pran- 

MDS separates state determination from state control, coupled only 
through state variables (Architectural Theme) 

* Frequently when estimation and control are entangled the state 
information is never made explicit 

The SV wouldn’t not exist 
Users of needed information run the risk of having multiple interpretations 
for the same data 

For consistency, simplicity, clarity, and testability separate state 
determination logic from control logic 

1011 4/2003 MDS 31 



nd State Knowledge Cont. w- 

%--= 
-wM 

Estimators makes use of (the inputs) 
Device evidence, such as 

Sensor Measurements 
Commands issued by hardware adapters to HNV 
Models 

Other state variables 

Estimators keep state information up to date (the output) 
Updates state knowledge by using SV’s state function 

I \ Measurements 

HNV Commands State 

Models d - 

10/14/2003 

State Variable(s) # 
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Rm Parachute Status Estimator Example lli -LpI*u.p. 

zzZs-7- -- 

eventNotify 

Parachute Status SV Estimator 

Drag Coefficients 
consistent with Parachute 

F’yroSwitch is ISOPEN 

Switch is Failed-Open 

Coefficients NOT consistent 
Parachute is DEPLOYED 

Estimato 

I . getstate 
I 

1011 4/2003 MDS 33 



Measurements, Models, and their use mm 
&=8- 

r-laanq 
-1-d- 
"rat" 
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APL 
Measurements, Models, and their use 

Cont. -*AnuDIud 
gpa- 

L--?- 
R.4- 

Hardware devices such as sensors provide raw information 

This raw information is processed by local software interfaces that 
represent system hardware called Hardware Adapters (HA) 

HA are the only elements that interface with system hardware and 
process raw sensor data 

One HA for every required software interface fidelity 
For example, one for physical h/w and one for each simulation fidelity 

Isolates the controlling system from platform specific interfaces 

10/14/2003 MDS 35 



1J 111 Example of Measurements, Models, and 
their use Spl- 

----7- -- 
Parachute Deploy Pyro Switch Status Measurement 

*The switch measurements shall be represented as follows 

-Deployment time stamp 
-switch position 

-health 
I 
I 
I 
I 
I 
I 
I 
I 

*Measurement Constituents: 
Pyro switch measurement is as follows: 

2. 2-bit Integer representing switch position; 

O= OPEN, I= CLOSED, 2= Failed 

PyroSwitch measurement is 
consistent with switch measurement 

n 

measurement 

_- - -  - -  - -  - - -  - -  _ -  
’ PyroSwitch is CLOSED or ProbablyClosed AND 

Parachute is Deployed with persistence 
OR 
PyroSwitrh measurement is not consistent with 
switch measurement model for position CLOSL’.D 
with persistence 

Parachute is Deployed 
OR 

position CLOSED 

Closed 

Failed 

t 
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Example of Measurements, Models, and their use Cont. 
=&Alternate -c.Mh approaches to Estimator desigrr'"l 

Stowed 

Probably 
Deployed 

Deployed 

Table 

Probably 
ISOPEN ISOPEN 

Closed 

Probably Failed 
CLOSED 

Closed Open 

Failed Failed 
CLOSED 

Open Open 

* Pyro Switch Measurement 

Parachute 
Status 
State 

Hypothesis testing algorithm 

Estimator will distinguish between the different operating and failure modes 

If (F-PyroSw(CL0SED) equals Measurement Sw Position) and 

Parachute Status is (Deployed or ProbablyDeployed) 

return (CLOSED) 

Parachute Status is Stowed 

return (ISOPEN) 

If (F-PyroSw(lS0PEN) equals Measurement Sw Position) and 

If (F-PyroSw(lS0PEN) equals Measurement Sw Position) and 

Parachute Status is (ProbablyDeployed) 

return (Probably Closed) 

Parachute Status is (Deployed) 

return (Failed Open) 

If (F-PyroSw(CL0SED) not equal to Measurement Sw Position) and 

The point here is that algorithm design is business as usual 

10/14/2003 MDS 37 



.ld m J  State Knowledge Patterns 4--MMl- 

&Y-= -- 
Distillation Pattern (Estimator to Estimator Pattern) 

Estimation is staged 
The output products are distilled “measurements” dependant on fewer states 
Later estimation stages take advantage of state information already extracted 

Distilled 
measurements 

Estimator Estimator 

For example, Terrain Map State Variable Model 

I 
I 

I I I I 

Camera measurements are Stage-I estimator Distilled measurement Stage-2 estimator 
functions of camera model I updates state I I processes evidence 

I (meas. and SV’s) 
I not dependent on 
I camera model 

I 
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State Control Cont. 
Control is defined as closing the loop through State 

Architectural Theme; State determination is considered separately from 
State Control 

State control is in the business of getting what you want 

Controllers are the achievers of state control 

Similar properties to estimators in that they are both Achievers, 
hOWt3VK 

Controllers know how to control a state (not determine it) 

1011 4/2003 MDS 40 



%-am- State Control Cont. 
They meet the objectives given to them regarding the state of the 
system under control 

Controls what they know through state 

Controller design can be modal (state machines) or what ever makes 
sense 

Describes and captures the required behavior 
Adaptation specific 

Controlling algorithms 
Can be simple or complicated such as Terrain Hazard Avoidance 

0 Driven by need and performance 

10/14/2003 MDS 41 



State Control Cont. 
j& Real-time execution 

Control of state can be periodic or event/data driven 
For example a Wheel Motor Controller runs periodically 
at 4 Hz and has also subscribed to Wheel Position SV 
and Wheel Motor Health SV. 

Motor 

Under nominal conditions (motor “is healthy”) wheel 
motor controller executes cyclic 

However if at any time the motor becomes “unhealthy”, 
controller will run on motor health state notification and 
safe the motor. 

0 Controllers are the only MDS elements that can control state 

Controllers are the only MDS elements that can issue commands to 
hardware 

10/14/2003 MDS 42 



State Control Cont. 
Controllers are responsible for achieving a requested state constraint 

Controllers are goal achievers because they work to satisfy a 
constraint on the value of a state variable 

Intent is specified through Goal (Constraint on State) 
For example “Deployed Parachute” or “Pyro Switch is Closed” 

Controllers are told “what” to do, they determine what “actions” to take 

10/14/2003 MDS 43 
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Ip --- W n r c M l d -  -- Commands, Models, and their use Cont. 
Hardware devices such as actuators (and some sensors) require 
actions in order to initiate their state transition 
We call these actions Commands 

For example “Closing Pyro Switch”, “Opening Thruster Latch Valve” 

These commands are processed by local software interfaces that 
represent system hardware called Hardware Adapters (HA) 

HA are the only elements that interface to all system hardware; sensors 
and actuators 

System Under Control I Controlling System 

10/14/2003 

Bit sensor info. 

Command bit info. 

Measurements 

Commands 
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w-ud AJPL Example of Command, Models, and use w- 

L--= 
RU4- 

0 Parachute Deploy Pyro Switch Command and Model 
I 
I 
I 
I 
I 

I 
I 
I 

*This command changes the position of the pyro switch 
Command Constituents: I 

I -Switch Position. Range: Close, Open 

Notification of Close switc 

I’yroSwitch measurement model is not 
consistent with switch measurement for position 
CLOSED with persistence 

I 

Switch Command Moddl is consistent with last 
command to close switch 

10/14/2003 MDS 46 



State Control Patterns 
Controller to Hardware Adapter Pattern 

This is the normal control pattern 
A state variable can only be controlled by one controller 
Controllers can control multiple state variables 
Only Controllers can send commands to hardware adapters 

Delegation of Control Pattern 
Control is staged and coordinated 

Controllers delegate authority to other Achievers 
Delegation nesting can be as deep as needed 
All coordination done via Goals 

constraints $ 1  Achiever -3-1 
10/14/2003 MDS 47 



State Control Patterns Cont. 
Two delegation sub-patterns 

ControNer to Controller coordination 

For example; Need to control spacecraft 

constraints 

~ - J  -8-1 
attitude with thrusters 
Thruster-1 

Controller 

Controller 

constraints 

Estimator to ControNer coordination 8-1 Estimato A 3-1 
For example; Need to park rover and update traversing terrain 

Constraints 
Constraints e Rover P&H H To Wheel Motor Controllers - + Controller 1- 

I I 

See Session-6 for more details on delegation and goals 
10/14/2003 MDS 48 



ud AJ Command Sequence vs. Goal Network **rum 

-2Zx--= 
pr**yrc.(bm 

Command Sequence 
Specifies commands to be 
executed at specific times 
Multiple sequences can run 
co ncu rre n t I y 
Original operator intent not 
expressed in sequence 
Sequence planning depends on 
good predictions of state 
Fault protection is designed 
independently 

(Open-loop control) 
1011 412003 

Goal Network 
Specifies goals to be achieved 

All timelines 
within time windows 

(Closed-loop control) 
MDS 49 
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Conclusion Cont. 

Control is defined as closing the loop through State, with State 
Determination considered separately from State Control 

@ Estimators and Controllers are the Achievers of state knowledge and 
control 

State knowledge and State Control are specified through Goals 

Patterns help coordinate state control and knowledge 

10/14/2003 MDS 52 
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