
Overvie fro/ Lo Features

Presentation to Con t ro I Systems Workshop
October 15-1 6, 2003

Slides by Robert Rasmussen, Daniel Dvorak, Kirk Reinholtz, Alex Moncada
Compiled by Matt Barry, Kenny Meyer 10/14/2003 1

Legal Notice

I Copyright 2003, by the California Institute of Technology. ALL RIGHTS RESERVED.
United States Government Sponsorship Acknowledged. Any commercial use must be
negotiated with the Office of Technology Transfer at the California Institute of
Technology.

10/14/2003 MDS 2

MDS Overview
Bridging the Gap with State Analysis
MDS Control Loops

1011 4/2003 MDS 3

Introduction
MDS in I Minute

0 The application domain of MDS is:
mission information, control, and operations . . .
of physical systems ...
for unmanned space science missions

Scope includes flight, ground, and simulation/test software

Adopts a product line (multi-mission) approach that exploits
commonalities across missions

MDS has three aspects:
An information and control system architecture

9 A systems engineering methodology
9 Reusable and adaptable framework software

1011 412003 MDS 5

What MDS Provides IMkloNIoIma
swa-

L--=
Fanmu-

System engineering methodology
Structured process for disciplined

Emphasizes model-based design for

Makes interactions explicit, exposes

ana I ys i s

estimation and control

com plexi ty

Architectural patterns
State architecture
Component architecture

Frameworks and adapter’s guides
Reusable building blocks in object-
oriented design
Guides for how to adapt it for concrete
tasks
Examples of framework usage

State and component
architectures are pieces of the

same design methodology

1011 412003 MDS 6

L--?- What MDS is for mJ
RuonwDn

Highly reusable core software for flight, ground, and test
Synergistic systems & software engineering

Reduced development time and cost
Improved development processes
Highly reliable operations
Increased functionality

f

1011 MDS 7

J

1

W

E

Wd There Is a Big Gap Between ... w-

L--- --
What Systems Engineers do:

Define and analyze the capabilities a system must have
Establish the decomposition of functionality
Provide key algorithms for accomplishment of these functions
Integrate, test, operate, and maintain a system

And what Software Engineers do:
Define the software architecture of a system
Provide the tools and techniques for software development
Design and build and test the software to provide the required
functions

10/14/2003 MDS 9

gas- cd Different Languages,
L--?- Fan".- Different Methods

Systems engineering is * Software engineering is
outward looking inward looking

0

0

e

0

0

0

0

0

0

0

e

1011 4/2003

Mission scenarios
F u n ct io na I decomposition
System analysis
Performance requirements
Resource allocations
Command and telemetry
dictionaries
Flight rules and
co nst ra i n ts
Control laws
Failure modes analysis
Fa u It protection
Test p roced u res

0 Languages, libraries,
operating systems.. .
Concurrent threads,
processes, memory
management.. .
Real time execution

0 Patterns, abstractions,
general algorithms.. .
Data representation,
serialization.. .
lnterprocess communication
Deadlocks, access
violations, exceptions.. .

0.0 Different!
MDS 10

v
)

a,
II
.c

I

23)
S

c

.- ..c, E" 3 0 0 U U S m S

S

a,
cn
a,

a,

6

.- .cI

;s,
6

L

S

N

.- .- L
a,
0

m
a
,

.c
I

E!€

.- 5

n
 >

0

0

cn
.- 0

rc

0

v)
Q

)

m v)

U

c
,

E

a,
c

0
)

S

C
I

n

0

v
)
U

a,
m a,
U

S

v)
Q

)
> 0

Q
)

0

Tz
0

cn
cn

-

.- -c
,

.- .
I

U

91

.- .- E

a,
c

23)
C

+

.- L
L

3
 'E

.c
I,

Q
a
,

o"2
0

0

C

0

m Q
)

Q

0

U

S

m v)
Q

)
0

Q
)

C

a>

.
I

*
 L

(t" P *

8
-

L

-0

m
II

3

0

d

m C 0

L

+

.
I

0
.

cu cn
.- .- tr> .L

cn
a,
U

a,
cn
a,
e

0

e

0

cu 0

LL
0

C
I

I
.

5

I
.

0

U

a,
cn
.- &

E

0

0

cn
a,
3

0

3

cn
v
)

.- L

C
I

L

C
I

.- 0

cn 5

a

m

0

0

A Taste of State Analysis Ild
spa-

a---hv
u b n c k n r d - --

Standard Questions :

What do you want t o achieve?
Move rover to rock

Common Framework
Elements :

4-

Goal

What's the state t o be controlled?
Ro vet- position relative to rock State Variable

I M U, wheel rotations/ Measurements
sun sensor, stereo camera i

What evidence is there for that state?

What does the stereo camera measure?
Distance to terrain features,
Ibht level, camera power
(ON/OFF), camera health

How do you raise the light level?

Where is sun relative t o horizon?
Waif until the sun is up

...

10/14/2003

Measurement
Model

State Effects Model

I

Etc.

- - _ MDS 12

Common elements appear in.. 8 .

State-Based Architecture --nd
gplrldr*l*pbn

L--?- --

1011 412003 MDS 13

Common elements appear in.. ..
State Architecture (the details) Rw

--M..b*
- m o l l -
Wan"

issuer

generates

controlled
I..* device

The color coding is meant to convey similarities, e.g., estimators and controllers are goal achievers, sensors and actuators
are hardware adapters, measurements and commands are time-tagged items.

1 0/14/2003 MDS 14

Software Built to Requirements IM-yld
8pp-

L--?-
RML-

Architecture designed for
complex interactions

emanded by "physics"

Architecture

Common Elements 3
-1 F l -1
-1 F-J -1
rLzq (ELFI F l 1-1 (1 F l

L
Systems and Software Engineering use
same Language

- No translation, consistent representation
- Simplified inspection
- Simplified implementation
- Verifiable requirements

I I - -
C u Standard Ubrary

Reu rks

10/14/2003 MDS 15

State is Central
A system comprises project assets in the context
of some external environment that influences them
The function of mission software is to monitor and control a system
to meet operators’ intents
MDS manages all essential aspects of this function via state

Knowledge of the system, including its environment,
is represented over time in state variables
The behavior of the system is represented
by models of this state
Interaction with the system is achieved
via modeled relationshim between state

and commands), as mediated
by hardware proxies
Information is reported, stored, and
transported as histories of state,
measurements, and commands

and interface data (measurements

A
Operators’ intent, including flight rules
and constraints, are expressed as goals
on system states

1011 412003 MDS 16

10/14/2003
MDS 17

State Knowledge
2zzz-7- FnmeucdM Everything You Need to Know

Dynamics

Environment

Device status

Parameters

Vehicle position & attitude, gimbal angles, wheel rotation, ...

Ephemeris, light level, atmospheric profiles, terrain, . . .

Configuration, temperature, operating modes, failure modes, . . .

- nesources
A vower & energy, propellant, data sto

Science data, measurement sets, . . .

Compression/deletion, transport prioi

0 Data product collections

0 DM/DT Policies

Externally controlled f m n r s

rag

rity,

e, bandwic

...
I

CI

-- .HV.V.V

Space link schedule & configuration, ...
... and so on

1011 412003 MDS 18

State Determination
Making Sense of the World

0 One can act only on one’s knowledge of the system
Knowledge is what you know, not how you know it
Observations (e.g., measurements) are not knowledge

Estimators find “good” explanations for observations and other

Knowledge may be propagated into the future, given models and
evidence, given a model of how things work

plans

All knowledge is uncertain

and on how well it is known

However, one can achieve
I oca I consistency of know I ed g e

Judgment must be based both on what is known,

MDS 19 1011 4/2003

State Control
Closing the Loop

Operators express their intent in the form of goals
Goals declare what should happen, not how
Goals may be expressed at any level

High level goals are elaborated recursively into lower level goals
Elaboration may be conditional, in order to react to present circumstances
Coordination of activities is accomplished by scheduling
Conflicts are resolved, with priority as final arbiter

* Knowledge of all states is maintained, as required to achieve goals
Knowledge is compared to goal constraints to test for compliance

Corrective action is applied, as required to achieve goals ~*zzLh
may be applied at any level
Unachievable goals (and their elaborations)
are dropped individually without sacrificing others

* Supports fault tolerance,
critical activities, in situ reactivity,
opportunistic science, and more

7
10/14/2003 MDS 20

Hardware Proxies
Connectina With the World-

U

Provide local software representatives of system hardware
Delineating the abstract model of the system (including time!)
Translating raw input/output data into abstract declarations about
state

Measurement models relate incoming data to state
Command models do the same for outgoing data

1011

Augments system hardware with supplemental behaviors
Sampling
Time and metadata tagging Data buffering and routing
Data format translation
Local tight control loops
Data compression Etc.

I/O sequencing and synchronization

Error checking
Data preprocessing

0 Isolates state frameworks from
platform specific interfaces

Built on ACE middleware
Real, simulated, or abstract hardware
Real or virtual time

412003 MDS 21

State Analysis Procedure nd
w-

L--?-
PML-

I +
How should state

knowledge be updated?

+ 1 How well must the state

Models suggest how states
should be estimated

Estimators often use models

You may identify multiple ways to
d i rect I y

know a state, depending on
circumstances and need

be known?
I

- - -

Estimators are “goal achievers”
10/14/2003 MDS 22

State Timelines
0 State timelines maintain the value or set of possible values

They capture both knowledge and intent about state
(eg., a range) of a state variable as a function of time

10/14/2003

Time

MDS 23

Cons t rai n t Networks
Goals and temporal constraints each connect a pair of time
points Goal

Time points
ends)
A collection
form a goal

Temporal Constraint

w Time points

are often shared (e.g., one beginning as another

of connected goals and temporal constraints
- - - - - _ _ _ _ _ -------- - - - - - _- - -

. .
0

0

0
0

0

e O c

network

, I
/

I
I

0
c 0

I
I
I

I
/

1011 4/2003 MDS 24

w Resolving Conflicts w-

2EZE-Y-
Rh-

0 Example: three goals on the same state

I I

The constra int4
- The time interval - Crosshatched areas are

Goal 1

+
+

Goal 2

Goal 3

- - t
Goals I and 2 overlap, so

they're compatible, as is
Goal 3 is incompatible with Goal 2,

but it can wait

Executable
Goal

Timeline
Time

10/14/2003 MDS 25

- a d -
-wbm Timeline Execution

Goals are accepted if successfully placed on the timeline
for the goal state variable
Goals are frozen and acted upon when they appear on the timeline
in the immediate future

* Goals are acted upon by achievers assigned to each state variable
Elaborators monitor execution and adapt plans, as necessary

ow, ...

... and given the
present state, . . .

. . . achieve the goals.

Knowledge kdzL
Time

10/14/2003 MDS 26

=.a Putting It Together W*bhaya

a-l.bonbnl
-1-d- --

Elaborators, scheduling, . . .
GoaVevent-driven
Planning and constraint solving
Analogous to sequencing, mode
and configuration control, fault
responses

Achievers, DM/DT, ...
Provide system behaviors
Managed via goals and temporal constraints
Fairly conventional real-time monitoring and control processes

1011 4/2003 MDS 27

a3
N

m

0

0

M---?- Ryan- What are the primitive elements?
State Variables, Estimators, Controllers, and Hardware Adapters
are the fundamental elements that make-up the state-based software
architecture of MDS; aka MDS Diamond

All control loops use variations of this MDS diamond pattern

10/14/2003 MDS 29

0

c9
v
)

H
 n

.Id State Knowledge Cont. --
LY-7-
Pran-

MDS separates state determination from state control, coupled only
through state variables (Architectural Theme)

* Frequently when estimation and control are entangled the state
information is never made explicit

The SV wouldn’t not exist
Users of needed information run the risk of having multiple interpretations
for the same data

For consistency, simplicity, clarity, and testability separate state
determination logic from control logic

1011 4/2003 MDS 31

nd State Knowledge Cont. w-

%--=
-wM

Estimators makes use of (the inputs)
Device evidence, such as

Sensor Measurements
Commands issued by hardware adapters to HNV
Models

Other state variables

Estimators keep state information up to date (the output)
Updates state knowledge by using SV’s state function

I \ Measurements

HNV Commands State

Models d -

10/14/2003

State Variable(s) #

MDS 32

Rm Parachute Status Estimator Example lli -LpI*u.p.

zzZs-7- --

eventNotify

Parachute Status SV Estimator

Drag Coefficients
consistent with Parachute

F’yroSwitch is ISOPEN

Switch is Failed-Open

Coefficients NOT consistent
Parachute is DEPLOYED

Estimato

I . getstate
I

1011 4/2003 MDS 33

Measurements, Models, and their use mm
&=8-

r-laanq
-1-d-
"rat"

10/14/2003 MDS 34

APL
Measurements, Models, and their use

Cont. -*AnuDIud
gpa-

L--?-
R.4-

Hardware devices such as sensors provide raw information

This raw information is processed by local software interfaces that
represent system hardware called Hardware Adapters (HA)

HA are the only elements that interface with system hardware and
process raw sensor data

One HA for every required software interface fidelity
For example, one for physical h/w and one for each simulation fidelity

Isolates the controlling system from platform specific interfaces

10/14/2003 MDS 35

1J 111 Example of Measurements, Models, and
their use Spl-

----7- --
Parachute Deploy Pyro Switch Status Measurement

*The switch measurements shall be represented as follows

-Deployment time stamp
-switch position

-health
I
I
I
I
I
I
I
I

*Measurement Constituents:
Pyro switch measurement is as follows:

2. 2-bit Integer representing switch position;

O= OPEN, I= CLOSED, 2= Failed

PyroSwitch measurement is
consistent with switch measurement

n

measurement

_- - - - - - - - - - - - _ -
’ PyroSwitch is CLOSED or ProbablyClosed AND

Parachute is Deployed with persistence
OR
PyroSwitrh measurement is not consistent with
switch measurement model for position CLOSL’.D
with persistence

Parachute is Deployed
OR

position CLOSED

Closed

Failed

t

10/14/2003 MDS 36

Example of Measurements, Models, and their use Cont.
=&Alternate -c.Mh approaches to Estimator desigrr'"l

Stowed

Probably
Deployed

Deployed

Table

Probably
ISOPEN ISOPEN

Closed

Probably Failed
CLOSED

Closed Open

Failed Failed
CLOSED

Open Open

* Pyro Switch Measurement

Parachute
Status
State

Hypothesis testing algorithm

Estimator will distinguish between the different operating and failure modes

If (F-PyroSw(CL0SED) equals Measurement Sw Position) and

Parachute Status is (Deployed or ProbablyDeployed)

return (CLOSED)

Parachute Status is Stowed

return (ISOPEN)

If (F-PyroSw(lS0PEN) equals Measurement Sw Position) and

If (F-PyroSw(lS0PEN) equals Measurement Sw Position) and

Parachute Status is (ProbablyDeployed)

return (Probably Closed)

Parachute Status is (Deployed)

return (Failed Open)

If (F-PyroSw(CL0SED) not equal to Measurement Sw Position) and

The point here is that algorithm design is business as usual

10/14/2003 MDS 37

.ld m J State Knowledge Patterns 4--MMl-

&Y-= --
Distillation Pattern (Estimator to Estimator Pattern)

Estimation is staged
The output products are distilled “measurements” dependant on fewer states
Later estimation stages take advantage of state information already extracted

Distilled
measurements

Estimator Estimator

For example, Terrain Map State Variable Model

I
I

I I I I

Camera measurements are Stage-I estimator Distilled measurement Stage-2 estimator
functions of camera model I updates state I I processes evidence

I (meas. and SV’s)
I not dependent on
I camera model

I

10/14/2003 I I MDS 38

J

1

0
)

cc)

v
)

z n

State Control Cont.
Control is defined as closing the loop through State

Architectural Theme; State determination is considered separately from
State Control

State control is in the business of getting what you want

Controllers are the achievers of state control

Similar properties to estimators in that they are both Achievers,
hOWt3VK

Controllers know how to control a state (not determine it)

1011 4/2003 MDS 40

%-am- State Control Cont.
They meet the objectives given to them regarding the state of the
system under control

Controls what they know through state

Controller design can be modal (state machines) or what ever makes
sense

Describes and captures the required behavior
Adaptation specific

Controlling algorithms
Can be simple or complicated such as Terrain Hazard Avoidance

0 Driven by need and performance

10/14/2003 MDS 41

State Control Cont.
j& Real-time execution

Control of state can be periodic or event/data driven
For example a Wheel Motor Controller runs periodically
at 4 Hz and has also subscribed to Wheel Position SV
and Wheel Motor Health SV.

Motor

Under nominal conditions (motor “is healthy”) wheel
motor controller executes cyclic

However if at any time the motor becomes “unhealthy”,
controller will run on motor health state notification and
safe the motor.

0 Controllers are the only MDS elements that can control state

Controllers are the only MDS elements that can issue commands to
hardware

10/14/2003 MDS 42

State Control Cont.
Controllers are responsible for achieving a requested state constraint

Controllers are goal achievers because they work to satisfy a
constraint on the value of a state variable

Intent is specified through Goal (Constraint on State)
For example “Deployed Parachute” or “Pyro Switch is Closed”

Controllers are told “what” to do, they determine what “actions” to take

10/14/2003 MDS 43

t

t

Ip --- W n r c M l d - -- Commands, Models, and their use Cont.
Hardware devices such as actuators (and some sensors) require
actions in order to initiate their state transition
We call these actions Commands

For example “Closing Pyro Switch”, “Opening Thruster Latch Valve”

These commands are processed by local software interfaces that
represent system hardware called Hardware Adapters (HA)

HA are the only elements that interface to all system hardware; sensors
and actuators

System Under Control I Controlling System

10/14/2003

Bit sensor info.

Command bit info.

Measurements

Commands

MDS 45

w-ud AJPL Example of Command, Models, and use w-

L--=
RU4-

0 Parachute Deploy Pyro Switch Command and Model
I
I
I
I
I

I
I
I

*This command changes the position of the pyro switch
Command Constituents: I

I -Switch Position. Range: Close, Open

Notification of Close switc

I’yroSwitch measurement model is not
consistent with switch measurement for position
CLOSED with persistence

I

Switch Command Moddl is consistent with last
command to close switch

10/14/2003 MDS 46

State Control Patterns
Controller to Hardware Adapter Pattern

This is the normal control pattern
A state variable can only be controlled by one controller
Controllers can control multiple state variables
Only Controllers can send commands to hardware adapters

Delegation of Control Pattern
Control is staged and coordinated

Controllers delegate authority to other Achievers
Delegation nesting can be as deep as needed
All coordination done via Goals

constraints $ 1 Achiever -3-1
10/14/2003 MDS 47

State Control Patterns Cont.
Two delegation sub-patterns

ControNer to Controller coordination

For example; Need to control spacecraft

constraints

~ - J -8-1
attitude with thrusters
Thruster-1

Controller

Controller

constraints

Estimator to ControNer coordination 8-1 Estimato A 3-1
For example; Need to park rover and update traversing terrain

Constraints
Constraints e Rover P&H H To Wheel Motor Controllers - + Controller 1-

I I

See Session-6 for more details on delegation and goals
10/14/2003 MDS 48

ud AJ Command Sequence vs. Goal Network **rum

-2Zx--=
pr**yrc.(bm

Command Sequence
Specifies commands to be
executed at specific times
Multiple sequences can run
co ncu rre n t I y
Original operator intent not
expressed in sequence
Sequence planning depends on
good predictions of state
Fault protection is designed
independently

(Open-loop control)
1011 412003

Goal Network
Specifies goals to be achieved

All timelines
within time windows

(Closed-loop control)
MDS 49

P

0

0

w

i3

6 v) V
I
0

-
5

e i3
-
5

P

0

0

0

B cn

Conclusion Cont.

Control is defined as closing the loop through State, with State
Determination considered separately from State Control

@ Estimators and Controllers are the Achievers of state knowledge and
control

State knowledge and State Control are specified through Goals

Patterns help coordinate state control and knowledge

10/14/2003 MDS 52

-
I
-
 .- m
J

S

II:
0

7

i

a,
0

)

m S

r" c. 0 a, '0'
cn
& n

2
 e

S

a,
cn
cn

cn
2 2 tl
a,
II

c
.

0

a,
s

0

c
.

.
I
I

a 5 rc

a,
.
_
I

e

N

0

c

S

-c.r
-

.- 2 x

L

1L 5 E

E

m 0
)

0

I

&

5 rc

a,
.- e

5

2
 S

cn
cd

>

U

S

m
cn

U

m a,
J

0
)

S

a,
S

0

)

S

W

.- 5
.- E a, cn
>

cn e

c
.

U

4

m I

L

.- 35 E

0

I- d
 m a,

J

S

0

3

0

a,
x
W

4

0

)

S

S

S

m
CL.
S

0

cn
cn

.
I

- .
I

-

.- .- 2
e

x
 m 5

6 n

S

m

c
.

0

a,
c

0

>s
3

a

a,

e

c
.

.
I

a n

c
.

m

0

0

Q?

