e JpL

Overview:¢:;;a7~n*d CdntrOI Loop Features

Presentation to Cfcﬂ)htrol ‘S‘ystems Workshop
October 15-16, 2003

Slides by Robert Rasmussen, Daniel Dvorak, Kirk Reinholtz, Alex Moncada
Compiled by Matt Barry, Kenny Meyer]

10/14/2003

== Legal Notice -IPL

Copyright 2003, by the California Institute of Technology. ALL RIGHTS RESERVED.
United States Government Sponsorship Acknowledged. Any commercial use must be
negotiated with the Office of Technology Transfer at the California Institute of
Technology.

10/14/2003 MDS 2

&

Nationel Asronaitics and
Soaon Adkinistration

iy Agenda P
e MDS Overview

¢ Bridging the Gap with State Analysis
e MDS Control Loops

10/14/2003 MDS 3

Spaos Aderinisration
&mwaw

10/14/2003

@ Introduction
iy MDS in 1 Minute AP

Catiomia

e The application domain of MDS is:
mission information, control, and operations ...

of physical systems ...
for unmanned space science missions

e Scope includes flight, ground, and simulation/test software

e Adopts a product line (multi-mission) approach that exploits
commonalities across missions

e MDS has three aspects:
» An information and control system architecture
» A systems engineering methodology
» Reusable and adaptable framework software

10/14/2003 MDS 5

Space Adminisration

- What MDS Provides JPL

Jat Propuision Laborwiory
Caltlornia Insvune:
Pasacena, Catiornia

¢ System engineering methodology

e Structured process for disciplined
analysis

e Emphasizes model-based design for
estimation and control

e Makes interactions explicit, exposes
complexity

e Architectural patterns
e State architecture
e Component architecture

e Frameworks and adapter’s guides

¢ Reusable building blocks in object-
oriented design

e Guides for how to adapt it for concrete
tasks

e Examples of framework usage

10/14/2003

The e
State-Bas ed

State and component
architectures are pieces of the
same design methodology

MDS 6

o
. What MDS is for L

e Highly reusable core software for flight, ground, and test

e Synergistic systems & software engineering

¢ Reduced development time and cost
¢ Improved development processes

e Highly reliable operations

® Increased functionality

10/14/2003 MDS 7

10/14/2003

SPL

—— There Is a Big Gap Between... APk

e \What Systems Engineers do:
e Define and analyze the capabilities a system must have
e Establish the decomposition of functionality
e Provide key algorithms for accomplishment of these functions
¢ Integrate, test, operate, and maintain a system

¢ And what Software Engineers do:
e Define the software architecture of a system
e Provide the tools and techniques for software development

e Design and build and test the software to provide the required
functions

10/14/2003 MDS 9

10/14/2003

Different Languages,
Different Methods -PL

® Systems engineering is
outward looking

¢ Mission scenarios

e Functional decomposition
e System analysis

o Performance requirements
¢ Resource allocations

e Command and telemetry
dictionaries

e Flight rules and
constraints

e Control laws

e Failure modes analysis
e Fault protection

e Test procedures

e Software engineering Is
inward looking
e Languages, libraries,
operating systems...

e Concurrent threads,
processes, memory
management...

e Real time execution

e Patterns, abstractions,
general algorithms...

e Data representation,
serialization...

e Interprocess communication

e Deadlocks, access
violations, exceptions...

.. Different/

MDS 10

R T3 JPU
iy State Analysis:
“
e ——————————
* A uniform, methodical, and rigorous approach to...

e Discovering, characterizing, representing, and documenting the
states of a system

e Modeling the behavior of states and relationships among them
 Capturing the mission objectives in detailed scenarios

e Keeping track of system constraints and operating rules

* Describing the methods by which objectives will be achieved

* Recording information about hardware interfaces and operation

® For each of these design aspects, there is a simple but
strict structure within it is defined

® This structure is comprised of

Common Framework Elements

10/14/2003 MDS 11

e

National Aevonaistios sne

. A Taste of State Analysis

Standard Questions: Common Framework

Elements:

What do you want to achieve?
Move rover to rock Goal

What's the state to be controlled?

Rover position relative to rock State Variable

What evidence is there for that state?

IMU, wheel rotations, Measurements |

sun sensor, stereo camera

What does the stereo camera measure?

Distance to terrain features, Measurement
light level, camera power Mode/
(ON/OFF), camera health

How do you raise the light level?

Wait until the sun is up State Effects Model

Where is sun relative to horizon? il

- W

>

 —

Ete. ?

L,

10/14/2003

MDS 12

Common elements appear in....

—— State-Based Architecture

10/14/2003 MDS 13

@ Common elements appear in.... |
—— State Architecture (the details) AP

supplier
1 0..1 1.% 1..* 0..1

estimator StateVariable | controller
evidence source input

0.*

0.x

issuer

evidence generates
source
controlled
0.* 1..* | device

evidence
source

evidence evidence

The color coding is meant to convey similarities, e.g., estimators and controllers are goal achievers, sensors and actuators
are hardware adapters, measurements and commands are time-tagged items.
10/14/2003 MDS 14

i Software Built to Requirements Pk

Architecture

Architecture designed for
complex interactions
| demanded by “physics”

Requirements
map directly to
software

Common Elements

=) =]] = [

State Knowledge Goal Achiever: Goal Network Hiw Adapter Graph State Variable
. Components/Connectors I Value History I Data Catalog Data Transport
Systems and Software Engineering use | [| [—
— No translation, consistent representation [ascn | [e | [eoton | [o |["ers | [|["esmson | ["o |
— Simpilified inspection

— Simplified implementation
.. . Reu
— Verifiable requirements

10/14/2003 MDS 15

Asronautics ana

. State is Central

Catornia

AJPBU

e A system comprises project assets in the context
of some external environment that influences them

e The function of mission software is to monitor and control a system
to meet operators’ intents

e MDS manages all essential aspects of this function via state

¢ Knowledge of the system, including its environment,
is represented over time in state variables

e The behavior of the system is represented
by models of this state

¢ Interaction with the system is achieved
via modeled relationships between state
and interface data (measurements
and commands), as mediated
by hardware proxies

¢ Information is reported, stored, and
transported as histories of state,
measurements, and commands

¢ Operators’ intent, including flight rules
and constraints, are expressed as goals
on system states

10/14/2003 MDS 16

& State-based Goal-driven pL
- Architecture

State variables hold
state values, including
degree of uncerta

A goal is a constraint o
value of a state varia
over a time interval

10/14/2003

MDS 17

@ State Knowledge
e Everything You Need toKnow Fv

e Dynamics
e Vehicle position & attitude, gimbal angles, wheel rotation, ...
e Environment
e Ephemeris, light level, atmospheric profiles, terrain, ...
e Device status
e Configuration, temperature, operating modes, failure modes, ...
e Parameters
e Mass properties, scale factors, biases, alignments, noise Ievels
e Resources
e Power & energy, propellant, data storage, bandwidth, .
e Data product collections
e Science data, measurement sets, ...
e DM/DT Policies
e Compression/deletion, transport priority, ...
e Externally controlled factors (=)
e Space link schedule & configuration, ...
. and so on

10/14/2003 MDS 18

@ State Determination

Netiorsi AsvonaLios and
Spaos Adminisretion

. Making Sense of the World -PL

e One can act only on one’s knowledge of the system
o Knowledge is what you know, not how you know it
e Observations (e.g., measurements) are not knowledge

e Estimators find “good” explanations for observations and other
evidence, given a model of how things work

o Knowledge may be propagated into the future, given models and
plans

¢ All knowledge is uncertain =

¢ Judgment must be based both on what is known,
and on how well it is known

e However, one can achieve
local consistency of knowledge

10/14/2003

@ State Control

Netionat Asvorsustics and

iy Closing the Loop APL

e Operators express their intent in the form of goals
¢ Goals declare what should happen, not how
e Goals may be expressed at any level

e High level goals are elaborated recursively into lower level goals
e Elaboration may be conditional, in order to react to present circumstances
e Coordination of activities is accomplished by scheduling
e Conflicts are resolved, with priority as final arbiter

e Knowledge of all states is maintained, as required to achieve goals
e Knowledge is compared to goal constraints to test for compliance

e Corrective action is applied, as required to achieve goals (:)m
¢ Alternate methods of achievement ~

may be applied at any level

e Unachievable goals (and their elaborations)
are dropped individually without sacrificing others

e Supports fault tolerance,
critical activities, in situ reactivity, —
opportunistic science, and more |

Reasuieme

10/14/2003 MDS 20

@ Hardware Proxies _
e Connecting With the World RL

¢ Provide local software representatives of system hardware
e Delineating the abstract model of the system (including time!)

e Translating raw input/output data into abstract declarations about
state
e Measurement models relate incoming data to state
e Command models do the same for outgoing data

e Augments system hardware with supplemental behaviors

e Sampling * |/O sequencing and synchronization

e Time and metadata tagging « Data buffering and routing

e Data format translation Error checking (Fecommana)
¢ Local tight control loops » Data preprocessing

e Data compression « Etc. 4

® |solates state frameworks from
platform specific interfaces
e Built on ACE middleware
e Real, simulated, or abstract hardware
e Real or virtual time

10/14/2003 MDS 21

]
e State Analysis Procedure P

e Models suggest how states
-- should be estimated

e Estimators often use models
directly

e You may identify multiple ways to

v v know a state, depending on
How should state How well must the state circumstances and need
knowledge be updated? be known?

~ Model an L
____ Effect

: [Model a } L
How will this be achieved? Measurement

e Estimators are “goal achievers”
10/14/2003 MDS 22

il State Timelines S

e State timelines maintain the value or set of possible values
(e.g., a range) of a state variable as a function of time

e They capture both knowledge and intent about state

10/14/2003 MDS 23

Netional Asvonaisics anc
Space Adeinistation

Jot Mroputalon Laborstory
Casifornia Isttue of Technoogy
Pasavera. CaMornia

10/14/2003

Constraint Networks

e Goals and temporal constraints each connect a pair of time
points Goal Temporal Constraint

[min’, max’]

.

‘ Time points

® Time points are often shared (e.g., one beginning as another
ends)

state
[constraint

® A collection of connected goals and temporal constraints
form a goal network

SR

MDS 24

— Resolving Conflicts -

e Example: three goals on the same state

. Crosshatched areas are
The constraint

outside goal constraints

The time interval —————»

+ ; , ,’ _ | | ’, , Mﬂxibles’tartk—f

Goals 1 and 2 overiap, so Goal 3 is incompatible with Goal 2,
they’re compatible, as is but it can wait

Executable} = = . 2
Goal
Timeline

10/14/2003 MDS 25

el Timeline Execution L

e Goals are accepted if successfully placed on the timeline
for the goal state variable

e Goals are frozen and acted upon when they appear on the timeline
in the immediate future

e Goals are acted upon by achievers assigned to each state variable
e Elaborators monitor execution and adapt plans, as necessary

; ::Now, ..

Intent

givn the
present goals ...

... and given the

X ... achieve the goals.
present state, ...

Knowledge

10/14/2003 MDS 26

. Putting It Together

» Elaborators, scheduling, ... Y ~
« Goallevent-driven ﬂ°“f’t-’?1"—t—u9t-"!‘.’[k oo
. . : Elaborators - N -
» Planning and constraint solving E.G. [0 >~ ="
« Analogous to sequencing, mode = j
and configuration tr
respgnsegu ion control, fault | | Exeé:uta;ble
N = _J
&

State
Knowledge |}

A 4

/Achievers

\ 4 \ 4

Controllers “ -

S .
N T ‘

A 4

Estimators

\ 4

« Achievers, DM/DT, .~ DM/DT
* Provide system behavnors
+ Managed via goals and temporal constraints
« Fairly conventional real-time monitoring and control processes

7 Y

10/14/2003 MDS 27

Jud Propustsion Laborwtory
m}m«w

10/14/2003

28

&

NaSionet Asronauics
Spios Adeinisteaiion

== What are the primitive elements? JPL

e State Variables, Estimators, Controllers, and Hardware Adapters

are the fundamental elements that make-up the state-based software
architecture of MDS; aka MDS Diamond

cont

e All control loops use variations of this MDS diamond pattern

10/14/2003 MDS 29

National Asonautios snd

. State Knowledge

10/14/2003

MDS 30

ey State Knowledge Cont.

e MDS separates state determination from state control, coupled only
through state variables (Architectural Theme)

e Frequently when estimation and control are entangled the state
information is never made explicit
e The SV wouldn’t not exist

e Users of needed information run the risk of having multiple interpretations
for the same data

e For consistency, simplicity, clarity, and testability separate state
determination logic from control logic

10/14/2003 MDS 31

JPU

Hatiorel Asronaustics and

il State Knowledge Cont.

e Estimators makes use of (the inputs)

e Device evidence, such as
e Sensor Measurements
e Commands issued by hardware adapters to H/W
e Models

e Other state variables

e Estimators keep state information up to date (the output)
e Updates state knowledge by using SV'’s state function

N Measurements
£11 ~
State

Ava % | a b l e H/W Commands ~ Functions

o Models
State Variable(s)/

10/14/2003 MDS 32

= Parachute Status Estimator Example -

Parachute Status SV Estimator

Drag Coefficients
consistent with Parachute
is DEPLOYED
l STOWED
Changes to: DEPLOYED . Pyro Switch is'
PyroSwitch is ISOPEN CLOSED
OR
Pyro Switch is Failed Open
OR
Drag Coefficients NOT consistent .
with Parachute is DEPLOYED Drag Coefficients
consistent with
Pyro Switch is Parachute s
ProbablyClosed DEPLOYED
OR
Probably \ e
CLOSED Deployed TR
Pyro
Switch SV|
eventNotify
Atmospher | eventNotify l Parachute | Update State [T Parachute
Status SV Status SV
Estimator -y
get State

10/14/2003 MDS 33

——. Measurements, Models, and their use

10/14/2003 MDS 34

Measurements, Models, and their use

it Cont. L

e Hardware devices such as sensors provide raw information

e This raw information is processed by local software interfaces that
represent system hardware called Hardware Adapters (HA)

e HA are the only elements that interface with system hardware and
process raw sensor data

e One HA for every required software interface fidelity
e For example, one for physical h/w and one for each simulation fidelity

¢ |solates the controlling system from platform specific interfaces

10/14/2003 MDS 35

Example of Measurements, Models, and
il their use

e Parachute Deploy Pyro Switch Status Measurement

Parachute
Status SV

eventNotify 1

Parachute [méasurements |:5 Parachute | Update State
eploy Pyr —

ABRU

*The switch measurements shall be represented as follows

-Deployment time stamp
-switch position
-health

Parachute
ploy Pyr

J

Measurement Constituents:

Pyro switch measurement is as follows:

1. Deployment time stamp (Ephemeris Time Frame)
2. 2-bit Integer representing switch position;
0= OPEN, 1= CLOSED, 2= Failed

B e e it

Parachute Deploy Pyro
Switch SV Estimator

Parachute is Deployed
OR

PyroSwitch measurement is
consistent with switch measurement
odel for position CLOSED

Parachute is
ProbablyDeplqyed

Parachute is D¢
OR
PyroSwitch measyrement
is consistent with switch
measurement model Yor
position CLOSED

Parachute is Deployed
OR

PyroSwitch measurement is consisgent
with switch measurement mode! i
position CLOSED

_ ==~ " PyroSwitch is CLOSED or ProbablyClosed AND
Parachute is Deployed with persistence
OR
PyroSwitch measurement is not consistent with
switch measurement model for position CLOSED
with persistence

Failed
Open

Probably
Closed

10/14/2003 MDS 36

= Alternate approaches to Estimator desig

Example of Measurements, Models, and their use Cont.

e Table
Pyro Switch Measurement
Open Closed Failed
Probably
Stowed ISOPEN ISOPEN
Closed
Parachute
Probabi Probabl Failed
Status y Y CLOSED
State Deployed Closed Open
Failed Failed
Deployed CLOSED
Open Open

n.IPL

e Hypothesis testing algorithm

Estimator will distinguish between the different operating and failure modes
If (F_PyroSw(CLOSED) equals Measurement Sw Position) and
Parachute Status is (Deployed or ProbablyDeployed)
return (CLOSED)
If (F_PyroSw(ISOPEN) equals Measurement Sw Position) and
Parachute Status is Stowed
return (ISOPEN)
If (F_PyroSw(ISOPEN) equals Measurement Sw Position) and
Parachute Status is (ProbablyDeployed)
return (Probably Closed)
If (F_PyroSw(CLOSED) not equal to Measurement Sw Position) and
Parachute Status is (Deployed)
return (Failed Open)

® The point here is that algorithm design is business as usual

10/14/2003

MDS 37

Netoral Asranautios and
Space Adminisestion

Jot Proputsion Laborusory
Caltiornia (natitas of Technology
FPasadena, Catoria

State Knowledge Patterns

e Distillation Pattern (Estimator to Estimator Pattern)
e Estimation is staged
e The output products are distilled “measurements” dependant on fewer states
o Later estimation stages take advantage of state information already extracted

Distilled

measurements

Estimaton]

=

e For example, Terrain Map State Variable

Camera measurements are
functions of camera model

Stage-1 estimator

processes evidence

(meas. and SV’s)

Distilled measurement
not dependent on

camera model

Mode

Stage-2 estimator

updates state

i Estimator

I I
I I
I |
| ight HazCar} |
ight HazCarg
I Model Hg’gﬂ' |
l Parameters |
- ‘ l .S SV update I |
szzg:m l get State State I
) y
Ha I ‘ {11 Stage-1 J“‘% i 1 Stage-2
‘ jistimator l ‘l = stimator
Left measurements
HA get State, update
Left HagCam l State |]
Meghurekpent l ﬂHazCanﬂ l l
““““ Model ft HazCany
I Parameters | E Health | |
i [1

10/14/2003

SV

JPuU

MDS 38

T State Control

10/14/2003 MDS 39

iy State Control Cont. e

e Control is defined as closing the loop through State

e Architectural Theme; State determination is considered separately from
State Control

e State control is in the business of getting what you want
e Controllers are the achievers of state control

e Similar properties to estimators in that they are both Achievers,
however

® ¢ Controllers know how to control a state (not determine it)

10/14/2003 MDS 40

(]
il State Control Cont. S

e They meet the objectives given to them regarding the state of the
system under control

e Controls what they know through state

e Controller design can be modal (state machines) or what ever makes
sense

e Describes and captures the required behavior
e Adaptation specific

e Controlling algorithms
e Can be simple or complicated such as Terrain Hazard Avoidance
¢ Driven by need and performance

10/14/2003 MDS 41

e
il State Control Cont. L

#7 e Real-time execution

e Control of state can be periodic or event/data driven

e For example a Wheel Motor Controller runs periodically
at 4 Hz and has also subscribed to Wheel Position SV
and Wheel Motor Health SV.

eventNotify

 Under nominal conditions (motor “is healthy”) wheel Wheel | 5150 o
motor controller executes cyclic o ..

» However if at any time the motor becomes “unhealthy”,
controller will run on motor health state notification and
safe the motor.

e Controllers are the only MDS elements that can control state

® Controllers are the only MDS elements that can issue commands to
hardware

10/14/2003 MDS 42

o
e State Control Cont. -

e Controllers are responsible for achieving a requested state constraint

e Controllers are goal achievers because they work to satisfy a
constraint on the value of a state variable

e Intent is specified through Goal (Constraint on State)
e For example “Deployed Parachute” or “Pyro Switch is Closed”

e Controllers are told “what” to do, they determine what “actions” to take

“The. What” - f £
Goal Ty ' Commands tO‘hafdware

as needed

10/14/2003 MDS 43

=== Commands, Models, and their use JPL

control Loo,,

10/14/2003 MDS 44

—= Commands, Models, and their use Cont P4

e Hardware devices such as actuators (and some sensors) require
actions in order to initiate their state transition

e \We call these actions Commands
e For example “Closing Pyro Switch”, “Opening Thruster Latch Valve”

® These commands are processed by local software interfaces that
represent system hardware called Hardware Adapters (HA)

e HA are the only elements that interface to all system hardware; sensors
and actuators

Controlling System System Under Control

Measurements Bit sensor info.

Commands Command bit info.

10/14/2003 MDS 45

= Example of Command, Models, and use- -

e Parachute Deploy Pyro Switch Command and Model

Parachuts |
Status SV]

eventNotify l
11 Parachute | Update State Parachute

Deploy Pyro eploy Pyrd

¥ h Sauitoeh SV

get State

*This command changes the position of the pyro switch

cuncut

-Switch Position. Range: Close, Open

sCommand Constituents: E

—_—
cominand

Notify

Controller

A' Parachute is Deployed

AR

switch measurement for position CLOSED AND
Switch Command Model is consistent with last
command to close switch

5 &;‘ o
T

LR,
SRS
et
s
S

el

Parachute is
ProbablyDeployed
OR

Notification of Close switch
command

Probably
Closed

Parachute is Deployed with persistence
OR

PyroSwitch measurement model is not
consistent with switch measurement for position
CLOSED with persistence

e-ts ProbablyDeployed OR
\otlf cation of Close switch command

0/14/2003 MDS 46

e
el State Control Patterns Sl

e Controller to Hardware Adapter Pattern

This is the normal control pattern

A state variable can only be controlled by one controller
Controllers can control multiple state variables

Only Controllers can send commands to hardware adapters

get commands

1 State ‘
SV Controllet—— | Hardware
Adapter

e Delegation of Control Pattern

e Control is staged and coordinated
o Controllers delegate authority to other Achievers
¢ Delegation nesting can be as deep as needed
¢ All coordination done via Goals

constraints

i Achiever _.—__i Controllet

10/14/2003 MDS 47

Natoret and
Space Administration

iy State Control Patterns Cont.

e Two delegation sub-patterns

constraints

_—

o Controller to Controller coordination i Controlle

Controlle

e For example; Need to control spacecraft attitude with thrusters

CMDs
. Thruster_1 —_—» Thruster_1
Constraints gg Controller ———-—i HA
CMDs
Attitude Thruster_2 —_ Thruster_2
Controller E HA
Controller oMD
Thruster_3 _-S—> Thruster_3
Controller HA

constraints

e Estimator to Controller coordination i Estimator|————————

Controlle}

o For example; Need to park rover and update traversing terrain

Constraints

Constraints Rover P&H __|—> To Wheel Motor Controllers
Controller
Terf'am Tozard CMDs Hazard
Estimator |-—— Camera_l |——————= Camera_l
| HA
Hazard | ﬂ_, Hazard |
Camera_ 2 |— — Camera_2

See Session-6 for more details on delegation and goals

10/14/2003

AP0

MDS 48

== Command Sequence vs. Goal Network P

Command Sequence

e Specifies commands to be
executed at specific times

e Multiple sequences can run
concurrently

e Original operator intent not
expressed in sequence

e Sequence planning depends on
good predictions of state

e Fault protection is designed
independently

Open-loop control) (Closed-loop control)

10/14/2003 MDS 49

0G San £00e/vL/0)

uoIsSnjauo 9 —

1G SAW

€00c/viioL

- ‘JUOY UOISN|IUOY)

&

Agrormigics
Space Adminstration

iy Conclusion Cont. A

and

~ e Control is defined as closing the loop through State, with State
Determination considered separately from State Control

e Estimators and Controllers are the Achievers of state knowledge and
control

e State knowledge and State Control are specified through Goals

e Patterns help coordinate state control and knowledge

10/14/2003 MDS 52

e
— MDS Team (a partial list) -PL

Pasacena.

I

® MDS Program Office Manager Allan Sacks

® MDS Project Manager.............................. John Lai

® Chief Architectccc... Robert Rasmussen
e Chief Programmer Kirk Reinholtz

e Systems Engineeringlead Sandy Krasner

e BuildManagercoooiiiiciiiiiin. George Rinker

e Mission Planning & Execution Lead............. Tom Starbird

e Data Management/Data Transport Lead David Wagner

e Simulation & TestLead Mohammad Shahabuddin
e Component Architecture Lead Nicolas Rouquette
® Software Engineer...................cccoe il Kenny Meyer

® Deputy Architectocoiii. Dan Dvorak

10/14/2003 MDS 53

