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n Outline 0 4 
I. Introduction to Jet Propulsion Laboratory 
a Challenges of space mission flight software 

Timekeeping, timing, coupling, relativity, . . . 

Mission Data System 
0 Project Golden Gate 

Rocky 7 rover testbed 
Programming model 
Performance benchmark suite 

Shaping the Future 
Better tools 
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JPL business summary 4ir 
JPL 

@$I .4 billion business base 

05400 employees and contractors 
01 77 acres 

0 134 buildings and 57 trailers 
0670,000 net square feet of office space 
0860,000 net square feet of non-office 
space (e.g., labs) 

Mtssion Data System 

Q Sixteen JPL spacecraft, and four major 
0 J= instruments, now operating across the solar svstem 

I Stardust returning comet dust 
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Mission Data Sy 

f Studying neiahborina solar svstems 

Space Interferometry Mission (SIM), to launch in 
2009, performs astrometry of extra-solar planets 

. -. . --.- I IUS I Y L  I I I  mu=~ I I r ‘ I ,  tu iduiiui 111 L U  ID, 

-1 
-r- - 1 performs spectroscopy of extra-solar planets. 

4 



Significant recent and future events 

2001 Mars Odyssey 
began mapping 
February 2002 

GRACE Earth gravity GALEX ultraviolet 
measuring mlssion observatory launched 

launched March 17,2002 April 28, 2003 

NASA Infrared great 
observatory SIRTF launch 

in August 2003 

Mars Exploration Rovers Stardust captures CassinUHuygens 
launch Summer 2o03, material from Comet arrives at Saturn 
arrive January 2004 Wild In January July 2004 

2004 

Genesis solar wind Cloudsat launch 
sample return November 12, 2004 

September 2004 

Mission Data System 0 

Technology and Engineering QQ 
JPL is a world leader in key areas critical to deep space exploration 

End-toend system engineering 
and project management 

Deep space 
communications Dnep space navigation and highly stable 

clocks 

Extreme precision formation 
flying for Science and 

rendezvous 
Active sensors for mapping and positioning 

(SAR. altimeters. GPS) 

Hiah precision spacebome systems in 
oot i~a l  to sub-millimeter. including 

interferometry 

rn 
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Mission Data S y s t e m 0  

A renaissance in space exploration in the 2lSt Century; 
Analogous to Quattrocento and Cinquecento Florence 

Searching for water and 
former or extant life: 

Mars 
Europa 
Small bodies (comets, asteroids) 

I. Characterizing extra-solar 
planets 

Understanding stellar and 
galactic evolution 

I. Understanding dark matter 
and “dark energy” 

I. Searching for gravity waves 

Some Challenges of 
Space Mission Flight Software 
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Mmslon Data 

Hydrobot in Europa Ocean 

15 
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Mission Data System 

JPL 

Characteristics of Deep Space Missions 

Explore in uncertain environments 

0 Conduct in situ science investigations 

e Operate far from Earth 

Survive for decades (in some cases) 

e Operate semi-autonomously 

Mission Data S 

Problem Domain 
JPL Common Characteristics (1) 

Infrequent, scheduled communication 
0 The ‘network’ is not continuously available due to DSN constraints 

and spacecraft activities that compete for power and pointing. 

.Distance and Time Delay 
0 With a -10 hour round-trip light-time delay to Pluto, it’s impossible for 

operators on Earth to react to events in a timely manner. 

Distance and Communication Rate 
With a data rate of -300 bitslsec from Pluto, it isn’t feasible to send 
- all of the raw science data; prioritizationlsummarization is needed. 

Distance and Pointing 
0 When transmitting, need to point antenna at where Earth will be 

when the signal arrives, not at where it is now. Vice versa for 
receiving. 
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Mission Data System 6 

Distance, Data Rate, Time Delay Q q 4P 
-lPl- 

Effect of distance on data rate for X-band RF communication 
with 5 watts transmitted power from a 2-meter spacecraft 
antenna into a 70-meter ground antenna 

200 kbp: 

150 kbps 
Q) 

m 
rY 100 kbps 
m 
m 
0 

* 

c) 

50 kbps 

I 
I ‘ 8  1 

Mars Jupiter Saturn Uranus Nebtune PlGto 
1 5 A U  5 2 A U  Sl5AU 19 2 AU 30 0 AU 39 5 AU 

19 AU = Astronomlcal Unit = mean Earth-Sun distance 

Mssion Data System 

Computing: Flight vs. Ground 0 ql #iF 
JPI- 

Gulf between flight processors and ground processors due 
to radiation-hardening, long cruise times, and Moore’s Law 

100,00( 

20,OOC 

400C 
5 

800 

160 

0 

1999 2002 2004 2006 2008 2010 2012 

When spacecraft reaches Pluto in 2012, running a 242 Mip processor, 
desktop computers will be running at 100,000 Mips! 

20 
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Problem Domain 
JPL Common Characteristics (2) 

Special Relativity and Time Dilation 
0 Though spacecraft velocity is a tiny fraction of lightspeed, navigation 

must take relativistic effects into account. 

Limited Flight Processor and Memory 
0 Radiation-hardened flight processors are years behind mainstream 

commercial processors. Flight software must be frugal with CPU 
cycles and memory. 

Cru ise  Time and Moore’s Law 
The disparity between flight and ground processing abilities grows 
with every year of cruise time. 

Limited Resources and Tight Coupling 
0 In a resource-limited system, ‘everything affects everything’. 

@ JPL The World of Side Effects 

Turning on a disk drive has fhe following side effects: 

*It reduces available power 

*It causes heating 
*It causes vibration 

*It causes electromagnetic radiation 

*It imparts rotational torque 
*It stabilizes orientation around axis of rotation 

In a server room on Earth, these side effects are negligible. 

In a spacecraft, every one of these side effects is significant 
and must be managed! 
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The Problem: 

Physics has no respect for our mental simplifications 
“Side effects” (couplings) are everywhere 
And we can’t ignore them in some control systems 

- Designed interaction - Side effect 
23 

J R  

Mission Data System 

JTRES 2003 
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Mission Data System 0 

JPL Risk due to 0 Q 
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Comolex 
COUPLING 

Linear 

m 
Nuclear plant Dams I 

I 

i Space missions 

Aircraft 
m 

Power grid? m 

m m 
Marine transport i Chemical plants * .  m 

Rail transport 
m i 0 

Airways i Military early-warning 
-------I--_-_-_-___-___I____. 

- 1  

Junior college i Military actions m 
Trade schools i -Mining 

R&D f i r g  m 
Most manufacturing 

Universities Post 0“ m 
m 

JFL Coupling in Space Systems 

Complex couplings arise from physics and design 

Amount of mass launched determines a big mission cost 

Therefore, minimize size of batteries, size of solar panels, 
amount of memory, articulation mechanisms, shielding, 
smaller antenna, low-power transmitter, etc 

That means: 
Slower CPU and busses and less memory 
Can’t drive and transmit concurrently 
Can’t run heaters while firing thrusters 
Can’t independently point camera and antenna 
Lower signal-to-noise ratio, so lower data communication rates, so 
science downlink is limited 
Must hold reserve power for surviving the night 

26 
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Mission Data Svstem n 

-n=x Coupling in Space Systems 

Thermal 
\ Pro pu Is ion 

Attitude 

Commands 
& Data 

Telecom 

* Some domains of concurrent design in JPL’s Project Design Center 

Mission Data 

JPL Control System Domain 

Characteristics: 
Interacts with world via imperfect sensors & actuators 

0 Designed for continuous operation 
Real-time closed-loop control 

0 Embedded systems, often 

Examples: 
0 Petroleum refining 
0 Pharmaceutical manufacturing 

Nuclear power plant 
0 Spacecraft control 
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Feedback Control System 

Process 
b 

input variables 

- 
controlled 
variable 

* Diagram from “Software Architecture: Perspectives on an Emerging Discipline”, Shaw & Garlan, 1996 

29 

Addressing the Couplings 
A State/Model Architecture 
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Mtsson Dala S 

Jm Managing Interactions 

Interactions often cross subsystem boundaries 

Managing interactions is key to good design 

Need to elevate interactions to architectural level 

Need to describe how one thing affects another 
The variables are states 
The equations are models 

Example Spacecraft States 6ir 
JPL 

Dynamics 

E nvi ro n men t 

Device status 

Parameters 

Resources 

Data product collections 

Data management policies 

Externally controlled factors 

Vehicle position & attitude, gimbal angles, wheel rotation, ... 

Ephemeris, light level, atmospheric profiles, terrain, ... 

Configuration, temperature, operating modes, failure modes, . . . 

Mass properties, scale factors, biases, alignments, noise levels, .. . 

Power & energy, propellant, data storage, bandwidth, . . . 

Science data, measurement sets, . . . 

Compression/deletion, transport priority, . . . 

Space link schedule & configuration, ... 
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Mission Data 

Example Spacecraft Models ## 
-Ipc 

Relationships among states 
Power varies with solar incidence angle, temperature, & occultation 

Temperature data depends on temperature, but also on calibration parameters and 
transducer health 

It can take up to half a second from commanding a switch to full on 

Some sequences of valve operations are okay; others are not 

Accelerating to a turn rate takes time 

If there bas been no communication from the ground 
in a week, assume something in the uplink has failed 

Pointing performance can't be maintained until rates are low 

Reaction wheel momentum cannot be dumped while being used for control 

Relationships between measurement values and states 

Relationships between command values and states 

Sequential state machines 

Dynamical state models 

Inference rules 

Conditional behaviors 

Compatibility rules 

J P L  StatelModel Architecture " 
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Architectural Relationships 

supplier 

evideme suurce 

issuer 

mtrolled 

The color coding conveys similarities. e.g., estimators and controllers are goal achievers, 
sensors and actuators are devices, measurements and commands are time-tagged items. 

35 
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Project Golden Gate 
Moving toward real-time Java in flight software 
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Golden Gate in context 

Stakeholders: 

Architecture: 

Implementation: dl kl 
Testbed: I MDS ~ i n s t r m  1 I SCROVW] I ~ d d e n ~ a t e  I 

Mission Data S 

Project Golden Gate 4ir 
J# 

What: 
A collaboration among NASA (JPL), academia (CMU), 

An evaluation of real-time Java (RTSJ) and real-time Linux 
and industry (Sun), with HDCP participation 

for flight systems 

0 Why: 
RTSJ is a significant step for real-time community 
RTSJ is relevant to NASA’s spacecraft, rovers, etc 
RTSJlLinux may help improve dependability over C++NxWorks 

How: 
Do thorough technical assessment w.r.t. flight mission criteria 
Actively work to retire the risks 

Influence evolution of the specification 
Feedback to vendors 

e Adjustments to programming model 
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JPL Overview 
Approach 

Evaluate real-time Java against FSW demands - Targel challenges cited In Nov 1999 JPL lewn 
'"Using Java for FligM Implemematlon" 

Use MDS frameworkkode as a testbed 
* a roverfunQionalny as MDSIC++NxWorks . Side-by-side pelfomance campanson 

Leverage Distinguished Visiting Scientists - Dr James Gosling. creator of Java, Sun Microsystems . Dr Greg 8011e118. lead of RTSJ. Sun Micmsy~tem~ 

Work Plan 
FY 2003: 

*Install Linux/RT and RTSJ JVM on Rocky7 

*Prototype. run, and measure major MDS components 
*Run AFRUBoeing test suite for RTSJ 

FY 2004: 

Extend to run full MSL test scenario on Rocky7 

Compare performance to C++NxWorks version 

:Complete evaluations on latest product release 

A Modern Software Platform for 
Real-Time Embedded Systems 

Real- l i re  programming language 

1 RT ~i~~~ If- Real-time operating system 

( RTSJ = R e a l - T i m  SpeuficatiOn for Java ) 

Evaluation Criteria 

Performance measurements . CPU usage 
Throughput 
Real-time response 8. timing jitter 
Cache hit ratio 

b Maturity of RTSJ and RT Linux technology 

* Multi-language development 

* Application development effort 

Mission Data System 0 

JPL Rocky 7 Hardware QQ 
6 driving motors 

2 steering motors 

3 stereo camera pairs 

3-axis accelerometer 

1 -axis gyroscope 

2 DOF arm w l 2  DOF scoops 

3DOFmast 

PPC 750, 256 MB RAM 

Camera frame-grabber 

Digital I/O 

Compact PCI backplane 

40 
& 
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Software Overview 

Flight Software 

I. 

4il A m  Application Software m 

1 Slate Variable 
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JFJL The Software Inside 

We have converted a substantial 
body o f  MDS/MSL software from 
C++ to RTSJ and run it on Rocky7 

and learned o lot in the process 

Amount of software in repository : 

31packages 

343classes 

2003 functions 

13,000 non-comment source statements 

Rocky 7 

-- I 

MDS Framework packages: 
Components & connectors 
Data catalog 
Value history 
Data transport 
Math 
Physics 
Resources 
State knowledge 
Goal achievers 
Goal network 
Component scheduler 
Hardware adapter 
State types 
Utilities 

Rocky7 adaptation packages: 
LM 629 device 
PCl device 
S72Qdevice 
Motor 
Motor srmulator 
Position & heading controller 

E AnguJarposit/on 
--̂ .-̂ ll---ll- 1_1 - _I. _" 

Mfsslon Data 

4ir Ha- Performance Benchmark Suite 

=Performance metrics 
Support comparisons among 3 platforms: 

. Focused measures: interrupt response latency, jitter, 
scheduling and dispatching overhead, garbage collection 
execution, and processor throughput, including 
nu mericall y-i ntensive computation . System-level measures: CPU utilization, cache hit ratio, 
memory footprint, and language-induced overheads, such 
as the necessity of moving data among RTSJ's different 
memory areas. 

* RTSJ = Real-Tlme Spxfimlon for Java 44 
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a Conclusions 

JPL is interested in architectures, languages, and tools 
that help us build complex and reliable space mission 
software 
Golden Gate is paving the way for a new flight software 
platform for future missions 

The Suramadu performance benchmark is offered to the 
real-time community as a way to help all of us to 
compare and influence commercial tools to meet our 
needs 

Questions? 

Artist 's conception: 
A Mars sample-return missic 
blasting off from Mars 

m 
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End 
The remaining slides provide background on RTSJ 

RTSJ and its Effects on Program 

Design 
(RTSJ = Real Time Specification for Java) 

Dan Dvorak 
May 6,2003 

Daniel.Dvorak@jpl.nasa.gov 

(Some slides from Greg Bollella, of Sun Microsystems Laboratory) 
JTRES :!003 
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JPL Outline 

RTSJ Overview 

Main features of RTSJ 
0 Effects on Program Design 

Other approaches to real-time Java 

MiSSlOn Data S 

JPL Java for Real-Time Svstems ??? 
1 ... 

Java Technology was not intended for real-time systems 
because: 

Requires run-time garbage collection 

Supports threads, but no scheduling control 

Synchronization delays unpredictable 

Very coarse timer support 

No event processing 

No safe asynchronous transfer of control 
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0 Predictable Execution 
“hold predictable execution as first priority 
in all tradeoffs” 

e Backward Compatibility 

a No Syntactic Extensions 

Support Leading-Edge Scheduling 

Appropriate for any Java platform 

Existing Java programs run on RTSJ implementations 

No new keywords or other extensions to Java language 

Priorities considered harmful 

J2ME, J2SE, J2EE, ... 

JPL Observations about RTSJ 

*Virgil Champlin, CMU West 
Application programming model: RTSJ vs. Java 

Brian Giovannoni, CMU West 
Core libraries, JERI, scoped memory, ... 
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RTSJ Preview 

RTSJ = Real-Time Specification for Java 
Nov. 2001 : JCP approved RTSJ 1 .O 
Jan. 2002: Reference Implementation 
Mar. 2003: TimeSys JTime product 

0 RTSJ allows real-time applications to be coded in Java 
without interference from garbage collector 

0 RTSJ allows developers to reason about time 
Periods, costs, deadlines, overrun handler, . . . 

RTSJ Features @ 
J R  

Full Java capability 

0 Threads (Real ti meT h read, No H ea pReal t imeT h read) 

0 Asynchronous Event handling 

0 High resolution time 

Precise Timer support 

Asynchronous Transfer of Control 

Flexible memory management 
Makes using Java heap optional 

Avoids or controls garbage collection under application control 

e Raw memory access (e.g., memory-mapped I/O) 
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RTSJ: Why should you care? @ 
JPL 

It’s interesting technology for real-time systems 

RTSJ may become the default language for embedded 
systems at JPL 

Some of your code may have to run in soft real time or 
even hard real time 

“I expect The Real-Time Specification for Java to 
become the first real-time programming language to be 
both commercially and technologically successful.” 

E. Douglas Jensen, in Foreword of RTSJ book 
55 

Msslon Data 

Def i nit ions 6ir 
x 

Real-time (system or code): A system (or code) which requires that 
computation have temporal correctness criteria in addition to functional 
correctness criteria 

Hard real-time: A real-time system which requires that the temporal 
correctness criteria are always met (often, incorrectly IMHO, defined as 
‘less than n time-units latency’) 

Soft real-time: A real-time system which requires that the temporal 
correctness criteria are almost always met (often, incorrectly IMHO, defined 
as ‘more than n time-units latency’) 
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@ J R  Concrete Examples 0 q! 
Temporal correctness criterion: A deadline 

Hard real-time: All computation must be complete at or before its 
deadline (or the system goes into an abnormal state) 

Soft real-time: Computation is allowed to complete after its 
deadline (the really interesting questions are: by how much and 
how often) 

Memorv Areas 
- Normal Java heap 
-Accessible by all threads 
- Subject to garbage collecting 
-Prone to execution latencies due to unpredictable garbage collection 

- Limited size memory area that lives until end of application 
-Accessible by all threads 
- Never subject to garbage collecting 
- Unlike heap objects, these exist even when there are no references 

- Limited size, limited lifetime memory areas (think "scratchpad") 
- Never subject to garbage collecting 
- Scope is emptied when no threads have reference to this area 
- Requires application to consider memory management 

- Provides access to a range of physical memory addresses 
- Enables memory-mapped I10 
- Provides accessors to getlset byte, short, int, long 
- Can map a physical address range into virtual memory 

5R 
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- Normal Java thread 
- No scheduling control 
- Cannot be asynchronously interrupted 

RealtimeThread 

RTSJ 

- Temporal demands specified (deadline, period) 
- Processor demands specified (execution & memory costs) 
-Can specify deadline miss handler and cost overrun handler 
-Can run as a periodic, aperiodic, or sporadic 

NoHeapRea,timeThread 

59 

-Cannot allocate or reference objects in heap memory 
- Can always execute in preference to garbage collector 

Mission Data 

JPL Release Parameters (for scheduling) 
I 

Release Parameters 
- Cost (execution time) 
- Deadline (duration following eligible-to-run) 
- Cost overrun handler 
- Missed deadline handler 

n A 

suCCessive unblocks) 

T T 
Periodic 
-start time 
-Period (interval between 

Aperiodic 
Can become active at any time 

Sporadic 1 - minimum interarrival time 
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m1swun "dld JySlem 0 

!!!! Periodic Task in RTSJ vs. RTOS 0 0 
while(true) { 

work(); 
period"ber++; 
startOfNextPeriod=(periodNumber*period)+start; 
t = getTime0; 
if ( t > startOfNextPeriod ) { 

actua1Perio"ber = ceiling((t - start)/p); 
numberOfMisses = actua1Period"ber - 

tokeCareOfMiss(number0fMisses); 

/,"on-atomicity of these stmts is really bad 
/,'on an OS (not so bad on an RTOS) 
t = getTime0; 
sleep(startofNextPeriod - t); 

p e r i o d m e r ;  

1 else { 

1 
1 

?p = new Releaseparameters ( )  ; 
?p.setPeriod(new RelativeTime(l0,O)); 
nH = new missHandler ( )  ; 
periodicThread = New PT(null,pp,mH); 
periodicThread.start0; 

Class PT extends RealtimeThread { 

void run0 f 
while-( true) { 

WOrkO; 
waitForNextPeriod0; 

1 
1 

Class missHandler extends AsyncEventHandler{ 
handleAsyncEvent ( ) { 

} 
takeCareOfMiss0; 

62 
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JPL Asvnchronous Event Handler E 

AsyncEvent 

- addHandler 
- removeHandler 
-fire 

event 

: handler 
b 

I 
O..* 

O..* 

AsyncEvent Handler 

-addlfFeasible 
-handleAsyncEvent 

03 

Mission Data 

JPL Worst Case Execution Time and Scheduling Utilization 

How to calculate the cost of a task? 
Even ignoring hardware issues control flow causes wide variability 

0 For hard real-time, set cost >= WCET but WCET is typically much, 
much greater than average execution time. 

RTSJ structures help equalize control flow 

64 
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Mission Data S 

normalCaseLittleWork = new AsyncEventO; 
normalCaseLittleWork.addHandler(new normalH); 
errorCaseLotsOfWork = new AsyncEventO; 
errorCaseLotsOfWork.addHandler(new errorH); 

B = readDevice0; 

if (notError(B)){ 

1 else { 
norma:.CaseLittleWork.fire() ; 

error(!aseLotsOfWork. f ire ( ) ; 1 

B = readDevice0; 

if (notError ( B )  ) { 

1 else { 
normalCaseLittleWork0; r errorCaseLotsOfWork0; 

I 

What is the cost? 
WCET includes error case 

Misrinnn.(.Svstam m I _. . 

Increased Scheduling Utilization Q 'Ql 

I 
I Class normalH extends AsyncEventHandler { 

normalCaseLittleWorkO;} 

Class errorH extends AsyncEventHandler { 
errorCaseLotsOfWorkO;} 

Normal and error cases separately schedulable (different 
priorities, deadline, etc.) 
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Mission Data System n 

4ir J R  Crossing the Boundary Q q 
Most applications have a small real-time side and a larger non-real- 
time side 

Data needs to move between these sides 

RTSJ’s memory areas complicate this 

Real-time side 
- Scoped & immortal memory 
- NoHeapRealtime threads 
- Very low jitter 

Non-real-time side 
- Heap memory 
- Java threads 
- Realtime threads 
- Maximized throughp 

Data transfer queues 

JFL RTSJ System Model 
as used in Golden Gate 

a 
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Memory Area Assignment Rules 4iF 
JPL 

-Memory 

Primordial Scope 

I LocalVariable I 

I LocalVariable I 
__.-- I .  ; -. 

Only ifsame, outer, or shared scope 

.............. ................ 

Legend: wm means that X can be assigned a reference to an object in Y 

Primordial Scope 

Legend: means that X can NOT be assigned a reference to an object in Y 
because Y can disappear before X 
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ail Jpc Development Model Comparison 0 'a@ 
iiaiiiiiui 

0 Priorities alone 0 Scheduling and Temporal 
Developer assigns Programming 

0 Decrease utilization when failures 
occur 0 Known utilization bounds 

0 Test as much as schedule will 
allow terms 

0 Processor access relative and 
global 

0 Algorithm assigns 

Temporal requirements in application 

0 Test for overrun cases 
0 Processor access locally determined 

71 

M m m n  Data System 

Summary P$ 
JPL 

0 RTSJ allows real-time applications to be coded in the 

0 RTSJ allows developers to reason about time 

0 RTSJ enables better processor utilization 
0 Memory areas complicate the programming model 

www.rti.orq 

Java language 
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em bedded 

desktops 

Mini-computers 

... c C++ Java RTSJ ... 

0 Special relativity 
1 sec error amounts to x kilometers error 

0 Interferometers and their control loops 
Different time frames: UCT, TAI, . . . 
A comm pass at Pluto: Earth starts transmitting -4.5 

0 Ranging 
LISA mission: formation flying 

hours before spacecraft starts listening, and vice versa 
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State- Based Goal- Dr iven Architecture u# 
JPL 

Planning & 
*.** You are here 

..** 
*.e. 

*.a* 

goals &' 
goal status 

State 
Variables 

Estimators Models Controllers 

measurementh /commands 

Hardware 
Adapters 

75 

& commands 

_ _ _  _ _  _ _  _ _  - - - ._ - _ _ _ _  
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