
Project Golden Gate
Addressing the Challenges
of Space Mission Software

Daniel Dvorak, Ph.D.
Information Technologies and Software Systems Division

Jet Propulsion Laboratory
California Institute of Technology

Pasadena, California
Daniel. Dvorak@jpl . nasa .gov

Misston Dala System 0

n Outline 0 4
I. Introduction to Jet Propulsion Laboratory
a Challenges of space mission flight software

Timekeeping, timing, coupling, relativity, . . .

Mission Data System
0 Project Golden Gate

Rocky 7 rover testbed
Programming model
Performance benchmark suite

Shaping the Future
Better tools

1

Introduction to JPL

I I1HL.S ZU03

J= JPL is one of 4$

(3 bll I1
R-atch Centel

l m e s ResHatc h - center -----
D~yJen Flight Godzlatd Spar-~
R-aich Centei Fllght Cen!er

La nglg .- REsealch Center
b Jet

Lab Kenn* Space Center

I I MarshallSDace
Flight Centk

w, Johnmn
Space Center ' I

Sicnnia
Space Center

I

2

JPL business summary 4ir
JPL

@$I .4 billion business base

05400 employees and contractors
01 77 acres

0 134 buildings and 57 trailers
0670,000 net square feet of office space
0860,000 net square feet of non-office
space (e.g., labs)

Mtssion Data System

Q Sixteen JPL spacecraft, and four major
0 J= instruments, now operating across the solar svstem

I Stardust returning comet dust

3

I I

I I

Mission Data Sy

f Studying neiahborina solar svstems

Space Interferometry Mission (SIM), to launch in
2009, performs astrometry of extra-solar planets

. -. . --.- I IUS I Y L I I I mu=~ I I r ‘ I , tu iduiiui 111 L U ID,

-1
-r- - 1 performs spectroscopy of extra-solar planets.

4

Significant recent and future events

2001 Mars Odyssey
began mapping
February 2002

GRACE Earth gravity GALEX ultraviolet
measuring mlssion observatory launched

launched March 17,2002 April 28, 2003

NASA Infrared great
observatory SIRTF launch

in August 2003

Mars Exploration Rovers Stardust captures CassinUHuygens
launch Summer 2o03, material from Comet arrives at Saturn
arrive January 2004 Wild In January July 2004

2004

Genesis solar wind Cloudsat launch
sample return November 12, 2004

September 2004

Mission Data System 0

Technology and Engineering QQ
JPL is a world leader in key areas critical to deep space exploration

End-toend system engineering
and project management

Deep space
communications Dnep space navigation and highly stable

clocks

Extreme precision formation
flying for Science and

rendezvous
Active sensors for mapping and positioning

(SAR. altimeters. GPS)

Hiah precision spacebome systems in
oot i~a l to sub-millimeter. including

interferometry

rn

5

Mission Data S y s t e m 0

A renaissance in space exploration in the 2lSt Century;
Analogous to Quattrocento and Cinquecento Florence

Searching for water and
former or extant life:

Mars
Europa
Small bodies (comets, asteroids)

I. Characterizing extra-solar
planets

Understanding stellar and
galactic evolution

I. Understanding dark matter
and “dark energy”

I. Searching for gravity waves

Some Challenges of
Space Mission Flight Software

6

1

13

14

7

Mmslon Data

Hydrobot in Europa Ocean

15

I t l

I 16

8

Mission Data System

JPL

Characteristics of Deep Space Missions

Explore in uncertain environments

0 Conduct in situ science investigations

e Operate far from Earth

Survive for decades (in some cases)

e Operate semi-autonomously

Mission Data S

Problem Domain
JPL Common Characteristics (1)

Infrequent, scheduled communication
0 The ‘network’ is not continuously available due to DSN constraints

and spacecraft activities that compete for power and pointing.

.Distance and Time Delay
0 With a -10 hour round-trip light-time delay to Pluto, it’s impossible for

operators on Earth to react to events in a timely manner.

Distance and Communication Rate
With a data rate of -300 bitslsec from Pluto, it isn’t feasible to send
- all of the raw science data; prioritizationlsummarization is needed.

Distance and Pointing
0 When transmitting, need to point antenna at where Earth will be

when the signal arrives, not at where it is now. Vice versa for
receiving.

9

Mission Data System 6

Distance, Data Rate, Time Delay Q q 4P
-lPl-

Effect of distance on data rate for X-band RF communication
with 5 watts transmitted power from a 2-meter spacecraft
antenna into a 70-meter ground antenna

200 kbp:

150 kbps
Q)

m
rY 100 kbps
m
m
0

*

c)

50 kbps

I
I ‘ 8 1

Mars Jupiter Saturn Uranus Nebtune PlGto
1 5 A U 5 2 A U Sl5AU 19 2 AU 30 0 AU 39 5 AU

19 AU = Astronomlcal Unit = mean Earth-Sun distance

Mssion Data System

Computing: Flight vs. Ground 0 ql #iF
JPI-

Gulf between flight processors and ground processors due
to radiation-hardening, long cruise times, and Moore’s Law

100,00(

20,OOC

400C
5

800

160

0

1999 2002 2004 2006 2008 2010 2012

When spacecraft reaches Pluto in 2012, running a 242 Mip processor,
desktop computers will be running at 100,000 Mips!

20

10

Problem Domain
JPL Common Characteristics (2)

Special Relativity and Time Dilation
0 Though spacecraft velocity is a tiny fraction of lightspeed, navigation

must take relativistic effects into account.

Limited Flight Processor and Memory
0 Radiation-hardened flight processors are years behind mainstream

commercial processors. Flight software must be frugal with CPU
cycles and memory.

Cru ise Time and Moore’s Law
The disparity between flight and ground processing abilities grows
with every year of cruise time.

Limited Resources and Tight Coupling
0 In a resource-limited system, ‘everything affects everything’.

@ JPL The World of Side Effects

Turning on a disk drive has fhe following side effects:

*It reduces available power

*It causes heating
*It causes vibration

*It causes electromagnetic radiation

*It imparts rotational torque
*It stabilizes orientation around axis of rotation

In a server room on Earth, these side effects are negligible.

In a spacecraft, every one of these side effects is significant
and must be managed!

11

-Ipc

The Problem:

Physics has no respect for our mental simplifications
“Side effects” (couplings) are everywhere
And we can’t ignore them in some control systems

- Designed interaction - Side effect
23

J R

Mission Data System

JTRES 2003

12

Mission Data System 0

JPL Risk due to 0 Q

p

>
0 z
W
(IJ
U
3

$
4

-

Comolex
COUPLING

Linear

m
Nuclear plant Dams I

I

i Space missions

Aircraft
m

Power grid? m

m m
Marine transport i Chemical plants * . m

Rail transport
m i 0

Airways i Military early-warning
-------I--_-_-_-___-___I____.

- 1

Junior college i Military actions m
Trade schools i -Mining

R&D f i r g m
Most manufacturing

Universities Post 0“ m
m

JFL Coupling in Space Systems

Complex couplings arise from physics and design

Amount of mass launched determines a big mission cost

Therefore, minimize size of batteries, size of solar panels,
amount of memory, articulation mechanisms, shielding,
smaller antenna, low-power transmitter, etc

That means:
Slower CPU and busses and less memory
Can’t drive and transmit concurrently
Can’t run heaters while firing thrusters
Can’t independently point camera and antenna
Lower signal-to-noise ratio, so lower data communication rates, so
science downlink is limited
Must hold reserve power for surviving the night

26

13

Mission Data Svstem n

-n=x Coupling in Space Systems

Thermal
\ Pro pu Is ion

Attitude

Commands
& Data

Telecom

* Some domains of concurrent design in JPL’s Project Design Center

Mission Data

JPL Control System Domain

Characteristics:
Interacts with world via imperfect sensors & actuators

0 Designed for continuous operation
Real-time closed-loop control

0 Embedded systems, often

Examples:
0 Petroleum refining
0 Pharmaceutical manufacturing

Nuclear power plant
0 Spacecraft control

14

Feedback Control System

Process
b

input variables

-
controlled
variable

* Diagram from “Software Architecture: Perspectives on an Emerging Discipline”, Shaw & Garlan, 1996

29

Addressing the Couplings
A State/Model Architecture

15

Mtsson Dala S

Jm Managing Interactions

Interactions often cross subsystem boundaries

Managing interactions is key to good design

Need to elevate interactions to architectural level

Need to describe how one thing affects another
The variables are states
The equations are models

Example Spacecraft States 6ir
JPL

Dynamics

E nvi ro n men t

Device status

Parameters

Resources

Data product collections

Data management policies

Externally controlled factors

Vehicle position & attitude, gimbal angles, wheel rotation, ...

Ephemeris, light level, atmospheric profiles, terrain, ...

Configuration, temperature, operating modes, failure modes, . . .

Mass properties, scale factors, biases, alignments, noise levels, .. .

Power & energy, propellant, data storage, bandwidth, . . .

Science data, measurement sets, . . .

Compression/deletion, transport priority, . . .

Space link schedule & configuration, ...

16

Mission Data

Example Spacecraft Models ##
-Ipc

Relationships among states
Power varies with solar incidence angle, temperature, & occultation

Temperature data depends on temperature, but also on calibration parameters and
transducer health

It can take up to half a second from commanding a switch to full on

Some sequences of valve operations are okay; others are not

Accelerating to a turn rate takes time

If there bas been no communication from the ground
in a week, assume something in the uplink has failed

Pointing performance can't be maintained until rates are low

Reaction wheel momentum cannot be dumped while being used for control

Relationships between measurement values and states

Relationships between command values and states

Sequential state machines

Dynamical state models

Inference rules

Conditional behaviors

Compatibility rules

J P L StatelModel Architecture "

17

Architectural Relationships

supplier

evideme suurce

issuer

mtrolled

The color coding conveys similarities. e.g., estimators and controllers are goal achievers,
sensors and actuators are devices, measurements and commands are time-tagged items.

35

I

Project Golden Gate
Moving toward real-time Java in flight software

18

Golden Gate in context

Stakeholders:

Architecture:

Implementation: dl kl
Testbed: I MDS ~ i n s t r m 1 I SCROVW] I ~ d d e n ~ a t e I

Mission Data S

Project Golden Gate 4ir
J#

What:
A collaboration among NASA (JPL), academia (CMU),

An evaluation of real-time Java (RTSJ) and real-time Linux
and industry (Sun), with HDCP participation

for flight systems

0 Why:
RTSJ is a significant step for real-time community
RTSJ is relevant to NASA’s spacecraft, rovers, etc
RTSJlLinux may help improve dependability over C++NxWorks

How:
Do thorough technical assessment w.r.t. flight mission criteria
Actively work to retire the risks

Influence evolution of the specification
Feedback to vendors

e Adjustments to programming model

19

JPL Overview
Approach

Evaluate real-time Java against FSW demands - Targel challenges cited In Nov 1999 JPL lewn
'"Using Java for FligM Implemematlon"

Use MDS frameworkkode as a testbed
* a roverfunQionalny as MDSIC++NxWorks . Side-by-side pelfomance campanson

Leverage Distinguished Visiting Scientists - Dr James Gosling. creator of Java, Sun Microsystems . Dr Greg 8011e118. lead of RTSJ. Sun Micmsy~tem~

Work Plan
FY 2003:

*Install Linux/RT and RTSJ JVM on Rocky7

*Prototype. run, and measure major MDS components
*Run AFRUBoeing test suite for RTSJ

FY 2004:

Extend to run full MSL test scenario on Rocky7

Compare performance to C++NxWorks version

:Complete evaluations on latest product release

A Modern Software Platform for
Real-Time Embedded Systems

Real- l i re programming language

1 RT ~i~~~ If- Real-time operating system

(RTSJ = R e a l - T i m SpeuficatiOn for Java)

Evaluation Criteria

Performance measurements . CPU usage
Throughput
Real-time response 8. timing jitter
Cache hit ratio

b Maturity of RTSJ and RT Linux technology

* Multi-language development

* Application development effort

Mission Data System 0

JPL Rocky 7 Hardware QQ
6 driving motors

2 steering motors

3 stereo camera pairs

3-axis accelerometer

1 -axis gyroscope

2 DOF arm w l 2 DOF scoops

3DOFmast

PPC 750, 256 MB RAM

Camera frame-grabber

Digital I/O

Compact PCI backplane

40
&

20

Software Overview

Flight Software

I.

4il A m Application Software m

1 Slate Variable

21

JFJL The Software Inside

We have converted a substantial
body o f MDS/MSL software from
C++ to RTSJ and run it on Rocky7

and learned o lot in the process

Amount of software in repository :

31packages

343classes

2003 functions

13,000 non-comment source statements

Rocky 7

-- I

MDS Framework packages:
Components & connectors
Data catalog
Value history
Data transport
Math
Physics
Resources
State knowledge
Goal achievers
Goal network
Component scheduler
Hardware adapter
State types
Utilities

Rocky7 adaptation packages:
LM 629 device
PCl device
S72Qdevice
Motor
Motor srmulator
Position & heading controller

E AnguJarposit/on
--̂ .-̂ ll---ll- 1_1 - _I. _"

Mfsslon Data

4ir Ha- Performance Benchmark Suite

=Performance metrics
Support comparisons among 3 platforms:

. Focused measures: interrupt response latency, jitter,
scheduling and dispatching overhead, garbage collection
execution, and processor throughput, including
nu mericall y-i ntensive computation . System-level measures: CPU utilization, cache hit ratio,
memory footprint, and language-induced overheads, such
as the necessity of moving data among RTSJ's different
memory areas.

* RTSJ = Real-Tlme Spxfimlon for Java 44

22

a Conclusions

JPL is interested in architectures, languages, and tools
that help us build complex and reliable space mission
software
Golden Gate is paving the way for a new flight software
platform for future missions

The Suramadu performance benchmark is offered to the
real-time community as a way to help all of us to
compare and influence commercial tools to meet our
needs

Questions?

Artist 's conception:
A Mars sample-return missic
blasting off from Mars

m

23

End
The remaining slides provide background on RTSJ

RTSJ and its Effects on Program

Design
(RTSJ = Real Time Specification for Java)

Dan Dvorak
May 6,2003

Daniel.Dvorak@jpl.nasa.gov

(Some slides from Greg Bollella, of Sun Microsystems Laboratory)
JTRES :!003

24

mailto:Daniel.Dvorak@jpl.nasa.gov

I

JPL Outline

RTSJ Overview

Main features of RTSJ
0 Effects on Program Design

Other approaches to real-time Java

MiSSlOn Data S

JPL Java for Real-Time Svstems ???
1 ...

Java Technology was not intended for real-time systems
because:

Requires run-time garbage collection

Supports threads, but no scheduling control

Synchronization delays unpredictable

Very coarse timer support

No event processing

No safe asynchronous transfer of control

25

0 Predictable Execution
“hold predictable execution as first priority
in all tradeoffs”

e Backward Compatibility

a No Syntactic Extensions

Support Leading-Edge Scheduling

Appropriate for any Java platform

Existing Java programs run on RTSJ implementations

No new keywords or other extensions to Java language

Priorities considered harmful

J2ME, J2SE, J2EE, ...

JPL Observations about RTSJ

*Virgil Champlin, CMU West
Application programming model: RTSJ vs. Java

Brian Giovannoni, CMU West
Core libraries, JERI, scoped memory, ...

26

RTSJ Preview

RTSJ = Real-Time Specification for Java
Nov. 2001 : JCP approved RTSJ 1 .O
Jan. 2002: Reference Implementation
Mar. 2003: TimeSys JTime product

0 RTSJ allows real-time applications to be coded in Java
without interference from garbage collector

0 RTSJ allows developers to reason about time
Periods, costs, deadlines, overrun handler, . . .

RTSJ Features @
J R

Full Java capability

0 Threads (Real ti meT h read, No H ea pReal t imeT h read)

0 Asynchronous Event handling

0 High resolution time

Precise Timer support

Asynchronous Transfer of Control

Flexible memory management
Makes using Java heap optional

Avoids or controls garbage collection under application control

e Raw memory access (e.g., memory-mapped I/O)

27

RTSJ: Why should you care? @
JPL

It’s interesting technology for real-time systems

RTSJ may become the default language for embedded
systems at JPL

Some of your code may have to run in soft real time or
even hard real time

“I expect The Real-Time Specification for Java to
become the first real-time programming language to be
both commercially and technologically successful.”

E. Douglas Jensen, in Foreword of RTSJ book
55

Msslon Data

Def i nit ions 6ir
x

Real-time (system or code): A system (or code) which requires that
computation have temporal correctness criteria in addition to functional
correctness criteria

Hard real-time: A real-time system which requires that the temporal
correctness criteria are always met (often, incorrectly IMHO, defined as
‘less than n time-units latency’)

Soft real-time: A real-time system which requires that the temporal
correctness criteria are almost always met (often, incorrectly IMHO, defined
as ‘more than n time-units latency’)

28

@ J R Concrete Examples 0 q!
Temporal correctness criterion: A deadline

Hard real-time: All computation must be complete at or before its
deadline (or the system goes into an abnormal state)

Soft real-time: Computation is allowed to complete after its
deadline (the really interesting questions are: by how much and
how often)

Memorv Areas
- Normal Java heap
-Accessible by all threads
- Subject to garbage collecting
-Prone to execution latencies due to unpredictable garbage collection

- Limited size memory area that lives until end of application
-Accessible by all threads
- Never subject to garbage collecting
- Unlike heap objects, these exist even when there are no references

- Limited size, limited lifetime memory areas (think "scratchpad")
- Never subject to garbage collecting
- Scope is emptied when no threads have reference to this area
- Requires application to consider memory management

- Provides access to a range of physical memory addresses
- Enables memory-mapped I10
- Provides accessors to getlset byte, short, int, long
- Can map a physical address range into virtual memory

5R

29

- Normal Java thread
- No scheduling control
- Cannot be asynchronously interrupted

RealtimeThread

RTSJ

- Temporal demands specified (deadline, period)
- Processor demands specified (execution & memory costs)
-Can specify deadline miss handler and cost overrun handler
-Can run as a periodic, aperiodic, or sporadic

NoHeapRea,timeThread

59

-Cannot allocate or reference objects in heap memory
- Can always execute in preference to garbage collector

Mission Data

JPL Release Parameters (for scheduling)
I

Release Parameters
- Cost (execution time)
- Deadline (duration following eligible-to-run)
- Cost overrun handler
- Missed deadline handler

n A

suCCessive unblocks)

T T
Periodic
-start time
-Period (interval between

Aperiodic
Can become active at any time

Sporadic 1 - minimum interarrival time

30

m1swun "dld JySlem 0

!!!! Periodic Task in RTSJ vs. RTOS 0 0
while(true) {

work();
period"ber++;
startOfNextPeriod=(periodNumber*period)+start;
t = getTime0;
if (t > startOfNextPeriod) {

actua1Perio"ber = ceiling((t - start)/p);
numberOfMisses = actua1Period"ber -

tokeCareOfMiss(number0fMisses);

/,"on-atomicity of these stmts is really bad
/,'on an OS (not so bad on an RTOS)
t = getTime0;
sleep(startofNextPeriod - t);

p e r i o d m e r ;

1 else {

1
1

?p = new Releaseparameters () ;
?p.setPeriod(new RelativeTime(l0,O));
nH = new missHandler () ;
periodicThread = New PT(null,pp,mH);
periodicThread.start0;

Class PT extends RealtimeThread {

void run0 f
while-(true) {

WOrkO;
waitForNextPeriod0;

1
1

Class missHandler extends AsyncEventHandler{
handleAsyncEvent () {

}
takeCareOfMiss0;

62

31

JPL Asvnchronous Event Handler E

AsyncEvent

- addHandler
- removeHandler
-fire

event

: handler
b

I
O..*

O..*

AsyncEvent Handler

-addlfFeasible
-handleAsyncEvent

03

Mission Data

JPL Worst Case Execution Time and Scheduling Utilization

How to calculate the cost of a task?
Even ignoring hardware issues control flow causes wide variability

0 For hard real-time, set cost >= WCET but WCET is typically much,
much greater than average execution time.

RTSJ structures help equalize control flow

64

32

Mission Data S

normalCaseLittleWork = new AsyncEventO;
normalCaseLittleWork.addHandler(new normalH);
errorCaseLotsOfWork = new AsyncEventO;
errorCaseLotsOfWork.addHandler(new errorH);

B = readDevice0;

if (notError(B)){

1 else {
norma:.CaseLittleWork.fire() ;

error(!aseLotsOfWork. f ire () ; 1

B = readDevice0;

if (notError (B)) {

1 else {
normalCaseLittleWork0; r errorCaseLotsOfWork0;

I

What is the cost?
WCET includes error case

Misrinnn.(.Svstam m I _. .

Increased Scheduling Utilization Q 'Ql

I
I Class normalH extends AsyncEventHandler {

normalCaseLittleWorkO;}

Class errorH extends AsyncEventHandler {
errorCaseLotsOfWorkO;}

Normal and error cases separately schedulable (different
priorities, deadline, etc.)

33

Mission Data System n

4ir J R Crossing the Boundary Q q
Most applications have a small real-time side and a larger non-real-
time side

Data needs to move between these sides

RTSJ’s memory areas complicate this

Real-time side
- Scoped & immortal memory
- NoHeapRealtime threads
- Very low jitter

Non-real-time side
- Heap memory
- Java threads
- Realtime threads
- Maximized throughp

Data transfer queues

JFL RTSJ System Model
as used in Golden Gate

a

34

Memory Area Assignment Rules 4iF
JPL

-Memory

Primordial Scope

I LocalVariable I

I LocalVariable I
__.-- I . ; -.

Only ifsame, outer, or shared scope

..............

Legend: wm means that X can be assigned a reference to an object in Y

Primordial Scope

Legend: means that X can NOT be assigned a reference to an object in Y
because Y can disappear before X

35

ail Jpc Development Model Comparison 0 'a@
iiaiiiiiui

0 Priorities alone 0 Scheduling and Temporal
Developer assigns Programming

0 Decrease utilization when failures
occur 0 Known utilization bounds

0 Test as much as schedule will
allow terms

0 Processor access relative and
global

0 Algorithm assigns

Temporal requirements in application

0 Test for overrun cases
0 Processor access locally determined

71

M m m n Data System

Summary P$
JPL

0 RTSJ allows real-time applications to be coded in the

0 RTSJ allows developers to reason about time

0 RTSJ enables better processor utilization
0 Memory areas complicate the programming model

www.rti.orq

Java language

36

em bedded

desktops

Mini-computers

... c C++ Java RTSJ ...

0 Special relativity
1 sec error amounts to x kilometers error

0 Interferometers and their control loops
Different time frames: UCT, TAI, . . .
A comm pass at Pluto: Earth starts transmitting -4.5

0 Ranging
LISA mission: formation flying

hours before spacecraft starts listening, and vice versa

37

State- Based Goal- Dr iven Architecture u#
JPL

Planning &
*.** You are here

..**
*.e.

.a

goals &'
goal status

State
Variables

Estimators Models Controllers

measurementh /commands

Hardware
Adapters

75

& commands

_ _ _ _ _ _ _ _ _ - - - ._ - _ _ _ _

38

