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Currently long distance quantum communication is limited by the photon loss. 
We describe a quantum error correction scheme that can increase the e j k t i v e  
absorption length of the communication channel. This device can play the role of 
a quantum transponder when placed in series, or a cyclic quantum memory when 
inserted in an optical loop. 

When we send a photon through an optical fiber of length d, the proba- 
bility of successfully transmitting the photon is given by 

p ( d )  = exp(-ad) . (1) 
Here, the absorption coefficient of the fiber is given by a, which is a prop- 
erty of the fiber. The best fibers have an absorption length, l/a, of about 
30 km. While there can be errors caused by dephasing, the photon losses 
restricts the distance of the secure channel for quantum information trans- 
mission. A quantum repeater has been devised to overcome such a limit'. 
It utilizes entanglement purification and swapping to distribute quantum en- 
tanglement between the two distant par tie^^>^>^. For some schemes such as 
BB845, however, the distribution of entanglement is not need. Instead, one 
can increase the effective absorption length by repeated applying a quantum 
error-correction (QEC) code that recovers photon loss. 

It is known that an arbitrary error at  unknown position in the code word 
can be corrected by a five-qubit encoding. When the position of the error is 
known, so-called quantum erasure channel, an arbitrary error can be recovered 
by a four-qubit encoding6. Moreover, for an error being occurred in only one 
position one can encode two qubits into four. The tweto-four-qubit encoding 
is given by 

100) +-+ (lO000) + (1111))/Jz , 
(01) H (10110) + pool ) ) / Jz ,  
110) ++ (IlOlO) + lOlOl))/Jz, 
111) I-+ (11100) + I O O l l ) ) / J z .  

(2) 

A simple quantum circuit for implementation of the encoding is depicted in 
Fig. 1. 

Suppose now we have encoded two photons into four. In order to have 
any benefit from the error correction, we need to have pen > p 2 ,  where pen 
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Figure 1. A quantum circuit for the two-to-four qubit encoding, which converts the input 
IQ1 ,Qz)  into a four-qubit state, as is given in Eq. (2). 

is the probability of success in transmission of four photons with at most one 
photon loss, given by pen = p4 +4p3( 1 - p ) .  This leads to a necessary condition 
p > 1/3 for the error correction doing any good. We may look at  this in terms 
of an effective absorption length. Using pen and inverting equation (1) we 
have an effective absorption length, l/p, for the QEC as 

D(% d)  = - In(Pen)/d 
= 3a - ln(4 - 3 exp(-cYd))/d . (3) 

Since our QEC encodes two qubits, we compare p with 2a,  to see if our code 
is improving the situation or not. Define the function f(x) with x a d ,  such 
that 

0 3 ln(4 - 3exp(-z)) - 
2cY 2 2s  = f(x) . _ -  _ - -  (4) 

When z < ln(3) FZ 1.1, f(x) < 1, our QEC is increasing the effective ab- 
sorption length for the qubits we are trying to transmit. So, if we make 
d < ln(3)/a the ECC allows us to transmit qubits with higher fidelity than is 
possible without it. Note that lim,,o f(x) = 0, so the absorption length can 
be made arbitrarily large by making d smaller. However, by decreasing d we 
need to introduce more gates, and the gates introduce errors. 

In order to have the QEC work we need to know the position of the error, 
the photon loss in this case. Therefore the ability to check the absence of 
the photons in all four channels are necessary for the QEC. This requires a 
single-photon quantum nondemolition (QND) measurement .7 Now if we only 
consider only one photon or none in a single quantum channel, the protocol 
of quantum teleportation acts as the single-photon QND device (see Fig.2). 
If we include the possibility that two photons are present in a channel, the 
teleportation does not work for single-photon QND.' 

When single photons are present in all four channels, we can skip the 
correction process. Once the absence of the photon is found in one channel, 
a single photon is added in that channel. Whatever the quantum state of 
the single photon that is added, the correction process then will fix the error, 
since the QEC is for an arbitrary error. 
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Figure 2. Single-photon quantum nondemolition measurement based on quantum telepor- 
tation. It works only if we can neglect the possibility of having two or more photons in the 
quantum channel. The initial Bell state is prepared by the two ancilla photons (Hadamard 
gate followed by a CNOT gate). The result of the Bell measurement determines the one- 
qubit gate on the other ancillar photon (X, 2 =_ ug, uz), which completes the teleportation. 
The absence of the photon in the qubit mode can be revealed at this measurement stage. 

Including the single-photon QND, the quantum circuit for the correction 
process is depicted in Fig. 3. Let us consider a two-qubit input state, for 
example, [$in) = 101). The codeword is then I $ e n )  = & (10110) + 11001)). 
Suppose now that the last qubit is lost. The state of the system is given 
by the following density operator p1 = f ( ( O 1 1 )  (0111 + 1100) (loo(), which is 
obtained from the initial state I $ e n )  by tracing-out the last qubit. For the sake 
of simplicity, let us consider the mixed state p1 represented as a probability 
distribution over the pure states, instead of a density matrix. Thus the mixed 
state after the photon loss can be written as 

P1 = {(loll) 1 f ) ,  (1100) 7 f )> .  (5) 
The quantum nondemolition (QND) device that signals the loss of the last 
qubit is followed by a qubit state preparation device (a single-photon gun) 
that substitutes the missing qubit with a new qubit in the ground state IO). 
The new density operator is then: 

Pz = { ( I O l l O )  I $), ( I lOOO) ,$)>. 

P3 = P2 8 100) (001 = { (lO110) 100) 1 ;I, ( I lOOO) 100) 1 i)}. 

P4 = { ($ 10110) [loo) + 101) + 110) + Ill)], $), 
(f  11000) [loo) + 101) + 110) + 111)1, f))}. 

(6 ) 

(7) 

Including the two ancilla bits, the total system is in the mixed state 

After applying the Hadamard transform on the ancilla bits, this becomes 

(8) 
The four controlled-a, (CNOT) and controlled-a, (CZ) operations, fol- 

lowed by the Hadamard transform on the ancilla bits, then yields the mixed 
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Figure 3. Quantum circuit for the error correction that recovers photon loss using two 
ancilla photons. (a) We assume that, for example, the loss occurred in the lower-most 
qubit. The QND box represents a single-photon quantum nondemolition measurement 
device, followed by a single-photon source. Since the code can correct an arbitrary error, 
the single photon from the source can be any certain qubit state. X ,  Z uz, uz, and H 
represents the Hadamard gate. The final one-qubit operations are for the channel where the 
loss has occurred, and depends on the measurement results. (b) Four CNOT (controlled 
by the first ancilla) and four C-u, (controlled by the second ancilla) gates are followed by 
another Hadamard gate and measurement on the computational basis for each ancilla. 

state as 

p5 = { ( $ [ ( l O l l O )  + (1001)) 100) + (lOll0) - (1001)) [ lo ) ) ,  $1, 
($[((1000) + (0111)) (01) + ((1000) - (0111)) Ill)], $)}. (9) 

The measurement outcome of the two ancillze now determines the error- 
correcting operator on the last qubit. Note that the after the measurement 
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of the ancilla photons, the result is always a pure state. Furthermore, all 
the results are equally likely, so this process does not reveal any information 
about the original encoded state. 

We have assumed so far that all the logic gates involved in the error 
correction are perfect. Obviously, when these gate operations are imper- 
fect, the effective absorption length is degraded. In linear optical quan- 
tum computing the two-qubit gates are intrinsically imperfect since they are 
n o n d e t e r m i n i s t i ~ ~ ~ ~ ~ .  The probability of success for the non-deterministic two- 
qubit gate (CZ gate) introduced by Knill, Laflamme, and Milburn, for exam- 
ple, is given by n2/(n + 1)2, where n is the number of ancilla photons. Of 
course, the intrinsic imperfection of the gate operation can be made small as 
possible as we increase the number of ancillar photons. However, it requires 
increased number of photodetectors and the finite quantum efficiency of the 
photodetectors again degrades the quality of the QEC. In our recent work, we 
have analyzed the optimal number of anillar photons to maximize the effective 
absorption length of the quantum channel.” 

This quantum error-correction scheme for photon loss can provide a cyclic 
quantum memory when inserted in a delay-line loop. Recently, Pittman 
and F’ranson developed a cyclic quantum memory device for photons using 
a Sagnac interferometer. This device can fix the error caused by the dephas- 
ing, but the photon loss in the optical fiber still limits the storage time. 

To summarize, a quantum repeater is a device to achieving remote, shared, 
entanglement by using quantum purification and swapping protocols. Our 
scheme, on the other hand, utilizes quantum error correction to relay an un- 
known quantum state with high fidelity down a quantum channel, and can 
be named as a “quantum transponder” or a quantum relay”. For quantum 
key distribution schemes such as BB84, only a transponder is required for 
long-distance key transfer. Furthermore, if the fidelity of the transponder is 
sufficiently high, one can also use it to distribute entanglement by relaying, 
say, one half of an entangled pair. 

Acknowledgments 

This work was carried out by the Jet Propulsion Laboratory, California Insti- 
tute of Technology, under a contract with the National Aeronautics and Space 
Administration. We wish to thank J. D. Franson, G. J. Milburn, T. C. Ralph, 
and C. P. Williams, for stimulating discussions. We would like to acknowledge 
support from the ONR, ARDA, NSA, and DARPA. R.M.G. would also like 
to acknowledge the National Research Council. 

References 

1. H.-J. Briegel, W. Dur, J.I. Cirac, and P. Zoller, Phys. Rev. Lett. 81, 5932 
(1998). 

5 



2. J.-W. Pan, C. Simon, C. Brukner, and A. Zeilinger Nature, 410, 1067 

3. L.-M. Duan, M.D. Lukin, J.I. Cirac, and P. Zoller, Nature, 414, 413 

4. P. Kok, C.P. Williams, and J.P. Dowling, Phys. Rev. A 68,022301 (2003). 
5. C.H. Bennett and G. Brassard, Proceedings of the IEEE International 

Conference on Computers, Systems, and Signal Processing, 175 (IEEE, 
New York, NY, 1984). 

(2001). 

(2001). 

6. M. Grassl, T. Beth, and T. Pellizzari, Phys. Rev. A 56, 33 (1997). 
7. G. Nogues, A. Rauschenbeutel, S. Osnaghi, M. Brune, J.M. Raimond, 

8. P. Kok, H. Lee, and J.P. Dowling, Phys. Rev. A 66, 063814 (2002). 
9. E. Knill, R. Laflamme, and G.J. Milburn, Nature, 409, 46 (2001). 

and S. Haroche, Nature 400, 239 (1999). 

10. J.D. F'ranson, M.M. Donegan, M.J. Fitch, B.C. Jacobs, and T.B. 

11. R.M. Gingrich, P. Kok, H. Lee, F. Vatan, and J.P. Dowling, quant- 

12. B.C. Jacobs, T.B. Pittman, and J.D. Franson, Phys. Rev. A 66, 052307 

Pittman, Phys. Rev. Lett. 89, 137901 (2002). 

ph/0306098. 

(2002). 

6 




