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Outline

* How does spin-spin entanglement transform
under Lorentz transformations?

— Massive case
— Massless case



Spin Entanglement

» Many models for quantum computation use spin degrees of

freedom for qubit
* When we use spin we are implicitly tracing out the momentum

part of the wavefunction, e.g.:
)= 1@lp)75(1) <[V )a’p
pspin = Trp (I W><W |)

* We answer how p;, transforms



Some Definitions

« We define |p,> as the standard momentum state, and
|A> to be some representation of the spin

P“|p,A)=p{|p.A)

* H(p) (nearly arbitrary function of p) 1s a Lorentz
transformation that takes p to p:

IpA)=H(p)p,2)

* H(p) sets the “meaning” of |A» (rest-state spin,
helicity, etc.)



Wigner Rotations

e Lorentz transformation acting on
state:

AlpA)= AH(p)'ps/1>
= H(Ap)H(Ap)" AH(p)p,2)

R(A.p)

* R(A,p) 1s Wigner rotation —
member of the little-group of |p, >

— group of Lorentz transformations
that leave |p, > invariant

|Ap)




Circuit Diagram Representation

p) T p—>Ap

q—>Aq

» Lorentz transformation (on two particles)
represented as a quantum circuit

* Controlled-U gate between spin and momentum
states “mixes” momentum and spin entanglement



Massive Particles

* We use |p, > as the rest momentum and H(p):

H(p)=L(¢,)
p,=(m 0 0 0)

« Corresponds to a little group SO(3), and |A> “rest-state spin”

« For spin-¥2 Wigner o= [EEM coshl £ |+ OSP Goy[ ©
. E'+m 2 E+m 2
rotation becomes: _
psing sinh(éj

p* =(E, psingcos @, psingsin 6, pcosd) ) \/(E+ m)(E'+m) 2
o 'Beio E=\p’+m’
R(p.&)= | : :
— e a E'=Ecosh(—2-j+pcos¢sinh(5]



Massive Spin-’2 Entanglement

« We transform a state, fully entangled in spin, in a
Gaussian momentum distribution (centered about zero):

Concurrence C

Rapidity £

* Above is concurrence (C) as a function of
rapidity (&) for two different spreads.



Massless Particles

* We use |p,> and H(p) (0, ¢ are polar, azimuthal
angles of p):

=R (O)R, (W)L (2

=
G
N

- Corresponds to a little group SO(2)xT(2), and |A> helicity
« The T(2) portion of the little group disappears, so states

f : .
transform as A|P/1> _ 0, A)lp@

* Not yet a very useful form because helicity is meaningless
without momentum (so can’t just easily trace it out)



Massless Particles

o Define components of helicity pA)—>p®¢,
states: l_)t E<O 0 1 il.>
. . . E pP= 0
» The requirements on helicity states: '
& =0

« By reducing the states to “x, y, z polarization” we
can have a meaningful reduced density matrix

— X, Y, Z polarization is analogous to rest state spin
« With this new notation/interpretation can define nice
succinct transformation rule for helicity vectors:
(A, )
=Ag, ———FA
" (ap)




Negativity

So how do we measure the entanglement of a 3-
level system?

Negativity, N(p) = sum of the magnitude of the

eigenvalues of the partial-transpose of the density
matrix

Log Negativity, LN(p) = Log,(N(p))
LN(p) is a measure of the entanglement of
distillation

— Based on the Peres criterion

— Range 1s 0 to 1
— Useful because it is valid for multi-level systems.



Photon Entanglement Results

Helicity entangled photon pair with a Gaussian spread in direction of motion:

LNV (p) 90
0=3
-
=
6:5 t { t $ (0;0) t } $ t é
)= IR aaaribi g b o,

e Log Negativity as a function of rapidity, shown for various
boost directions (6=1.0 , p,=1.0)



Photon Entanglement Results

Helicity entangled photon pair with a Gaussian spread in direction of motion :

Lll\f (o) o=0.1
—— oc=04
I —
/”'\ c=1.0
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« Log Negativity as a function of rapidity, shown for
various beam spreads (=2 n / 5, p,=1.0)




Summary

» Spin behaves differently in relativistic
OM
» Spin and momentum degrees of

freedom can exchange entanglement
when boosted





