
Programming with Non-Heap Memory
in the Real Time Specification for Java

Greg Bollella’, Tim Canham2, Vanessa Carson2, Virgil Champlin3, Daniel Dvorak2,
Brian Giovannoni3, Mark Indicto?, Kenny Meye$, Alex Murray2, Kirk Reinholtz2

1 Sun Microsystems Laboratories
2600 Casey Avenue California Institute of Technology Carnegie Mellon University

MS UMlV29-236 4800 Oak Grove Drive Building 17, First Floor
Palo Alto, CA 94043 Moffett Field, CA 94035

*Jet Propulsion Laboratory

Pasadena, CA 91 109

greg. bollella@sun.com dan iel .dvora k@jpl. nasa .gov champlin@cs.cmu.edu

3School of Computer Science

650-336-1 693 81 8-393-1 986 650-603-7005

ABSTRACT
The Real-Time Specification for Java (RTSJ) provides facilities
for deterministic, real-time execution in a language that is
otherwise subject to variable latencies in memory allocation and
garbage collection. A major consequence of these facilities is that
the normal Java practice of passing around references to objects in
heap memory cannot be used in hard real-time activities. Instead,
designers must think carefully about what type of non-heap
memory to use and how to transfer data between components
without violating RTSJ’s memory-area assignment rules. This
report explores the issues of programming with non-heap memory
from a practitioner’s view in designing and programming real-
time control loops using a commercially available implementation
of the RTSJ.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and
Features - classes and objects, control structures, dynamic
storage management, frameworks

General Terms
Design, Experimentation, Languages.

Keywords
Programming model, scoped memory, architecture.

1. INTRODUCTION
Automatic memory management is one of the biggest benefits of
the Java programming language relative to C++. This capability,
achieved through automatic garbage collection, eliminates a
significant source of programmer error, enabling larger
applications to be developed with fewer defects. A price for this
benefit is that a thread’s execution time and response latency is

Copyright is held by the author/owner(s).
OOPSLA ’03, October 2630,2003, Anaheim, California, USA.
ACM 1-581 13-751-6/03/0010.

non-deterministic because the garbage collector can preempt
application execution at any time. This fact precludes highly
predictable real-time execution in ordinary Java.

The Real-Time Specification for Java (RTSJ) [l] addresses this
limitation through facilities that enable application logic to
execute without interference from the garbage collector. The key
idea is to provide new kinds of Runnable that are guaranteed not
to access heap memory. Such Runnables can preempt the garbage
collector at any time and thus run with high temporal
determinism. Of course, these Runnables need some kind of
working memory, so the RTSJ provides two kinds of non-heap
memory. However, these new memory areas come with some
VM-enforced “assignment rules” to ensure that the garbage
collector’s business is separated from hard real-time activities.
The net result is that RTSJ programmers must confront some new
design issues that go beyond issues of real-time scheduling.

This report focuses on the practical design issue of exchanging
data between hard real-time components. Users of any RTSJ-
compliant virtual machine will confront the same issue and will
have to consider how best to use the RTSJ’s non-heap memory
areas. This report is about application programming, not about
JVM design or about potential changes to the RTSJ. Since
knowledge of the RTSJ is probably not extensive among
OOPSLA attendees, this report includes some background to help
readers understand the nature of non-heap memory areas and their
consequences.

The evolution of real-time garbage collection technology for Java
virtual machines will change the picture for developers of real-
time systems, but that topic is beyond the scope of this report. As
yet there is no commercial product that combines real-time
garbage collection with the RTSJ enhancements for threads,
scheduling, synchronization, asynchrony, and physical memory
access.

2. PROJECT GOLDEN GATE
This report presents some early results from Project Golden Gate
[2,3], a collaboration among Caltech’s Jet Propulsion Laboratory,
Sun Microsystems Laboratory, and the High Dependability

mailto:bollella@sun.com
mailto:champlin@cs.cmu.edu

Computing Program [8] led by Carnegie Mellon University. The
project is implementing JPL’s state- and model-based control
architecture-named Mission Data System (MDS) [4]-in the
RTSJ using the first commercial implementation of the RTSJ: the
TimeSys JTime virtual machine [9]. The JTime VM runs on
TimeSys Linux RTOS, a low-latency version of the Linux
operating system.

The work reported herein occurred as the team designed control
loops for driving and steering a 6-wheel experimental Mars rover
named “Rocky 7”. The rover’s processor is a 300 MHz PPC 750
with 256MB RAM. The rover hardware includes 6 driving
motors, 2 steering motors, 3 stereo camera pairs, a 3-axis
accelerometer, a 1-axis gyroscope, a camera frame grabber, and
five other motors for controlling a camera mast and an arm.

determining if a set of constraints admits a feasible schedule. The
net result in RTSJ, in contrast to purely priority-based systems, is
that scheduling and dispatching can be based on explicit
timeliness information.

Most real-time applications are a mixture of “hard real-time”,
“soft real-time”, and non real-time parts, as shown in Figure 2. In
this report we use the term “hard real-time” to mean that temporal
correctness criteria must always be met. For example, if a hard
real-time computation misses a deadline, the system goes into an
abnormal state. By “sofi real-time” we mean that temporal
correctness criteria are almost always met, so an occasional
missed deadline (for example) is tolerated. By “non real-time” we
mean that there are no temporal correctness criteria. A key point
to understand here is that a single RTSJ-compliant VM can
support systems that mix hard, soft, and non real-time parts.

Figure 1. The Rocky 7 research rover in the
Mars Yard at JPL, with camera mast raised.

3. INTRODUCTION TO RTSJ
Ordinary Java technology is not suitable for real-time systems for
several reasons: no scheduling control over threads, unpredictable
synchronization delays, run-anytime garbage collection, coarse
timer support, no event processing, and no safe asynchronous
transfer of control. The real-time specification for Java, known as
“RTSJ”, addresses these limitations through sevetal areas of
enhanced semantics.

The RTSJ was shaped by several guiding principles. Foremost
among these is the principle to “hold predictable execution as first
priority in all tradeoffs”. Another principle is that the RTSJ
introduces no new keywords of other language extensions. Also,
the RTSJ provides backward compatibility, meaning that existing
Java programs run on RTSJ implementations. Importantly, the
RTSJ supports leading-edge scheduling, going beyond simple
priority-based scheduling.

It’s important to understand that “real time” doesn’t mean “real
fast”. The guiding principle of predictable execution places more
importance on specifying and meeting timeliness constraints than
on raw throughput. Real-time applications must respond to
periodic, aperiodic, and sporadic events, and the RTSJ provides
facilities for informing a scheduler of such constraints and

ny No required. temporal predictability

real-time java.lang.Thread

~ Medium temporal F] real-time RealtimeThread

predictability required.

High temporal predictability
real-time - required.

NoHeapRealtimeThread

Figure 2. Most real-time systems are a mixture of hard
real-time, soft real-time, and non-real-time, all of which

can be supported by a single RTSJ-compliant VM.

The RTSJ extends Java semantics in several areas, as summarized
below. This background information is intended to provide
readers with a broad understanding of how the RTSJ supports
various aspects of real-time programming. Some features of the
RTSJ have been omitted for brevity.

3.1 Threads
The RTSJ introduces two new types of thread that have more
precise scheduling semantics than j ava . lang .Thread.
Parameters provided to the constructor of Realt imeThread
allow the temporal and processor demands of the thread to be
communicated to the system. NoHeapRealtimeThread
(“NHRT”) extends RealtimeThread with the restriction that it
is not allowed to allocate or even reference objects from the Java
heap, and can thus safely execute in preference to the garbage
collector. Such threads are the key to supporting hard real-time
execution because they have implicit execution eligibility
logically higher than any garbage collector.

3.2 Scheduling
The scheduling area in RTSJ provides classes that allow the
definition of schedulable objects, manage the assignment of
execution eligibility of schedulable objects, assign “release

characteristics” to schedulable objects, and perform “feasibility
analysis” for sets of schedulable objects.

As seen in Figure 3, schedulable objects are instances of
RealtimeThread, NoHeapRealtimeThread, and
AsyncEventHandler. Each of these is assigned processor
resources according to its release characteristics and execution
eligibility. As shown in Figure 4, there are three types of
Release Parameters to support periodic, aperiodic, and
sporadic execution. Each of these subclasses contains parameters
needed to determine whether a feasible schedule can be found for
a set of schedulable objects.

4

HeapMemory
- + instance()

ImmortalMemory
- + instance()

Scoped Memory -

AsyncEventHandler

NoHeapRealtimeThread

Figure 3. The RTSJ introduces RealtimeThread,
NoHeapRealtimeThread, and AsyncEventHandler
as new types of Runnable.

Releaseparameters
- execution cost
- deadline
- cost overrun handler
- deadline overrun handler

PeriodicParameters AperiodicParameters
- start time (can become active at any time)

Sporadicparameters
- Minimum inter-arrival time

Figure 4. Release parameters supply processor and temporal
demands needed to determine schedule feasibility.

3.3 Memory Management
The RTSJ contains classes that allow the definition of regions of
memory outside the traditional Java heap. These new memory
areas--called ImmortalMemory and ScopedMemory-are
not managed by a garbage collector. This means that instances of
NoHeapRealtimeThread can use such memory to
communicate results within hard real-time areas as well as
between hard real-time areas and soft- or non real-time areas.

ImmortalMemory is a single memory area that is shared among
all threads. Objects allocated in the immortal memory live until
the end of the application. In fact, unlike standard Java heap
objects, immortal objects continue to exist even after there are no
other references to them. Importantly, objects in immortal
memory are never subject to garbage collection.
ScopedMemory is an abstract base class for memory areas
having limited lifetimes. A scoped memory area is valid as long as
there are real-time threads with access to it. A reference is created
for each accessing thread when either a real-time thread is created
with a ScopedMemory object as its memory area, or when a
real-time thread runs the enter () method for the memory area.
When the last reference to the object is removed, by exiting the
thread or exiting the enter () method, finalizers are run for all
objects in the memory area, and the area is emptied. Objects in
scoped memory are never subject to garbage collection.

The memory management enhancements in RTSJ also include
facilities for access to physical memory, facilities for non-heap
memory allocation in linear time, and facilities for obtaining
information about the temporal behavior of the garbage collector,
such as its preemption latency.

Normal Java heap
Subject to GC
Not accessible by

NoHeapRealtimeThread

Accessible by all threads
Not subject to GC
Objects live until end of

application

Object lifetime limited
Not subject to GC
Scope emptied after all

threads exit it

Figure 5. The RTSJ introduces two kinds of non-heap
memory that are not subject to garbage collection.

3.4 Synchronization
The RTSJ contains classes that allow application of the priority
ceiling emulation algorithm to individual objects; allow the
setting of the system default priority inversion algorithm; and
allow wait-free communication between real-time threads and
regular Java threads. This strengthens the semantics of Java
synchronization for use in real-time systems by mandating priority
inversion control. The wait-free queue classes provide protected,
concurrent access to data shared between instances of
java.lang.ThreadandNoHeapRea1timeThread.

0 *

I 0 .*

3.5 Time
The RTSJ contains classes that allow description of a point in
time with up to nanosecond accuracy and precision (dependent on
the precision of the underlying system), and allow distinctions
between absolute points in time, times relative to some starting
point, and rational time, which allows the efficient expression of
number of occurrences per some interval of relative time.

The time class relationships are depicted in Figure 6. Instances of
AbsoluteTime represent absolute time expressed relative to
midnight January 1 , 1970 GMT. Instances of RelativeTime
encapsulates a point in time that is relative to some other time
value. Instances of RationalTime express a frequency as an
integral number of cycles per an amount of relative time.

I

event

handler

I HighResolutionTime I

AbsoluteTime RelativeTime

RationalTime

Figure 6. High resolution time supports timing with
nanosecond accuracy and precision, subject to the

underlying system’s accuracy and precision.

3.6 Timers
The RTSJ contains classes that allow creation of timer whose
expiration is either periodic (PeriodicTimer) or set to occur
at a particular time (OneShotTimer). RTSJ also defines an
abstract base class for clocks, recognizing that real systems often
have other kinds of clocks (e.g. simulation clocks, user time
clocks), and allows timers to specify such a clock in place of the
default system clock.

3.7 Asynchrony
The RTSJ contains classes for binding the execution of program
logic to the occurrence of internal and external events.
Specifically, an asynchronous event is represented as an instance
of class AsyncEvent or a subclass. An event occurrence may be

initiated by application logic (by invoking the event instance’s
fire () method) or by the occurrence of a “happening” that is
extemal to the JVM, such as a hardware interrupt.

Each instance of AsyncEvent may have one or more instances
of AsyncEventHandler associated, as shown in Figure 7. The
converse also holds: every instance of AsyncEventHandler
may have one or more instances of AsyncEvent associated.
Every time an event occurs, the associated handlers are made
eligible to run; dispatching of the handler is subject to its release
parameters.

Figure 7. Asynchronous events and their handlers can
have a many-to-many relationship in the RTSJ.

4. SOME IMPLICATIONS OF RTSJ
The central problem associated with using Java for systems with
hard real-time requirements is that garbage collection always has
non-interruptible sequences of instructions, the execution duration
of which cannot be predicted. Furthermore, garbage collection
must always be able to enter a critical section, and so any activity
in the system is subject to unpredictable delays waiting for
garbage collection. Memory allocation or de-allocation can cause
a GC critical section to run, but these may run at anytime, not
directly caused by a call to new.

The RTSJ solves this problem with two constructs: the no-heap
realtime thread and scoped memory. The no-heap real-time
thread (NHRT) runs at a higher priority than the garbage
collector, and so is not subject to delays caused by it in normal
threads. Garbage collection is locked out while a no-heap real-
time thread is executing. In fact, an NHRT can preempt the
garbage collector at any time, and so it must not be allowed to
change anything that could affect the state of garbage collection,
including heap memory or any objects allocated from it.

If code running under such a thread needs to allocate memory,
this could lead to a conflict: garbage collection needs to run to
satisfy the allocation request, but garbage collection can’t run
because the no-heap real-time thread cannot tolerate unpredictable
delays. Therefore, the code in the no-heap real-time thread cannot
be allowed to make allocations from memory that is managed by
the garbage collector (Le. the heap), nor make changes to heap,
because these could affect the garbage collector. For each thread
type, Table 1 shows what from kinds of memory it can allocate
objects using ‘new’.

Can thread allocate objects Heap
using ‘new’? Memory
java.lang.Thread Yes

RealtimeThread Yes

NoHeapRealtimeThread No

call the hard real-time boundary. An object allocated in the scope
of a memory area cannot be referenced - is not even visible - to
code running outside the scope of the memory area. An object on
heap, allocated by non-real-time code, cannot be assigned to by
hard real-time code. More formally, the RTSJ defines memory
area assignment rules preclude certain kinds of references from
one memory area to another. These rules are shown in Table 2.

Table 2. The RTSJ’s memory area assignment rules restrict
certain kinds of inter-memory references in order to separate

garbage collection from hard real-time activities.

Immortal Scoped
Memory Memory
No No

Yes Yes

Yes Yes

One solution is to not allow code in no-heap real-time threads to
allocate memory at all, but this is a severe limitation, very
unattractive for Java programming. Another solution is to allow
the NHRT to allocate memory, but only from a pool of memory
that is not under the responsibility of garbage collection, and
which can therefore be allocated from without having garbage
collection eligible to run. This is what the RTSJ does with the
introduction of the scoped memory construct, expressed by the
ScopedMemory abstract class.

A scoped memory area is a block of memory of fixed size that can
be associated with a running NHRT. The NHRT is said to enter
the scoped memory area, and is said to be running in the scope of
that memory area. When the NHRT is running in a scoped
memory area, it can allocate memory from that area in the usual
way, using the new statement. Objects allocated from the memory
area exist as long as some NHRT (multiple NHRT’s can use the
same scoped memory area) stays in the scope of that memory area.
An NHRT leaves the scope either by exiting the scope explicitly
or by finishing execution. When all NHRT’s have exited the
scope, all objects allocated in the scope by any thread become no
longer accessible. But those objects are not garbage collected,
since there is no garbage collector that is responsible for freeing
objects in the memory area. If a NHRT subsequently enters that
scope again, it will be as if no objects were ever allocated in that
scoped memory area.

A NHRT can never allocate more objects in a scoped memory
area than the fixed size of that area. Thus, code running in a
NHRT must be designed up front with known memory allocation
needs that cannot be exceeded.

With this RTSJ solution, it is now possible to know the maximum
amount of time that a sequence of instructions will experience.
This assurance is achieved by running that sequence of
instructions under a NHRT, which necessarily puts the execution
of that code in a scoped memory area.

Compared to the normal Java programming model, programming
with NHRTs and scoped memories is more complicated.
Fortunately, as shown in Figure 2, most real-time systems contain
a relatively small hard real-time part, so the added complexity is
contained. The soft real-time part as well as the non real-time part
can freely allocate memory from the heap, relying on garbage
collection to reclaim those allocations when no longer needed.

The RTSJ solution also has implications for communication
between hard real-time elements and other elements of the system,
especially for information flow from hard real-time to soft- or
non-real-time components. There is a distinct information
boundary between these two types of system elements, which we

Heap

Immortal

Reference Reference Reference to
to Heap to Immortal Scoped

Yes Yes No

Yes Yes No

Yes, if same, I outer or shared Scoped 1 Yes I Yes

So how then, can information computed by hard real-time system
elements be communicated to soft- or non-real-time system
elements? We present our design solutions in Section 6.

5. CONTROL LOOPS IN MDS
Our problem domain is that of real-time closed-loop control of
physical systems. Such control systems are designed for
continuous operation and they interact with the real world through
imperfect sensors and actuators. In our case, these are embedded
control systems that live within the resource-limited world of
planetary rovers and spacecraft.

The design of our control loops is governed by the architecture of
the Mission Data System (MDS), an information and control
architecture that emphasizes explicit representation of physical
states (continuous as well as discrete states), explicit models of
hardware and physical effects, and goal-oriented operation that
enables varying levels of onboard autonomy [4].

As shown in Figure 8, real-time control loops in MDS involve
four kinds of components: hardware adapters, state variables,
estimators, and controllers. There is a hardware adapter for each
controllable hardware unit, and each one provides software
interfaces for sending commands and obtaining measurements. A
state variables is a component that holds information about a
physical state (such as rover position) and whose value history is
made available as telemetry. An estimator interprets
measurements from potentially multiple sensors in order to
generate state estimates. A controller compares current state
estimates to a ‘goal’ (a constraint on the value of a state variable
over a time interval) and issues commands to actuators, as needed,
to influence a physical state.

The dominant data flow around a control loop involves four
flows: controllers query state variables for state estimates;
controllers submit commands to hardware adapters; estimators
query hardware adapters for measurements; and estimators update
state variables. The main challenges in software design for hard-
real-time control loops using the RTSJ involve appropriate use of
non-heap memory for these four data flows. In our case,

coordinated control of the 6 driving motors and 2 steering motors
on the Rocky 7 rover involved 9 control loops, so we were
motivated to find a good general solution.

I State Variable $
state updates/ \state estimates

\ measurements

I Hardware Adapter 8
Figure 8. A simple hard real-time control loop in MDS

involves data flows among four components.

6. SCOPED MEMORY SCRATCHPADS
This section describes some design considerations in how to
handle information transfer between hard real-time components,
and then describes the design we adopted, which we termed
“scoped memory scratchpads”.

6.1 Complexities of Memory Management
The most radical change to the Java programming model when
using NoHeapRealtimeThreads is that programmers are now
required to manage their own memory. Being dissociated from
general garbage collection requires the use of other means to
recycle object references. One way to do that is to use a “memory
pool” (sometimes called a “buffer pool”): a block of memory
populated at initialization time with pre-allocated objects, often of
the same type. A client that needs a particular kind of object
obtains one from a pool, assigns it a value, and uses it. Eventually
the object must be released back to the pool, thereby making it
available for reuse.

6. I . 1 Shared Pools
In our component architecture data needs to flow among separate
component objects through well-defined interfaces. In ordinary
Java it is natural and efficient to pass values by reference. Thus,
when using memory pools, a natural approach is to have a single
shared memory pool for each type of object that participates in
inter-component communication. A component that produces
information obtains a free object from the pool, assigns a new
value to the object, and passes a reference to the object across an
interface. The receiving component uses the reference to access
the object and, eventually, releases the object back to the pool, as
depicted in Figure 9. Since a memory pool can exist in scoped
memory, a further obvious requirement is that the receiving
components have access to the memory area in which the object
was allocated. Also, since components may run on separate
threads, pool operations must be multithread-safe.

/ I

Memory Pool

Figure 9. In a shared memory pool multiple clients share
a single pool of objects of a given type, obtaining objects

as needed and releasing them back to the pool when
no longer needed.

For object references that cross component boundaries we
considered a scheme in which objects in the pool would contain a
reference count, which the application code would be partially
responsible for maintaining. The counter would be updated
through synchronized methods. Whenever a reference to an
object was obtained, either from the pool or from another
component, the counter would have to be incremented. The
objects would have a method that atomically decremented the
counter and released the object back to the pool if the counter
went to zero. It would be the user’s responsibility to call that
method. Although we realize that using a simple reference count
to solve this problem might not be theoretically possible in the
general case, we felt that due to the structure imposed by the MDS
architecture and our component model we could reasonably
restrict the movement of object references across component
boundaries and provide some automation in controlling the
reference count such that simple reference counting would prove
sufficient.

6.1.2 Restricted Pools
A simpler and safer pattern involving memory pools is to restrict
the visibility of a pool to within one component. Each component
that needs to use objects of a given type has its own pool of
objects of that type. To simplify object reference reuse we
constrained the architecture so that references to an object would
never be allowed to pass across component boundaries. This
requires a mechanism for copying data across an interface instead
of passing a reference.

Copying eliminates the need for general reference counting since
there is never more than one user of a given object, but it still
requires a strict discipline within the component to recycle object
references in an organized manner.

6.1.3 Complexities of Memory Pools
Memory pools bring back vulnerabilities to the same kind of
programmer error that is prevalent in any language requiring
manual memory management. Pools require programmer
discipline to return every object back to the pool when it is no

longer being used. Two kinds of mistakes can occur. First, any
failure to retum an object to its pool results in a memory leak, and
the hardest memory leaks to find are the slow ones. Second, and
worse, an application may give an object back to the pool but
continue to use the reference (accidentally, of course). That kind
of bug can be extraordinarily hard to find because the effects may
be non-local.

6.1.4 Complexities of using Core / 3rd Party libraries
in Scope
Java programmers are accustom to using the wealth of the Java
core libraries and even 3rd party libraries to construct applications.
For the most part these libraries take for granted that they are
being used in a VM that has GC. This can be a big problem when
used in conjunction with NoHeapRealtimeThread and
ScopedMemory since ScopedMemory is finite.

6.2 Scoped Memory Scratchpads
As stated earlier, the RTSJ provides a kind of non-heap memory
area termed ScopedMemory. A ScopedMemory area can be
entered by a thread, its critical section is bounded by a
java.lang.Runnable, and any allocation that Runnable does after
having entered the memory area-and until leaving it by exiting
its run method+omes out of that memory area. When all
Runnables exeunt the memory area, the scope will be emptied
before being entered again.

We considered a scheme in which each component has its own
memory area, which we call a scratchpad. The component’s run
method is called in the scope of the scratchpad memory area.
When the component calls another component to get data, the
callee can do a new to allocate an object to retum, and that object
is placed in the caller’s scratchpad since the callee is running by
call from the run method of the caller. When the call retums, the
caller must either finish with the retumed object before leaving
the run method (i.e. exiting the scope), or make a copy of the
object into a more permanent location before exiting the scope.

By using a wrapper on the component that handles the mechanics
of entering the scope, the component’s logic need not be aware
that it is running in the scope of a scratchpad memory area, or
even that it is running under a RTSJ-compliant VM instead of a
regular JVM. It must however not keep references retumed from
an interface call and expect them to be valid the next time the
component is run. Components that receive data by being called
must only satisfy the requirement that they not hold onto a
reference received in the call; if they need to have the object after
retuming, they must copy it. To avoid memory allocation a
restricted pool is used per component for this copy. The design of
our real-time thread wrapper is shown in Figure 10.

P

A Q
I

RealTimeThread Wrapper
- wrapperscratchpad : MemoryArea
- componentScratchPad : MemoryArea
- executable : Executable
I
I

/!/

I NGpRealtimeThread I
I
I

Figure 10. A real-time thread wrapper handles the
mechanics of entering a scoped memory area so that
application programmers can focus on functionality.

6.3 How do Scoped Memory Scratchpads simplify
the RTSJ programming model?
We selected scoped memory scratchpads as the best combination
of agreeable Java style, safety from programmer error, and real-
time determinism. Scoped memory is “agreeable” in the sense that
Java programmers can allocate and manipulate objects in a
familiar manner (using ’new’), without GC interference, but they
must be cognizant of memory access restrictions and they must
ensure that all threads exit the scoped memory in order to empty
it. Scoped memory scratchpads do depend on programmer
discipline to ensure that all threads exit a scope in order to empty
it, but this aspect can be handled in our framework code, rather
than adaptation code. Although restricted memory pools are still
used in conjunction with the scratchpad approach, and thus
require the discipline of releasing objects back to the pool, all of
the pool management is confined to a single component and is
thus much easier to design and verify.

This design also allows the use of core and 3rd party libraries
without concems of memory leaks since, on exit of the Runnables,
transient objects are released in a more stack-based approach to
garbage collection.

7. FRAMEWORK SOFTWARE BENEFITS
In the Golden Gatehlission Data System approach to software
development, we make a clear distinction between aspects of the
flight system that support particular objectives of a mission
versus services and functionality that are common across most
missions. A domain expert develops the functional aspects of the
flight software such as control algorithms or hardware driver
implementations. Such activities are developed more effectively

when they are left unburdened by the prevalent considerations of
communication between flight software subsystems, software
deployments, or the complexities of underlying technologies.

One of the goals of Golden Gate is to relieve the application
programmer of these concems by addressing them with a set of
common services that are encapsulated in a framework and
programming model, within the context of a componentkonnector
architectural style. This architecture style supports the separation
of computation and communication, captured respectively in first
class software entities of components and connectors. The
adaptation of Golden GateA4DS involves implementing mission-
specific functionality in components and mediating
communication of these functional elements to connectors. An
objective of the Golden GateMDS model is to focus the adapter’s
work solely on domain-specific implementation, while delegating
common framework patterns to a set of generic services accessible
via supporting MIS.

For the Golden Gate project, RTSJ/Java-specific issues such as
memory management and communication between hard and soft
real time subsystems were primary candidates for framework
encapsulation. In reasoning about the component scoped memory
scratchpad methodology, we viewed the component as a state
machine, whose execution is a set of state transitions, during
which memory usage is finite and not persistent outside the scope
of the execution. The component state undergoes changes based
on its executions andor executions associated with components
that communicate with it. Hence, in the context of memory
management, a component has a dual task: it must manage its
mutable state in a persistent manner while managing objects of
transient nature allocated during its execution. The use of the
scoped memory construct of the RTSJ as a scratchpad for
execution provided a solution for these short-lived component
executions.

In order to manage the complexity of using the RTSJ scoped
memory construct, we created a wrapper to easily specify and
configure the memory area used and type of thread that would
execute the component’s methods.

The result is a programming model that was flexible enough to
easily interchange between execution in RTSJ scoped memory
scratchpad and heap memory and their respective thread types.
As previously stated, with the exception for some programmer
discipline related to data copying, this model allows for memory
allocation techniques in the component that are equivalent to
usual Java. By maintaining a clear separation between execution
specifications and functional code, the potential interleaving of
these distinct properties is reduced - the domain expert can
leverage a reliable set of framework services to specify execution
attributes while being removed from technical details of the RTSJ
that implement them.

8. FUTUREWORK
Much of our current work is focused on measurements of
performance and resource usage that can be compared between
two software platforms: RTSJLinux and C++NxWorks. These
metrics include memory footprint, timing jitter, floating-point
throughput, memory allocation time, and boot-up time. We are

also measuring RTSJ-specific quantities such as the overhead for
entering/exiting scoped memory and for firing asynchronous
events. This work leverages and organizes a substantial body of
performance tests from several sources including Boeing
Corporation, the Air Force Research Laboratory, Sun
Microsystems Laboratories, the Open VM project, and
Washington University in St. Louis.
We have just begun looking into some interesting work at
Washington University that explores using AspectJ and additional
prototype tools to automatically build memory area scope
structure into perfectly regular Java code [5]. This holds promise
for the future. We will keep on the lookout for garbage collectors
made specifically for RTSJ, like perhaps limited scope collectors
with predictable running times. See [6] for a discussion of RTSJ-
specific GC optimizations. Also, we will explore the regulated
garbage collection option further such as the work described in
171.

9. ACKNOWLEDGEMENTS
This work was performed jointly by the Jet Propulsion Laboratory
of California Institute of Technology, by Sun Microsystems
Laboratory, and by Carnegie Mellon University. The work at JPL
was performed under contract with the National Aeronautics and
Space Administration. The JPL team thanks the Office of the
Chief Scientist for funding under the Research & Technology
Development Program, and the strong support of the R&TD
committee on Advanced Software Techniques & Methods
Initiative.

10. REFERENCES
Greg Bollella et al, The Real-Time Specification for Java,
Addison-Wesley, 200 1. http://rtj.org

Project GoldenGate.
httr,://research.sun.com/proiects/goldengate/

htt~://www.cs.unc.edu/rtss2OOYabsBollela. html

Dvorak, D., Rasmussen, R., Reeves, G., and Sacks, A.
Software Architecture Themes in JPL’s Mission Data
System. Proceedings of the 2000 IEEE Aerospace
Conference, Big Sky, Montana, March, 2000.

Cytron, R., Deters, M., Automated Discovery of Scoped
Memory Regions for Real-Time Java.
httu:/l~vww.cs.wustl.edu/-mdetersidoc/uauers/automated dis
coverv of scoped memory regions abstract.htm1 .
Cytron, R., White Paper: RTSJ Memory Management.
http://\l~v.cs.wustl.edul-cvtronlWhitePaperOO/~vr,. html .
Kim, T., Chang N., Kim, N., Shin, H., Scheduling Garbage
Collection for Embedded Real-Time Systems.
http:Nciteseer.ni.nec.com/5236Ol .html .
High Dependability Computing Program,
http://west.cmu,edu/research/hdcp. html

TimeSys Corporation, http://www.timesys. coml

http://rtj.org
http:Nciteseer.ni.nec.com/5236Ol
http://west.cmu,edu/research/hdcp
http://www.timesys

