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ABSTRACT 
The Real-Time Specification for Java (RTSJ) provides facilities 
for deterministic, real-time execution in a language that is 
otherwise subject to variable latencies in memory allocation and 
garbage collection. A major consequence of these facilities is that 
the normal Java practice of passing around references to objects in 
heap memory cannot be used in hard real-time activities. Instead, 
designers must think carefully about what type of non-heap 
memory to use and how to transfer data between components 
without violating RTSJ’s memory-area assignment rules. This 
report explores the issues of programming with non-heap memory 
from a practitioner’s view in designing and programming real- 
time control loops using a commercially available implementation 
of the RTSJ. 

Categories and Subject Descriptors 
D.3.3 [Programming Languages]: Language Constructs and 
Features - classes and objects, control structures, dynamic 
storage management, frameworks 

General Terms 
Design, Experimentation, Languages. 

Keywords 
Programming model, scoped memory, architecture. 

1. INTRODUCTION 
Automatic memory management is one of the biggest benefits of 
the Java programming language relative to C++. This capability, 
achieved through automatic garbage collection, eliminates a 
significant source of programmer error, enabling larger 
applications to be developed with fewer defects. A price for this 
benefit is that a thread’s execution time and response latency is 

Copyright is held by the author/owner(s). 
OOPSLA ’03, October 2630,2003, Anaheim, California, USA. 
ACM 1-581 13-751-6/03/0010. 

non-deterministic because the garbage collector can preempt 
application execution at any time. This fact precludes highly 
predictable real-time execution in ordinary Java. 

The Real-Time Specification for Java (RTSJ) [l]  addresses this 
limitation through facilities that enable application logic to 
execute without interference from the garbage collector. The key 
idea is to provide new kinds of Runnable that are guaranteed not 
to access heap memory. Such Runnables can preempt the garbage 
collector at any time and thus run with high temporal 
determinism. Of course, these Runnables need some kind of 
working memory, so the RTSJ provides two kinds of non-heap 
memory. However, these new memory areas come with some 
VM-enforced “assignment rules” to ensure that the garbage 
collector’s business is separated from hard real-time activities. 
The net result is that RTSJ programmers must confront some new 
design issues that go beyond issues of real-time scheduling. 

This report focuses on the practical design issue of exchanging 
data between hard real-time components. Users of any RTSJ- 
compliant virtual machine will confront the same issue and will 
have to consider how best to use the RTSJ’s non-heap memory 
areas. This report is about application programming, not about 
JVM design or about potential changes to the RTSJ. Since 
knowledge of the RTSJ is probably not extensive among 
OOPSLA attendees, this report includes some background to help 
readers understand the nature of non-heap memory areas and their 
consequences. 

The evolution of real-time garbage collection technology for Java 
virtual machines will change the picture for developers of real- 
time systems, but that topic is beyond the scope of this report. As 
yet there is no commercial product that combines real-time 
garbage collection with the RTSJ enhancements for threads, 
scheduling, synchronization, asynchrony, and physical memory 
access. 

2. PROJECT GOLDEN GATE 
This report presents some early results from Project Golden Gate 
[2,3], a collaboration among Caltech’s Jet Propulsion Laboratory, 
Sun Microsystems Laboratory, and the High Dependability 
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Computing Program [8] led by Carnegie Mellon University. The 
project is implementing JPL’s state- and model-based control 
architecture-named Mission Data System (MDS) [4]-in the 
RTSJ using the first commercial implementation of the RTSJ: the 
TimeSys JTime virtual machine [9]. The JTime VM runs on 
TimeSys Linux RTOS, a low-latency version of the Linux 
operating system. 

The work reported herein occurred as the team designed control 
loops for driving and steering a 6-wheel experimental Mars rover 
named “Rocky 7”. The rover’s processor is a 300 MHz PPC 750 
with 256MB RAM. The rover hardware includes 6 driving 
motors, 2 steering motors, 3 stereo camera pairs, a 3-axis 
accelerometer, a 1-axis gyroscope, a camera frame grabber, and 
five other motors for controlling a camera mast and an arm. 

determining if a set of constraints admits a feasible schedule. The 
net result in RTSJ, in contrast to purely priority-based systems, is 
that scheduling and dispatching can be based on explicit 
timeliness information. 

Most real-time applications are a mixture of “hard real-time”, 
“soft real-time”, and non real-time parts, as shown in Figure 2. In 
this report we use the term “hard real-time” to mean that temporal 
correctness criteria must always be met. For example, if a hard 
real-time computation misses a deadline, the system goes into an 
abnormal state. By “sofi real-time” we mean that temporal 
correctness criteria are almost always met, so an occasional 
missed deadline (for example) is tolerated. By “non real-time” we 
mean that there are no temporal correctness criteria. A key point 
to understand here is that a single RTSJ-compliant VM can 
support systems that mix hard, soft, and non real-time parts. 

Figure 1. The Rocky 7 research rover in the 
Mars Yard at JPL, with camera mast raised. 

3. INTRODUCTION TO RTSJ 
Ordinary Java technology is not suitable for real-time systems for 
several reasons: no scheduling control over threads, unpredictable 
synchronization delays, run-anytime garbage collection, coarse 
timer support, no event processing, and no safe asynchronous 
transfer of control. The real-time specification for Java, known as 
“RTSJ”, addresses these limitations through sevetal areas of 
enhanced semantics. 

The RTSJ was shaped by several guiding principles. Foremost 
among these is the principle to “hold predictable execution as first 
priority in all tradeoffs”. Another principle is that the RTSJ 
introduces no new keywords of other language extensions. Also, 
the RTSJ provides backward compatibility, meaning that existing 
Java programs run on RTSJ implementations. Importantly, the 
RTSJ supports leading-edge scheduling, going beyond simple 
priority-based scheduling. 

It’s important to understand that “real time” doesn’t mean “real 
fast”. The guiding principle of predictable execution places more 
importance on specifying and meeting timeliness constraints than 
on raw throughput. Real-time applications must respond to 
periodic, aperiodic, and sporadic events, and the RTSJ provides 
facilities for informing a scheduler of such constraints and 
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Figure 2. Most real-time systems are a mixture of hard 
real-time, soft real-time, and non-real-time, all of which 

can be supported by a single RTSJ-compliant VM. 

The RTSJ extends Java semantics in several areas, as summarized 
below. This background information is intended to provide 
readers with a broad understanding of how the RTSJ supports 
various aspects of real-time programming. Some features of the 
RTSJ have been omitted for brevity. 

3.1 Threads 
The RTSJ introduces two new types of thread that have more 
precise scheduling semantics than j ava . lang .Thread. 
Parameters provided to the constructor of Realt imeThread 
allow the temporal and processor demands of the thread to be 
communicated to the system. NoHeapRealtimeThread 
(“NHRT”) extends RealtimeThread with the restriction that it 
is not allowed to allocate or even reference objects from the Java 
heap, and can thus safely execute in preference to the garbage 
collector. Such threads are the key to supporting hard real-time 
execution because they have implicit execution eligibility 
logically higher than any garbage collector. 

3.2 Scheduling 
The scheduling area in RTSJ provides classes that allow the 
definition of schedulable objects, manage the assignment of 
execution eligibility of schedulable objects, assign “release 



characteristics” to schedulable objects, and perform “feasibility 
analysis” for sets of schedulable objects. 

As seen in Figure 3, schedulable objects are instances of 
RealtimeThread, NoHeapRealtimeThread, and 
AsyncEventHandler. Each of these is assigned processor 
resources according to its release characteristics and execution 
eligibility. As shown in Figure 4, there are three types of 
Release Parameters to support periodic, aperiodic, and 
sporadic execution. Each of these subclasses contains parameters 
needed to determine whether a feasible schedule can be found for 
a set of schedulable objects. 
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Figure 3. The RTSJ introduces RealtimeThread, 
NoHeapRealtimeThread, and AsyncEventHandler 
as new types of Runnable. 

Releaseparameters 
- execution cost 
- deadline 
- cost overrun handler 
- deadline overrun handler 

PeriodicParameters AperiodicParameters 
- start time (can become active at any time) 

Sporadicparameters 
- Minimum inter-arrival time 

Figure 4. Release parameters supply processor and temporal 
demands needed to determine schedule feasibility. 

3.3 Memory Management 
The RTSJ contains classes that allow the definition of regions of 
memory outside the traditional Java heap. These new memory 
areas--called ImmortalMemory and ScopedMemory-are 
not managed by a garbage collector. This means that instances of 
NoHeapRealtimeThread can use such memory to 
communicate results within hard real-time areas as well as 
between hard real-time areas and soft- or non real-time areas. 

ImmortalMemory is a single memory area that is shared among 
all threads. Objects allocated in the immortal memory live until 
the end of the application. In fact, unlike standard Java heap 
objects, immortal objects continue to exist even after there are no 
other references to them. Importantly, objects in immortal 
memory are never subject to garbage collection. 
ScopedMemory is an abstract base class for memory areas 
having limited lifetimes. A scoped memory area is valid as long as 
there are real-time threads with access to it. A reference is created 
for each accessing thread when either a real-time thread is created 
with a ScopedMemory object as its memory area, or when a 
real-time thread runs the enter ( ) method for the memory area. 
When the last reference to the object is removed, by exiting the 
thread or exiting the enter ( ) method, finalizers are run for all 
objects in the memory area, and the area is emptied. Objects in 
scoped memory are never subject to garbage collection. 

The memory management enhancements in RTSJ also include 
facilities for access to physical memory, facilities for non-heap 
memory allocation in linear time, and facilities for obtaining 
information about the temporal behavior of the garbage collector, 
such as its preemption latency. 

Normal Java heap 
Subject to GC 
Not accessible by 

NoHeapRealtimeThread 

Accessible by all threads 
Not subject to GC 
Objects live until end of 

application 

Object lifetime limited 
Not subject to GC 
Scope emptied after all 

threads exit it 

Figure 5. The RTSJ introduces two kinds of non-heap 
memory that are not subject to garbage collection. 



3.4 Synchronization 
The RTSJ contains classes that allow application of the priority 
ceiling emulation algorithm to individual objects; allow the 
setting of the system default priority inversion algorithm; and 
allow wait-free communication between real-time threads and 
regular Java threads. This strengthens the semantics of Java 
synchronization for use in real-time systems by mandating priority 
inversion control. The wait-free queue classes provide protected, 
concurrent access to data shared between instances of 
java.lang.ThreadandNoHeapRea1timeThread. 
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3.5 Time 
The RTSJ contains classes that allow description of a point in 
time with up to nanosecond accuracy and precision (dependent on 
the precision of the underlying system), and allow distinctions 
between absolute points in time, times relative to some starting 
point, and rational time, which allows the efficient expression of 
number of occurrences per some interval of relative time. 

The time class relationships are depicted in Figure 6. Instances of 
AbsoluteTime represent absolute time expressed relative to 
midnight January 1 ,  1970 GMT. Instances of RelativeTime 
encapsulates a point in time that is relative to some other time 
value. Instances of RationalTime express a frequency as an 
integral number of cycles per an amount of relative time. 

I 

event 

handler 

I HighResolutionTime I 

AbsoluteTime RelativeTime 

RationalTime 

Figure 6. High resolution time supports timing with 
nanosecond accuracy and precision, subject to the 

underlying system’s accuracy and precision. 

3.6 Timers 
The RTSJ contains classes that allow creation of timer whose 
expiration is either periodic (PeriodicTimer) or set to occur 
at a particular time (OneShotTimer). RTSJ also defines an 
abstract base class for clocks, recognizing that real systems often 
have other kinds of clocks (e.g. simulation clocks, user time 
clocks), and allows timers to specify such a clock in place of the 
default system clock. 

3.7 Asynchrony 
The RTSJ contains classes for binding the execution of program 
logic to the occurrence of internal and external events. 
Specifically, an asynchronous event is represented as an instance 
of class AsyncEvent or a subclass. An event occurrence may be 

initiated by application logic (by invoking the event instance’s 
fire ( ) method) or by the occurrence of a “happening” that is 
extemal to the JVM, such as a hardware interrupt. 

Each instance of AsyncEvent may have one or more instances 
of AsyncEventHandler associated, as shown in Figure 7. The 
converse also holds: every instance of AsyncEventHandler 
may have one or more instances of AsyncEvent associated. 
Every time an event occurs, the associated handlers are made 
eligible to run; dispatching of the handler is subject to its release 
parameters. 

Figure 7. Asynchronous events and their handlers can 
have a many-to-many relationship in the RTSJ. 

4. SOME IMPLICATIONS OF RTSJ 
The central problem associated with using Java for systems with 
hard real-time requirements is that garbage collection always has 
non-interruptible sequences of instructions, the execution duration 
of which cannot be predicted. Furthermore, garbage collection 
must always be able to enter a critical section, and so any activity 
in the system is subject to unpredictable delays waiting for 
garbage collection. Memory allocation or de-allocation can cause 
a GC critical section to run, but these may run at anytime, not 
directly caused by a call to new. 

The RTSJ solves this problem with two constructs: the no-heap 
realtime thread and scoped memory. The no-heap real-time 
thread (NHRT) runs at a higher priority than the garbage 
collector, and so is not subject to delays caused by it in normal 
threads. Garbage collection is locked out while a no-heap real- 
time thread is executing. In fact, an NHRT can preempt the 
garbage collector at any time, and so it must not be allowed to 
change anything that could affect the state of garbage collection, 
including heap memory or any objects allocated from it. 

If code running under such a thread needs to allocate memory, 
this could lead to a conflict: garbage collection needs to run to 
satisfy the allocation request, but garbage collection can’t run 
because the no-heap real-time thread cannot tolerate unpredictable 
delays. Therefore, the code in the no-heap real-time thread cannot 
be allowed to make allocations from memory that is managed by 
the garbage collector (Le. the heap), nor make changes to heap, 
because these could affect the garbage collector. For each thread 
type, Table 1 shows what from kinds of memory it can allocate 
objects using ‘new’. 



Can thread allocate objects Heap 
using ‘new’? Memory 
java.lang.Thread Yes 

RealtimeThread Yes 

NoHeapRealtimeThread No 

call the hard real-time boundary. An object allocated in the scope 
of a memory area cannot be referenced - is not even visible - to 
code running outside the scope of the memory area. An object on 
heap, allocated by non-real-time code, cannot be assigned to by 
hard real-time code. More formally, the RTSJ defines memory 
area assignment rules preclude certain kinds of references from 
one memory area to another. These rules are shown in Table 2. 

Table 2. The RTSJ’s memory area assignment rules restrict 
certain kinds of inter-memory references in order to separate 

garbage collection from hard real-time activities. 

Immortal Scoped 
Memory Memory 
No No 

Yes Yes 

Yes Yes 

One solution is to not allow code in no-heap real-time threads to 
allocate memory at all, but this is a severe limitation, very 
unattractive for Java programming. Another solution is to allow 
the NHRT to allocate memory, but only from a pool of memory 
that is not under the responsibility of garbage collection, and 
which can therefore be allocated from without having garbage 
collection eligible to run. This is what the RTSJ does with the 
introduction of the scoped memory construct, expressed by the 
ScopedMemory abstract class. 

A scoped memory area is a block of memory of fixed size that can 
be associated with a running NHRT. The NHRT is said to enter 
the scoped memory area, and is said to be running in the scope of 
that memory area. When the NHRT is running in a scoped 
memory area, it can allocate memory from that area in the usual 
way, using the new statement. Objects allocated from the memory 
area exist as long as some NHRT (multiple NHRT’s can use the 
same scoped memory area) stays in the scope of that memory area. 
An NHRT leaves the scope either by exiting the scope explicitly 
or by finishing execution. When all NHRT’s have exited the 
scope, all objects allocated in the scope by any thread become no 
longer accessible. But those objects are not garbage collected, 
since there is no garbage collector that is responsible for freeing 
objects in the memory area. If a NHRT subsequently enters that 
scope again, it will be as if no objects were ever allocated in that 
scoped memory area. 

A NHRT can never allocate more objects in a scoped memory 
area than the fixed size of that area. Thus, code running in a 
NHRT must be designed up front with known memory allocation 
needs that cannot be exceeded. 

With this RTSJ solution, it is now possible to know the maximum 
amount of time that a sequence of instructions will experience. 
This assurance is achieved by running that sequence of 
instructions under a NHRT, which necessarily puts the execution 
of that code in a scoped memory area. 

Compared to the normal Java programming model, programming 
with NHRTs and scoped memories is more complicated. 
Fortunately, as shown in Figure 2, most real-time systems contain 
a relatively small hard real-time part, so the added complexity is 
contained. The soft real-time part as well as the non real-time part 
can freely allocate memory from the heap, relying on garbage 
collection to reclaim those allocations when no longer needed. 

The RTSJ solution also has implications for communication 
between hard real-time elements and other elements of the system, 
especially for information flow from hard real-time to soft- or 
non-real-time components. There is a distinct information 
boundary between these two types of system elements, which we 

Heap 

Immortal 

Reference Reference Reference to 
to Heap to Immortal Scoped 

Yes Yes No 

Yes Yes No 

Yes, if same, I outer or shared Scoped 1 Yes I Yes 

So how then, can information computed by hard real-time system 
elements be communicated to soft- or non-real-time system 
elements? We present our design solutions in Section 6. 

5. CONTROL LOOPS IN MDS 
Our problem domain is that of real-time closed-loop control of 
physical systems. Such control systems are designed for 
continuous operation and they interact with the real world through 
imperfect sensors and actuators. In our case, these are embedded 
control systems that live within the resource-limited world of 
planetary rovers and spacecraft. 

The design of our control loops is governed by the architecture of 
the Mission Data System (MDS), an information and control 
architecture that emphasizes explicit representation of physical 
states (continuous as well as discrete states), explicit models of 
hardware and physical effects, and goal-oriented operation that 
enables varying levels of onboard autonomy [4]. 

As shown in Figure 8, real-time control loops in MDS involve 
four kinds of components: hardware adapters, state variables, 
estimators, and controllers. There is a hardware adapter for each 
controllable hardware unit, and each one provides software 
interfaces for sending commands and obtaining measurements. A 
state variables is a component that holds information about a 
physical state (such as rover position) and whose value history is 
made available as telemetry. An estimator interprets 
measurements from potentially multiple sensors in order to 
generate state estimates. A controller compares current state 
estimates to a ‘goal’ (a constraint on the value of a state variable 
over a time interval) and issues commands to actuators, as needed, 
to influence a physical state. 

The dominant data flow around a control loop involves four 
flows: controllers query state variables for state estimates; 
controllers submit commands to hardware adapters; estimators 
query hardware adapters for measurements; and estimators update 
state variables. The main challenges in software design for hard- 
real-time control loops using the RTSJ involve appropriate use of 
non-heap memory for these four data flows. In our case, 



coordinated control of the 6 driving motors and 2 steering motors 
on the Rocky 7 rover involved 9 control loops, so we were 
motivated to find a good general solution. 

I State Variable $ 
state updates/ \state estimates 

\ measurements 

I Hardware Adapter 8 
Figure 8. A simple hard real-time control loop in MDS 

involves data flows among four components. 

6. SCOPED MEMORY SCRATCHPADS 
This section describes some design considerations in how to 
handle information transfer between hard real-time components, 
and then describes the design we adopted, which we termed 
“scoped memory scratchpads”. 

6.1 Complexities of Memory Management 
The most radical change to the Java programming model when 
using NoHeapRealtimeThreads is that programmers are now 
required to manage their own memory. Being dissociated from 
general garbage collection requires the use of other means to 
recycle object references. One way to do that is to use a “memory 
pool” (sometimes called a “buffer pool”): a block of memory 
populated at initialization time with pre-allocated objects, often of 
the same type. A client that needs a particular kind of object 
obtains one from a pool, assigns it a value, and uses it. Eventually 
the object must be released back to the pool, thereby making it 
available for reuse. 

6. I .  1 Shared Pools 
In our component architecture data needs to flow among separate 
component objects through well-defined interfaces. In ordinary 
Java it is natural and efficient to pass values by reference. Thus, 
when using memory pools, a natural approach is to have a single 
shared memory pool for each type of object that participates in 
inter-component communication. A component that produces 
information obtains a free object from the pool, assigns a new 
value to the object, and passes a reference to the object across an 
interface. The receiving component uses the reference to access 
the object and, eventually, releases the object back to the pool, as 
depicted in Figure 9. Since a memory pool can exist in scoped 
memory, a further obvious requirement is that the receiving 
components have access to the memory area in which the object 
was allocated. Also, since components may run on separate 
threads, pool operations must be multithread-safe. 

/ I 

Memory Pool 

Figure 9. In a shared memory pool multiple clients share 
a single pool of objects of a given type, obtaining objects 

as needed and releasing them back to the pool when 
no longer needed. 

For object references that cross component boundaries we 
considered a scheme in which objects in the pool would contain a 
reference count, which the application code would be partially 
responsible for maintaining. The counter would be updated 
through synchronized methods. Whenever a reference to an 
object was obtained, either from the pool or from another 
component, the counter would have to be incremented. The 
objects would have a method that atomically decremented the 
counter and released the object back to the pool if the counter 
went to zero. It would be the user’s responsibility to call that 
method. Although we realize that using a simple reference count 
to solve this problem might not be theoretically possible in the 
general case, we felt that due to the structure imposed by the MDS 
architecture and our component model we could reasonably 
restrict the movement of object references across component 
boundaries and provide some automation in controlling the 
reference count such that simple reference counting would prove 
sufficient. 

6.1.2 Restricted Pools 
A simpler and safer pattern involving memory pools is to restrict 
the visibility of a pool to within one component. Each component 
that needs to use objects of a given type has its own pool of 
objects of that type. To simplify object reference reuse we 
constrained the architecture so that references to an object would 
never be allowed to pass across component boundaries. This 
requires a mechanism for copying data across an interface instead 
of passing a reference. 

Copying eliminates the need for general reference counting since 
there is never more than one user of a given object, but it still 
requires a strict discipline within the component to recycle object 
references in an organized manner. 

6.1.3 Complexities of Memory Pools 
Memory pools bring back vulnerabilities to the same kind of 
programmer error that is prevalent in any language requiring 
manual memory management. Pools require programmer 
discipline to return every object back to the pool when it is no 



longer being used. Two kinds of mistakes can occur. First, any 
failure to retum an object to its pool results in a memory leak, and 
the hardest memory leaks to find are the slow ones. Second, and 
worse, an application may give an object back to the pool but 
continue to use the reference (accidentally, of course). That kind 
of bug can be extraordinarily hard to find because the effects may 
be non-local. 

6.1.4 Complexities of using Core / 3rd Party libraries 
in Scope 
Java programmers are accustom to using the wealth of the Java 
core libraries and even 3rd party libraries to construct applications. 
For the most part these libraries take for granted that they are 
being used in a VM that has GC. This can be a big problem when 
used in conjunction with NoHeapRealtimeThread and 
ScopedMemory since ScopedMemory is finite. 

6.2 Scoped Memory Scratchpads 
As stated earlier, the RTSJ provides a kind of non-heap memory 
area termed ScopedMemory. A ScopedMemory area can be 
entered by a thread, its critical section is bounded by a 
java.lang.Runnable, and any allocation that Runnable does after 
having entered the memory area-and until leaving it by exiting 
its run method+omes out of that memory area. When all 
Runnables exeunt the memory area, the scope will be emptied 
before being entered again. 

We considered a scheme in which each component has its own 
memory area, which we call a scratchpad. The component’s run 
method is called in the scope of the scratchpad memory area. 
When the component calls another component to get data, the 
callee can do a new to allocate an object to retum, and that object 
is placed in the caller’s scratchpad since the callee is running by 
call from the run method of the caller. When the call retums, the 
caller must either finish with the retumed object before leaving 
the run method (i.e. exiting the scope), or make a copy of the 
object into a more permanent location before exiting the scope. 

By using a wrapper on the component that handles the mechanics 
of entering the scope, the component’s logic need not be aware 
that it is running in the scope of a scratchpad memory area, or 
even that it is running under a RTSJ-compliant VM instead of a 
regular JVM. It must however not keep references retumed from 
an interface call and expect them to be valid the next time the 
component is run. Components that receive data by being called 
must only satisfy the requirement that they not hold onto a 
reference received in the call; if they need to have the object after 
retuming, they must copy it. To avoid memory allocation a 
restricted pool is used per component for this copy. The design of 
our real-time thread wrapper is shown in Figure 10. 
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- executable : Executable 
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Figure 10. A real-time thread wrapper handles the 
mechanics of entering a scoped memory area so that 
application programmers can focus on functionality. 

6.3 How do Scoped Memory Scratchpads simplify 
the RTSJ programming model? 
We selected scoped memory scratchpads as the best combination 
of agreeable Java style, safety from programmer error, and real- 
time determinism. Scoped memory is “agreeable” in the sense that 
Java programmers can allocate and manipulate objects in a 
familiar manner (using ’new’), without GC interference, but they 
must be cognizant of memory access restrictions and they must 
ensure that all threads exit the scoped memory in order to empty 
it. Scoped memory scratchpads do depend on programmer 
discipline to ensure that all threads exit a scope in order to empty 
it, but this aspect can be handled in our framework code, rather 
than adaptation code. Although restricted memory pools are still 
used in conjunction with the scratchpad approach, and thus 
require the discipline of releasing objects back to the pool, all of 
the pool management is confined to a single component and is 
thus much easier to design and verify. 

This design also allows the use of core and 3rd party libraries 
without concems of memory leaks since, on exit of the Runnables, 
transient objects are released in a more stack-based approach to 
garbage collection. 

7. FRAMEWORK SOFTWARE BENEFITS 
In the Golden Gatehlission Data System approach to software 
development, we make a clear distinction between aspects of the 
flight system that support particular objectives of a mission 
versus services and functionality that are common across most 
missions. A domain expert develops the functional aspects of the 
flight software such as control algorithms or hardware driver 
implementations. Such activities are developed more effectively 



when they are left unburdened by the prevalent considerations of 
communication between flight software subsystems, software 
deployments, or the complexities of underlying technologies. 

One of the goals of Golden Gate is to relieve the application 
programmer of these concems by addressing them with a set of 
common services that are encapsulated in a framework and 
programming model, within the context of a componentkonnector 
architectural style. This architecture style supports the separation 
of computation and communication, captured respectively in first 
class software entities of components and connectors. The 
adaptation of Golden GateA4DS involves implementing mission- 
specific functionality in components and mediating 
communication of these functional elements to connectors. An 
objective of the Golden GateMDS model is to focus the adapter’s 
work solely on domain-specific implementation, while delegating 
common framework patterns to a set of generic services accessible 
via supporting MIS. 

For the Golden Gate project, RTSJ/Java-specific issues such as 
memory management and communication between hard and soft 
real time subsystems were primary candidates for framework 
encapsulation. In reasoning about the component scoped memory 
scratchpad methodology, we viewed the component as a state 
machine, whose execution is a set of state transitions, during 
which memory usage is finite and not persistent outside the scope 
of the execution. The component state undergoes changes based 
on its executions andor  executions associated with components 
that communicate with it. Hence, in the context of memory 
management, a component has a dual task: it must manage its 
mutable state in a persistent manner while managing objects of 
transient nature allocated during its execution. The use of the 
scoped memory construct of the RTSJ as a scratchpad for 
execution provided a solution for these short-lived component 
executions. 

In order to manage the complexity of using the RTSJ scoped 
memory construct, we created a wrapper to easily specify and 
configure the memory area used and type of thread that would 
execute the component’s methods. 

The result is a programming model that was flexible enough to 
easily interchange between execution in RTSJ scoped memory 
scratchpad and heap memory and their respective thread types. 
As previously stated, with the exception for some programmer 
discipline related to data copying, this model allows for memory 
allocation techniques in the component that are equivalent to 
usual Java. By maintaining a clear separation between execution 
specifications and functional code, the potential interleaving of 
these distinct properties is reduced - the domain expert can 
leverage a reliable set of framework services to specify execution 
attributes while being removed from technical details of the RTSJ 
that implement them. 

8. FUTUREWORK 
Much of our current work is focused on measurements of 
performance and resource usage that can be compared between 
two software platforms: RTSJLinux and C++NxWorks. These 
metrics include memory footprint, timing jitter, floating-point 
throughput, memory allocation time, and boot-up time. We are 

also measuring RTSJ-specific quantities such as the overhead for 
entering/exiting scoped memory and for firing asynchronous 
events. This work leverages and organizes a substantial body of 
performance tests from several sources including Boeing 
Corporation, the Air Force Research Laboratory, Sun 
Microsystems Laboratories, the Open VM project, and 
Washington University in St. Louis. 
We have just begun looking into some interesting work at 
Washington University that explores using AspectJ and additional 
prototype tools to automatically build memory area scope 
structure into perfectly regular Java code [5]. This holds promise 
for the future. We will keep on the lookout for garbage collectors 
made specifically for RTSJ, like perhaps limited scope collectors 
with predictable running times. See [6] for a discussion of RTSJ- 
specific GC optimizations. Also, we will explore the regulated 
garbage collection option further such as the work described in 
171. 
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