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Abstract - Imaging spectrometer data is data rich because 
it provides both fine spectral and spatial resolution 
information. The fine spectral resolution allows materials to 
be identified based on their spectral signature and is the 
driving force behind current information extraction 
techniques. These techniques require the identification of 
end-members, those extreme pixels making up the N- 
Dimensional spectral scatter. Recent experiments have 
shown that end-members change with changes in both 
spatial location and extent within a given scene which can 
affect pixel un-mixing techniques. On the other hand, 
understanding how end-members change based on their 
location and spatial association within a scene can also 
provide valuable information on the interaction and mixing 
of imaging spectrometer data pixels. The goal of this 
present research is to map the spectral end-member 
evolution spatially. This paper presents some initial results 
of shaving the spectrally extreme pixels from the N- 
dimensional spectral scatter. 
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INTRODUCTION 

Imaging spectroscopy data provides images built up of 
contiguous and narrow spectral bands. Also known as 
hyperspectral remote sensing, present sensors are capable of 
resolving wavelengths ranging from the visible to the thermal 
infrared portions of the electromagnetic spectrum. As such, one 
can consider this type of imagery as both a blessing because 
airborne sensors such as the Airborne Visible and InfraRed 
Imaging Spectrometer (AVIRIS) provide users with fine spatial 
as well as spectral resolution imagery, as well as a curse 
because of the shear volume of data that needs to be processed. 

Previous investigations into the selection of spectral end- 
members based on hyperspectral imagery showed that changing 
the location and/or the extent of an image over the same area 
modified the structure of the N-dimensional spectral scatter 
(Bielski 2003 a,b). This resulted in end-members having 
slightly different spectral signatures for the same general 
region. This motivated further study into the spatialhpectral 
relationship of hyperspectral imagery. 

The generally accepted 'hourglass' approach to hyperspectral 
information extraction (Kruse 1999) primarily focuses on the 
spectral data. One of the key techniques in this approach to 
finding spectral end-members is the Pixel Purity Index (PPI) 
(Boardman et al. 1995). Essentially, this technique can be 
visualized as rolling the N-dimensional spectral scatter and 
recording every bump. The comers of this scatter will be the 
ones with the greatest number of hits and are considered to be 
the most spectrally extreme. 

In this paper, the PPI idea was taken further by peeling off the 

extreme layers of the N-dimensional spectral scatter. The goal 
of this experiment was to better understand the evolution of the 
N-dimensional scatter with the ultimate goal of improving 
hyperspectral pixel un-mixing techniques. Furthermore, the 
relationships between the spectral layers being peeled and their 
spatial location were also shown. In the future, techniques that 
take advantage of the spatial component of hyperspectral data 
would also provide information that can be leveraged to 
improve segmentation and classification. 

METHODOLOGY 

The imagery used for this experiment was acquired by the 
AVIRIS instrument on July 23, 2002 over Cuprite, Nevada It 
was acquired from an altitude of approximately 12 344 m 
above the target and resulted in a spatial resolution of 
approximately 12.5 m. A section of the flight line was selected 
over US route 95 with dimensions of 256 X 256 pixels. 

First, the imagery was transformed to apparent reflectance 
using the ACORN atmospheric correction code. The water 
bands (bands 108-116, 153-169) and a few bands from each 
end of the spectrum (bands 1-3, 222-224) were taken out 
because of poor quality (noisy data). The remaining bands were 
used to compute the Minimum Noise Fraction (MNF) 
transform (ENVI 2002) in order to reduce the spectral 
dimensionality of the data set. The first 30 MNF bands were 
chosen from the resulting transform and applied to the 
experiment (figure 1). 

Figure 1 - h4NF transform image showing bands 1 (red), 2 
(green) and 3 (blue) for Cuprite, NV. 

The next step was to peel the 30-dimensional MNF scatter 
layer by layer, where a layer was considered to be the extreme 
pixels of the N-dimensional scatter. A program was written 
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specifically for this purpose that repeatedly computed the PPI. 
A brief description of this program is described in figure 2. 
Each of the PPI results were based on 10 000 iterations. 

1. Open MNF image file 
2. Run PPI 
3. Extract the top 100 purest pixels 
4. Mask out the top 100 purest pixels 
5. Open MNF file with masked pixels 
6. Loop back to PPI until all pixels processed 

Figure 2 - Description of the program developed to peel the 
extreme pixel layers from a spectral scatter. 

RESULTS 

The results of the program described in figure 2 were a series 
of purest pixels in the spectral sense based on the MNF data 
that ranged from the outside of the N-dimensional scatter 
inward. Unfortunately, the PPI library routine was unable to 
process the data after a certain point and therefore in this 
example only the first 102 layers were considered. 

In figure 3, the spatial distribution of the purest pixels from 
each of the 102 layers is presented. In total, 10 548 extreme 
pixels were extracted from the image, which only makes up 
about 16% of the image. The linear feature going from top to 
bottom on the left side of the image (figure 3) that was almost 
entirely extracted as extreme spectral signatures was US route 
95. The majority of the other locations that made up the 16% of 
the most extreme pixels of this particular scenes spectral 
distribution were generally clumped together. Without 
identifying the spectral signatures of the resulting pixels from 
each layer, it was difficult to visualize the evolution of the 
spectral signatures. 

Since more than two dimensions are difficult to represent on 
paper, a pair of two dimensional scatter plots of the results are 
presented. The scatter plot in figure 4 clearly shows the 
influence that the first two MNF bands had on the computation 
of the PPI. This scatter plot with the 102 layers of pixels shown 
in different colours generally started from the outside of the 
scatter inward. A closer look at this figure also showed that 
some pixels within the scatter itself were also chosen as 
extremes of the 30-dimensional scatter (where the 30 
dimensions are made up of the MNF bands). The scatter plot 
shown in figure 4 was different than the scatter plot shown in 
figure 5 which presented the last two MNF bands. The extreme 
spectral pixels tended to evolve from within this representation. 

In table 1, the standard deviation of the first and last extreme 
pixel layer computed using the PPI are shown for the first 10 
MNF bands. These results show a significant drop in the 
standard deviation between the first and last peeled layers. 
These results were not surprising because the goal of the PPI 
was to find the most spectrally extreme pixels. Such pixels will 
either be at the high or low end of the distribution and as the 
statistics indicated, there was a general decrease in the overall 
variability. However, these results do influence the PPI itself as 
can be seen in table 2 where the top 10 pixel counts from the 
100 highest PPI results are shown for the first and final layer. 
The results for the PPI run on the 102 layer show that the 
surface of the 30-dimensional spectral scatter has been 

smoothed out compared to the original layer. 

Figure 3 - The spatial locations of the extreme pixels shaved 
from 102 layers of the MNF scatter. 
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Figure 4 - Scatter plot of MNF bands 1 and 2 with the extreme 
pixels of the first 102 shaved layers overlaid in colour. 

DISCUSSION 

The above results are interesting but only paint a small portion 
of the picture because a mere 16% of the total pixels were 
processed. Furthermore, the extreme pixels themselves were 
grouped by layer rather than by spectral signature. This means 
that potentially different end-member spectra were grouped 
within the same PPI layer. As a result, the figures only showed 
how the pixel scatter layers evolved rather than how the end- 
member spectra evolved which is ultimately the goal that needs 
to be reached. More importantly, one would also like to know 
whether spectrally distinguishable regions can exist within the 
scatter itself and whether they are truly a mix of the spectrally 
extreme pixels that are normally found using the PPI. Future 



questions that need to be investigated relate to spectral 
similarity and what kind of spectral mixing is occurring within 
a hyperspectral image. Both these questions are expected to be 
dealt with within the framework of this research in the future. 
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Figure 5 -Scatter plot of MNF bands 29 and 30 with the 
extreme pixels of the first 102 shaved layers overlaid in colour. 

Table 1 - The standard deviation of the first 10 bands of the 
MNF image for the layers 1 and 102. 

Returning to figure 4, the scatter plot based on the first and 
second bands of the MNF transform provided a good 
visualization of what occurred when using the extreme pixel 
layer shaving routine (figure 2). The original shape of the 
scatter was irregular whereas if one took away all of the 
processed pixels (all the coloured pixels) the scatter becomes 
much more rounded. This has an effect on the algorithm that 
finds the spectrally extreme pixels and these effects are shown 
in table 1.  The distribution of the number of total hits for the 
first iteration of the PPI was greatly skewed the right indicating 
that some pixels received a large number of hits compared to 
the distribution of the last iteration (table 2). This last iteration 
was less skewed because the total number of hits for the pixels 
considered to be spectrally extreme was evenly distributed. 

Applying the 'hourglass' processing approach (Kruse 1999), the 
next step would be to visualize the pixels with the highest PPI 
in N-dimensional space in order to extract end-members for the 

scene in hand. With the range of extreme spectral pixels 
available to choose from at this point, the choice of a spectral 
end-member would be difficult. Furthermore, as the N- 
dimensional scatter is smoothed by more and more iterations, 
their distribution also changes as was shown above. This 
change in the total distribution has the effect of limiting or 
moderating potential end-members. As such, potential end- 
members would not be as dissimilar in spectral space making it 
more difficult to separate true end-members. Here, spatial 
location could provide the extra information required to decide 
on the final classes. 

Table 2 - The number of hits (DN) for the top ten results out of 
100 of the PPI for layers 1 and 102. 

Layer I I Layer 102 

The center of gravity for the spectral scatter plot was not the 
mid-point between all sides in N-dimensions. Therefore 
shaving off the layers of extreme spectral pixels means that this 
center can be approached from a variety of directions and the 
core would be reached at different times from different 
directions. This has an implication in the next phase of this 
experiment where spectral similarity and direction will also be 
studied. 

Note also that several pixels were identified as extreme that 
were located in the center of the first and second MNF band 
scatter plot (figure 4). These were most likely due to extreme 
spectra found in other MNF band combinations, however, 
further study is warranted again to explore their evolution both 
spectrally and spatially. 

The US route 95 that was clearly delineated in figure 3 was 
almost entirely processed. With only 16% of total pixels 
processed, this indicated that the spectral signature of the road 
itself was found in a region of the 30-dimensional spectral 
scatter plot that was considered to be extreme. As such, one 
would also expect that this spectral end-member would not be a 
part of other spectral mixtures found within this scene. 

Processed pixels to this point also had a tendency to clump 
together (figure 3). This clumping together in geographic space 
as well as spectral space indicates that materials that are close 
together are also spectrally similar. This is an important 
observation (also intuitive) because it also indicates that the 
notion of following the evolution of the N-dimensional spectral 
scatter to decompose it into it's spectral parts is a viable idea. 



The expectation is that objects on the ground that are most 
spectrally unique will be found on the edges of the spectral 
scatter, whereas the pixels within the scatter will have a 
mixture of the spectrally pure end-members. This does not 
mean that the mixtures themselves cannot be identified as 
different materials. Subsequent research will try and show this 
possibility and requires a much more sophisticated approach. 

The N-Dimensional simplex which is built based on spectral 
end-member selection and used for hyperspectral pixel un- 
mixing is very much dependent on what spectral signatures are 
chosen. A simplex must also encompass all possibilities which 
is why the chosen end-members must be extreme or 'pure' 
spectrally compared to the rest of the N-Dimensional 
distribution. If spectral end-members were chosen from within 
the distribution itself, a different model for pixel un-mixing 
will need to be developed. 

CONCLUSIONS AND FUTURE WORK 

This initial work showed the possibility of mapping the spectral 
signature from hyperspectral imagery to locations in space. It 
also provided insights into the evolution of the N-dimensional 
scatter plot based on an MNF transform of a measured 
hyperspectral scene of Cupri te, NV. 

A routine that can entirely shave the N-dimensional spectral 
scatter will first be addressed. Subsequent research will focus 
on developing a spectralkpatial similarity index as well as an 
algorithm geared towards fmding directional components of the 
spectral evolution of the N-dimensional scatter. In parallel, the 
need to identify classes automatically would also be 
advantageous and could be linked to other already developed 
spectral libraries. 
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