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Abstract 
An analytical description of the scattered light from a 10 meter diameter Diffractive Optical 
Element lens-based telescope operating at 1 micron wavelength has been formulated. The 
specifics of the grating and blaze as well as physical manufacturing constraints were made a 
part of the problem to be solved. A major simplifying approximation made is that a 1 
dimensional lens was assumed for the calculations. This simplified model still serves to 
illustrate the important effects and limitations of a high performance lens used as a telescope. 
Focal plane light scattering has been rigorously determined for simplified cases. 
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Introduction 
The purpose of this document is to discuss some design and tolerance issues related to the 
application of a large Space-Based Diffractive Optical Element Telescope, such as that 
described in [l], to the Terrestrial Planet-Finder Mission, [2]. The imaging problem for the 
‘Terrestrial Planet-Finder is depicted in Figure 1. Light from a distant planet is focussed onto the 
focal plane of a large lens. Light from the nearby star is also focussed onto the focal plane, at a 
slightly different location, determined by the angular separation between the planet and the star. 
For a 1 O-meter class lens the planet-star angular separations of interest correspond to a 
separation of 5-10 times the diffraction limit of the lens operating at 1 micron. In general the 
light from the star will exceed that of the planet by 9 orders of magnitude. Due to imperfections 
in the lens such as gaps, surface imperfections, and segment alignment some light from the star 
will find its way into the image of the planet, possibly overwhelming the planet light entirely. 
Even for a perfect lens diffraction effects will ultimately determine the amount of starlight 
contaminating the planet’s image. The design goals for TPF are to minimize the acceptable 
angular separation between star and planet and to provide the maximum sensitivity (minimum 
star light contamination) at that separation. 
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In order to allow an exact diffraction calculation for the very large lenses contemplated for 
TPF, lo7 wavelengths at 1 micron, a simple one-dimensional lens is considered in the analysis. 
This simplified model still serves to illustrate the important effects and limitations for the TPF 
lens. Future work should consider the two-dimensional lens, as discussed in the final section of 
this document. The study begins with an analysis of the problem of gaps in the lens, and the 
associated blockage. Next the effect of surface imperfections and the associated stray light is 
given. The remainder of the document discusses the possibility of minimizing the effects of 
diffraction by adding some perturbations to the ideal lens surface. The perturbations are chosen 
to minimize (null) the Point Spread Function (PSF) of the lens over some particular range in the 
focal plane. If the angular separation between the planet and the star falls within this range the 
effect of the diffracted light from the star on the planet's image will be minimized. Some 
example nulled Point Spread Functions and the associated lens perturbations are described. 
Some fundamental limitations on this approach are also discussed. Conclusions are drawn and 
directions for future work are suggested. 

Gaps and Blockage 
Many practical implementations of a 1 0-meter class space based lens require joints or hinges of 
some type in order to deploy the lens from a small-envelope, stowed configuration to the full 
1 0-meter diameter. An exception would be a thin flexible structure that could be unrolled in 
orbit. It is assumed that any required joints will block some of the incoming light, modifying 
the PSF from that of the unblocked lens. These effects were studied assuming an otherwise 
ideal lens with perfect phase-front generation and zero surface distortion. The exact diffraction 
integral was computed numerically using an adaptive integrator with adjustable, guaranteed 
numerical accuracy. A simple F/D=l, D=lOm lens was used in order to amplify any effect of 
small F/D values. A wavelength of 1 pm is assumed here and for all other calculations described 
in this document. 

Figure 2 shows results for a 1 mm gap centered in a 10m wide lens. It is assumed that the gap 
totally blocks any incoming light from reaching the focal plane. The nominal PSF for the case 
of no gap, the PSF with gap, and the difference between the two Point Spread Functions is 
shown. To the accuracy depicted in the plot the two PSFs look identical, however a difference 
pattern exists at a level 80 dB below the PSF peak. This effect, while small, is not negligible 
compared to an assumed TPF scattered light (nulling) requirement of 90 dB (9 orders of 
magnitude). The difference is flat for the portion of the focal plane of interest, as depicted in 
the plot. This is the result expected using superposition. The difference field in the focal plane 
is simply that due to the negative of the incident field over the 1 mm gap. The PSF for this field 
configuration is identical to that of the lens but scaled along the x-axis by a factor of 
(1 Om/lmm)=l 04. Therefore it is essentially flat over the plotted range. The field magnitude is 
also scaled by a ratio of the blocked area to the lens area, a factor of 1 04. This corresponds to a 
power value of 1 O-', or -80 dB as shown on the figure. This result is significant and indicates 
that even if elaborate lens profiling can be accomplished to reduce the PSF in some region to 
less than -90 dB the result will be spoiled by the blockage caused by a single 1 mm gap in the 
lens. Thus the gaps must either be eliminated, reduced in size, or included in the procedure 
used to optimize the lens profile. 
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The effect of multiple gaps is depicted in Figure 3. Here nine 1 mm gaps are assumed to be 
located symmetrically on the lens. The nine scattered fields now interfere with each other in the 
focal plane. The maximum effect appears on axis where all scattered components add. The 
blockage in this case is increased by roughly 1 order of magnitude, causing the difference PSF 
to rise by 20 dB to a value of -60 dB below the PSF peak. Throughout most of the plotted 
range the effect is much smaller however, in the range of -75dB or less. This indicates that 
depending on their placement on the lens the effect of multiple gaps on the PSF, in the region 
of interest, may not be significantly worse than that of a single one. In order to guarantee a 
difference PSF of -90 dB or less everywhere the total blockage must be reduced to a value of 
10-4.5 or less. For a 10 m linear lens this corresponds to a value of approximately 0.3 mm. 

Surface Imperfections 
A second important effect on the performance of a Fresnel lens for the TPF application is that 
due to finite surface imperfections. Random imperfections in the surface will scatter starlight 
into the focal plane in the region of the incident planet light. Even a small amount of stray 
starlight is significant in the TPF application so these effects must be considered carefully. 
Since these effects are presumed to be random they cannot be incorporated into the lens 
profiling process described in the next section. The significant spectral components of the 
imperfections must be either eliminated in the manufacturing process or corrected with 
secondary optics, possibly including a deformable mirror. 

Figure 4 shows the assumed form for the Power Spectral Density (PSD) of the surface 
imperfections for the lens. The spectrum is assumed to be flat for ripple periods greater than 
about lmm (small wave numbers) and falling as k? for wave numbers larger than that 
corresponding to a period of 1 mm. Curves for the cases of n=-1,-2,-3, and --oo (rectangular 
spectrum), are shown. In all cases a total surface RMS of 2 nm is maintained. This RMS value 
is obtained by integrating the PSD over all values of wave number. As can be seen by the 
figure the overall height of the spectrum is relatively insensitive to the choice of the power law 
assumed for the roll-off of the spectrum. 

Assuming the surface imperfections are small compared to the wavelength, the spectrum of the 
scattered light and the PSD are of identical shape. The magnitude of the scattered light is 
obtained by scaling the PSD by k t ,  where ko is the wave number corresponding to the 
wavelength of operation, [3]. The scattered light spectra corresponding to the PSD plots of 
Figure 4 are shown in Figure 5. The overall Point Spread Function of the lens is then composed 
of two parts (1) the ideal PSF, and (2) a convolution of the ideal PSF with the power density 
plot depicted in Figure 5.  The wave number axis of Figure 5 may be converted to position in 
the focal plane of a lens with focal length ‘F’ through the mapping: 

Xfocalplane=(wave number)*F*h/(27c). 

For the TPF application small wave numbers are of utmost importance. These fall well within 
the flat region of Figure 5, which is at a level of approximately -80 dB for the worst case, 
rectangular, spectrum. The -80 dB value implies that the PSD of the surface imperfections 
must be reduced by approximately 10 dB for small wave numbers (large spatial wavelengths) 
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in order to meet the assumed TPF -90 dB scattered light requirement. If this is not feasible 
then other corrective measures, such as a deformable mirror located appropriately in the optical 
train, must be employed after the lens to correct for the large-scale random surface errors of the 
lens. 

As a further check of the surface imperfection effects a Monte Carlo Simulation was 
conducted. Once again a 10 m diameter (F/D)=l lens was used to amplify any effects due to 
small (F/D). A rectangular spectrum (n=oO) for the PSD was assumed. The random surface 
errors were modeled using a discrete set of 500 Fourier components of equal amplitude but 
randomly phased (positioned on the lens). The ripple amplitudes were adjusted to give a total 
RMS surface error of 2 nm. The results of the simulation are shown in Figure 6.  Results for five 
computer runs, each using a different seed value for the random number generator, are included 
along with the theoretical results described above. The difference between the ideal PSF and 
the computed PSF are shown in Figure 5. As before, the numerical results are computed using 
the exact scalar diffraction integral. As expected the numerical results confirm the theoretical 
prediction of a scattered light level in the -80 dB range for the assumed shape of the PSD and 
overall RMS surface error. As discussed above, this scattering level is approximately 10 dB 
higher than that required by our assumptions. 

Diffraction Effects and PSF Nulling 
If we assume that the effects of blockage and surface imperfections are reduced to a level 
acceptable for the TPF mission diffraction effects will be the limiting factor in the performance. 
For example, consider the PSF for a 10 m, (F/D)=lO lens at lpm, depicted in Figure 7. The 
search for planet light is expected to be conducted in the focal plane region occupied by the 5- 
lo* sidelobes of the star’s PSF. Figure 7 indicates that the star light will only be reduced by a 
factor of 25 dB from its maximum in this range due to diffraction effects. This is far from the 
assumed 90 dB for TPF. 

One approach for reducing the PSF in this range is to profile the lens in order to scatter 
additional light into this region, out of phase with the original light, thus canceling it out. This 
approach will cancel the light in the region of interest at the cost of increasing it elsewhere in 
the focal plane. 

The process of nulling the PSF can be explained quite simply using an approximate analysis 
assuming a single, small amplitude, sinusoidal ripple. The resulting PSF in wave number space 
for this situation can be found analytically as a convolution of the undistorted PSF with three 
delta functions. 

Here Az is the ripple amplitude, k, is the ripple wave number, PSFo is the undistorted PSF, and 
6 is the delta function. Clearly the ripple amplitude and wave number may be adjusted to give 
an overall PSF value of zero at any location, at the expense of doubling it at the negative value 
of k. When multiple spectral components are present, or the amplitudes are not small, 
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additional terms which are analogous to inter-modulation products, must be included in the 
analysis as well. 

Figure 7 depicts the nominal PSF and the scattered components for a typical situation. In this 
case a theoretical PSF of the form sin(x)/x is used in the simulation. The sign and magnitude of 
the ripple may be chosen to null the overall PSF at X=55 microns or 0.55 pad.  The result is 
depicted in Figure 8, and the resulting lens profile is given in Figure 9. It should be noted that 
the main lobe of the PSF is wider than any of the sidelobes. It will be shown that this is a 
fundamental, limiting factor in our ability to create a broad, deep null in the PSF. Examination 
of Figure 8 shows that while the null is very deep it is of extremely narrow width in the focal 
plane. A close examination of Figure 8 reveals that the null is achieved at X=55 microns at the 
expense of increasing the value of the PSF at X=-55 microns. 

In order to create a broader null in the focal plane we need to add more spectral components. A 
simple MATLAB script was written to solve the theoretical problem in closed form. In this 
case ‘N’ spectral components with fixed wave number but variable amplitude are assumed. ‘N’ 
points in the focal plane are chosen for exact nulling, giving ‘N’ equations and ‘N’ unknowns. 
Cases of equally distributed spectrum and null points as well as randomly spaced null points 
within the band were simulated and produced similar results. 

Examples of the results obtained using the above approach to null the PSF between 66 and 86 
microns in the focal plane (0.66-0.86 prad), are given in Figures 10-13. In Figure 10 five 
spectral components are used, resulting in a 60 dB null. Figure 11 shows the resulting lens 
profile. In this case each of the five spectral components making up the profile depicted in 
Figure 11 is found to have a magnitude less than two tenths of a wavelength. Examination of 
the condition number of the matrix used in the solution reveals it is small, indicating a non- 
singular matrix and a well-posed problem. Figures 12 and 13 show the results for the case of 
seven spectral components. In this case our 90 dB requirement is met over nearly the whole 
range. The lens profile in Figure 13 also appears reasonable. Further investigation of the 
solution reveals difficulties however. The magnitudes of the spectral components reach over 
100 wavelengths and have alternating signs, causing a high degree of cancellation that results 
in the lens profile of Figure 13. The solution matrix is also highly ill-conditioned, indicating a 
poorly posed problem. Similar results were observed for several other nulling attempts. In all 
cases the solution matrix became highly ill-conditioned before 90 dB nulling was achieved. 

It is believed that the difficulties observed here are closely related to those observed in an 
analogous problem in the field of antennas involving super directive arrays. In the antenna 
problem an array of elements may, in principle, be excited to produce an extremely narrow 
beam, much narrower than one would initially expect from the size of the overall array. While a 
solution appears possible, close examination of the excitation coefficients in the array indicates 
very large amplitudes with alternating signs. In practice such arrays cannot be produced due to 
real-world effects such as finite tolerances on the excitation and resistive loss in the structures. 
Closer examination of the relationship of this analogous problem to the problem at hand 
appears warranted. 

The 5 term lens profile was used as a starting point for an optimization program employing the 
exact diffraction integral. The amplitudes of the spectral components were perturbed and an 
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optimum solution resulting in a 60 dB null from 66-86 microns, (0.66-0.86 pad), was sought. 
The results of this optimization are shown in Figure 14. Although the goal was not achieved 
over the full band a significant null was produced. The results produced here required several 
thousand iterations of the program and it is believed that the 60 dB goal could be achieved with 
more iterations. The reduction in error function produced by the optimizer over the first 250 
iterations is depicted in Figure 15. A similar calculation was attempted using the 7 term, -90 dB 
starting point. After many thousand iterations no satisfactory results were obtained. It is 
believed that this is due to the extreme sensitivity of the starting point, and the finite accuracy 
of the overall numerical computation. Similar results were found for other starting points and 
null widths. In general 40 dB nulls were easily achievable, 60 dB nulls were possible with a 
great deal of effort, and 90 dB nulls were never achieved using the full diffraction calculation. 
More study is required to determine if a fundamental difficulty exists, as indicated by the high 
condition number encountered in the matrix solution, or if numerical issues are a factor. 

A final consideration is the tolerance required on the amplitudes of the spectral components. 
The magnitude of this tolerance is easily determined fiom the equation that appears earlier in 
this section. The field due to a single ripple of magnitude Az is of magnitude (Az*nIh). In order 
to produce an error at the -90 dB level the field must have a value of corresponding to 
Az= 1 OP5*h, or 0.1 angstroms. This is an extremely tight tolerance on the ripple profile. 

Conclusions and Future Work 
A simple analysis of a one-dimensional Fresnel lens subject to the TPF requirements has been 
carried out. The effects of blockage due to gaps in the lens and surface imperfections have been 
investigated. In order to guarantee adherence to the TPF requirement of -90 dB sensitivity the 
total blockage must be reduced to a level of 1 part in 104.5 or less. If the blockage is distributed 
this requirement may be reduced, depending on the relative location of the various blockages. 
The effect of surface imperfections was modeled both theoretically and numerically. Both 
results indicate that the assumed PSD for the imperfections and overall RMS surface error of 2 
nm result in scattered light at a level of approximately -80 dB in the focal plane regions of 
interest for TPF. This falls slightly short of the -90 dB requirement. Profiling the lens in order 
to null the PSF in a particular region of interest was also investigated both theoretically and 
numerically. Nulling to a level of approximately -60 dB was achieved over several lobes of the 
ideal PSF. The lens profile required to achieve the modified PSF is of modest amplitude and 
slowly varying. Unfortunately, numerical, theoretical, and tolerance difficulties arise when 
trying to achieve nulling in the -90 dB range. Further study is required to resolve the numerical 
difficulties and quadruple precision calculations may be required. Even if the numerical issues 
are resolved the tolerances required in the production of the profile to produce a 90 dB null in 
the PSF may make the lens impractical. 

Future work should investigate the theoretical limits regarding PSF nulling and the relationship 
of this problem to the analogous problem of achieving super-gain using antenna arrays. If the 
required nulls can indeed be achieved theoretically it is possible/likely that the tolerances 
required on the lens profile will exceed those of the manufacturing process. The possibility of 
using secondary optics containing a deformable mirror to provide further correction, and the 
theoretical limitations on this approach, should be investigated. Lastly, the more realistic 
scenario of a two dimensional, 10 meter diameter lens must be considered, including the effects 



of gaps in the structure. This will involve a very large-scale numerical computation, 
particularly when 1 O‘9 accuracy or better is required for the overall calculation. 
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Figure 1 .  TPF imaging requirements. 
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Figure 2. Effect of a single gap. 

IOm Lens with 9 Gaps, Each l m m  Wide 
Locations Om, +Hm, +/-2m, +I-Jm, +I4m 

0 

-5 
4 0 
I 5  
-20 
-25 
-30 
-35 - 4 0  - 4 5  I 

s -50 

160 
$ -55 

8 5  

-70 
-75 
-80 
-65 
-90 

-05 
-100 

0 1 2 3 4 5 6 7 8 9 i o  
X (mums)  

Figure 3. Effect of multiple gaps. 
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Figure 5.  Scattered light spectrum due to the PSD of Figure 4. 
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Difference Field Due to Random Surface E m n  
Theory and 6 Computer Simulations with Randomly Phased Spectral Components 
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Figure 6.  Monte Carlo simulation of surface roughness effects. 

Figure 7. Ideal PSF for a 1 Om, (F/D)= 10 lens when h= 1 micron. 
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Figure 7. Ideal PSF for a 1 Om, (F/D)= 10 lens when h= 1 micron. 

Figure 8.Nulled PSF at X=55 microns. 
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Figure 9.Lens profile for nulled PSF at X=55 microns. 

Figure 10. PSF nulling using 5 spectral components. 
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Figure 1 1. Lens profile using 5 spectral components. 

Figure 12. PSF nulling using 7 spectral components. 
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Figure 13. Lens profile using 7 spectral components. 

Nulling Attempt: 66-86 microns 
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Figure 14. Optimized PSF using a full diffraction calculation. 
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Figure 15. Decrease in the error function over the first 250 iterations. 
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