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Context 

Ongoing interest in space-based light detection 
and ranging (LIDAR) & optical 
communications 
Highly sensitive and radiation-tolerant 

Avalanche Photodiodes (APDs) often chosen 
detectors are needed 

- Low Noise 
- HighGAIN 



Avalanche Photodiode Principles 
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Avalanche Photodiode Principles 
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Avalanche Photodiode Principles 

Dark Current Has 2 Components 

1) SURFACE 
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APD Structures in the Study 
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APD Structures in the Study 
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Experimental Procedure 
Biased and un-biased irradiations with 51-MeV 
protons to 1Ol2 p/cm2 
Maintained constant BIAS = pre-irradiation GAIN of 
100 
Characterization performed at 22OC 
Dark Current 
Noise 
- Low noise transimpedence amplifier; dynamic signal analyzer 

Supplemental irradiations with CO-60 for diagnostic 
purposes 



Effect of Proton Damage on Dark Current 
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Effect of Proton Damage on Dark Current 

? 
*Not a simple 
volume 
argument.. . 
*Doping of 
Depletion 
Region will 
affect damage 
constants 
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Effect of Proton Damage on Dark Current 
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Comparison of Cobalt-60 and Proton Damage for 
APD with Large Increase in Dark Current 

.At low fluences, 
both show linear 
relations hip between 
damage and dose 
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Noise Data 

.Increases in l/f- 
type noise linked to 
surface currents 

.Ionization damage 
causes surface 
effects 

.Charge trapping 
between guard 
rings can induce n- 
type layers, letting 
surface currents 
flow 
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Mechanisms 
Displacement Damage important at lower fluences => 
Gain-Multiplied Bulk Dark Current 
- Depends on volume of depletion region 
- However, damage constants for lightly doped material have 

not been investigated in detail 
Ionization damage (charge trapping) can become 
important at higher fluences => Surface I, 
- Can occur in very shallow devices 

Carrier removal in p-region => ineffective guard rings 
Bulk damage => high frequency noise 
Surface damage => l/f-type noise 



Selection Considerations 
APDs with Shallow Construction Generally Preferred 
(except for long wavelengths) 
- Reducing volume generally reduces bulk dark current 

sensitivity from g-r centers 
- Carrier concentration in depletion region must also be 

considered 

Device architecture (guard rings) and possible surface 
effects must be considered 
- . Part-to-Part Variation is possible; test with adequate sample 

size 

Carrier removal &ay cause dopant inversion at high 
fluences => increasing surface currents or causing 
device failure 




