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I. INTRODUCTION 

In this survey paper, we bring together current progress 
to date in identifying Design Patterns[6] for use with the 
Real-time Specification for Java(RTSJ)[2] in a format con- 
sistent with contemporary Patterns descriptions. We begin 
by discussing some elementary patterns for structuring real- 
time applications. Specifically, we discuss the use of scoped 
memory for applications with periodic real-time behavior. We 
then discuss a simple extension to the factory pattern to 
accomodate memory areas. We survey existing work on scoped 
memory allocation[5] and recyclable immortal memory[4], 
and discuss some of the implications of such approaches for 
software design. 

Before describing the patterns in detail, we first define the 
following acronyms: 

RTT Real-time thread 
NHRTT: No-heap Real-time thread 
RTI: Real-time interval. Each cycle of a periodic thread 
occurs in the time span of one RTI. 

11. SCOPED MEMORY ENTRY PER RTI 

A. Intent 

Typical real-time application follow the following sequence 

Read sensors 
Run a control law, computing actuator commands 
Write actuator commands. 

of computations: 

This sequence of computations occurs periodically, once per 
RTI. By integrating the use of scoped memory into this peri- 
odic behavior, excessive garbage generation can be avoided. 

B. MotivatiodProblem 

If a control loop were implemented in pure non-RTSJ 
Java, allocations would be performed on the heap during 
each RTI. Much of the data allocated per RTI is immediately 
discarded, while only a smaller portion of the allocations made 
during the RTI contain data which will persist into the next 
RTI. Java’s garbage collector, which adds non-determinism 
to an application’s execution time and memory usage, would 
interfere with the application’s real-time behavior. A real-time 
application developer needs a way to deallocate many objects 
at the end of an RTI, without requiring the assistance of the 
garbage collector. 

C. Solution 

The steps necessary to combine scoped memory, along with 
a typical periodic processing cycle, consists of the following 
steps: 

Enter a scoped memory area 
Read sensors 
Run a control law, computing actuator commands 
Write actuator commands. 
Copy data out to immortal memory or to the heap 
Leave the scoped memory area 

D. Applicability 

This pattern is applicable for real-time applications which 
make use of periodic threads. For the case of a real-time 
thread, data may be copied out to either the heap or to 
immortal memory. However, for NHRTTs, there is little choice 
but to copy data to immortal memory for storage between 
RTIs. Although scoped memory can be used equally well 
for non-periodic threads, the intent of this pattern is to show 
how memory deallocation via scopes can be integrated into a 
periodic processing cycle. 

E. Static and Dynamic Structure 

In Figure 1, we show the dynamic structure of this pattern. 
From within a real-time thread which is scheduled periodi- 
cally, the thread enters a scoped memory area, passing in a 
runnable interface. The scoped memory is entered, and calls 
the runnable’s run method. Inside the run method, sensors are 
read, and the next set of actuator commands are computed. 
The runnable then stores any persistent data in a non-scoped 
memory region. When the run method completes, the scoped 
memory area is exited, and the memory allocated within the 
scoped memory region is then freed. Finally, the periodic 
thread will call WaitForNextPeriod, blocking until the next 
RTI. 

E Consequences 

The positive consequence of this pattern is that garbage 
generation is limited. However, this means that by running 
in a scoped memory region, as soon as the RTI has finished, 
and the scope has been exited, all allocated data within 
that scope will be erased and unavailable. This means that 
without intervention, data cannot be stored between RTIs. 
Therefore, manual programmer intervention is required. The 
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Fig. 1. namic structure 
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programmer must explicitly identify which pieces of data must 
have lifetimes longer than one RTI. Such data must then 
be explicitly copied from scoped memory to either immortal 
memory(for NHRTTs or RTTs) or to the heap (RTTs only). 

G. Related Patterns 

Because this pattern changes the default memory allocation 
context, this has consequences for other patterns used. Factory 
patterns may need to be augmented to use other memory 
areas besides the default allocation context. We discuss this 
extension to the standard factory pattern in section 111. 

111. USING FACTORIES WITH MEMORY AREAS 
A. Intent 

Factories are used to allow the creation of objects imple- 
menting a specific interface, without having to disclose the 
implementation class. Aside from the intent for the standard 
factory pattern, the additional requirement is that factories be 
able to allocate objects implementing a particular interface in 
an arbitrary memory area. 

B. MotivatiodProblem 

While using the traditional factory pattern [6] within the 
context of the RTSJ, all objects created by a factory will be 
created in the currently active memory area. Designers need 
the flexibility to specify in which memory area an object 
should be created. The use of newInstance is incompatible with 
the traditional factory pattern. Additionally, it is somewhat 
inconvenient to create a runnable and entering a memory area 
before calling a traditional factory’s creation method. 

C. Solution 

For object creation methods within a factory, designs should 
add an additional parameter to the factory to specify the 
memory area in which the object should be allocated. Since 
the factory itself is a singleton, the factory should be put in 
immortal memory. 

D. Applicability 

This is applicable to any RTSJ program wanting to program 
to interfaces rather than implementations, while maintaining 
flexibility in using memory areas. 

Fig. 2. Factory 
1 
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E. Static and Dynamic Structure 

Following the structure of the standard factory pattern, fac- 
tories are singletons. The factory must provide methods which 
construct object, returning only the Object’s interface, thus 
preventing the exposure of the object’s implementation class. 
Within the creation method, factories must either allocate the 
new object by using the memory area’s newInstance method, 
or by entering the memory area first and then performing a 
new operation. 

E Consequences 

Factory classes become dependent upon the RTSJ. The con- 
sequences of the standard factory pattern are also gained. Users 
are able to program to interfaces, removing the dependency 
on the particular implementation class. Factories remove the 
necessity of specifying which class to instantiate an object 
from. 

G. Related Patterns 

This pattern is a slight modification to the factory pattern 
presented in [6].  Factories themselves are singletons. We 
observe that all instances of the singleton pattern should be 
allocated in immortal memory. 

IV. SANDBOXING NO-HEAP REAL-TIME THREADS 
This concept, introduced by Beebee in [ 11 descends expres- 

sion as a single Design Pattern. Instead, the idea introduces a 
new way to examine NHRTTs, specifically in the context of 
their interaction with existing Java libraries. 

Due to the large semantic differences between Real-time 
threads and NHRTTs, NHRTTs should be considered to be part 
of another language, as they are associated with hard real-time 
requirements, have tighter restrictions on what memory areas 
they can touch, and have special requirements for communicat- 
ing their data to other threads. The RTSJ is then conceptually 
divided into two languages, which must not interact directly: 
a hard-real time portion using NHRTTs, and a Java portion 
consisting of real-time threads and plain Java threads. 

NHRTTs should not use standard Java libraries, or any other 
third-party libraries with unknown execution characteristics. 
Instead, custom libraries should be written for NHRTTs which 
can be thoroughly analysed in terms of 

1) Meeting stringent real-time requirements 
2) Meeting memory allocation requirements 

That is to say, by examining the source, devlopers must be 
able to ensure that the transitive closure of all objects referred 
to by the library does not touch illegal (ie heap) memory. 
Additionally, upon analysis the developer must ensure that 
memory leaks do not occur when the library is run within 
the NHRTT’s allocation context. 
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Real-time programmers have written stacks and queues 
with fixed sizes in the past for the C language. Instead of 
using classes from java.uti1, which have unknown real-time 
performance and allocation characteristics, developers writing 
in the NHRTT “language” should develop new utility libraries 
with documented allocation and timing characteristics. A 
standardized utility library could be developed for NHRTT 
developers; this might be an interesting avenue for further 
RTSJ research. 

What then is the advantage of the RTSJ? Why not use 
C/C++ instead of the new NHRTT “language”? The advantage 
comes with the easier interface. WaitFreeQueues provide a 
well defined interface for communicating between NHRTTs 
and Java. This provides a much more satisfactory mechanism 
than dealing with the error-prone JNI interface for interfacing 
to C code directly. 

In summary, the rules for running code under a NHRTT dif- 
fer so greatly from the rules for running under any other Java 
thread, that the restrictive subset of Java allowed for NHRTTs 
should be considered a different language. The NHRTT lan- 
guage should not use libraries provided for use with stan- 
dard Java programs. NHRTTs should avoid, to the largest 
extenet possible, interactions with heap-using threads, except 
via communication by the RTSJ-provided “inter-language” 
communication mechansims of wait-free queues. 

v. WEDGE THREAD 

A.  Intent 

The developer may desire to prevent scoped memory recla- 
mation until a later time. This is accomplished via the wedge 
thread pattern, introduced in [SI. 

B. MotivatiodProblem 

Typically, the memory associated with a scoped memory 
region used by one thread only persists for the duration of the 
enter method. After the scope has been exited, the memory can 
be freed. Developers, however may have the need to make use 
of data within the scoped memory area at a later point in their 
code, after the scope has been exited. 

C. Solution 

Acoording to the RTSJ specification, scoped memory will 
not be reclaimed until all threads have exited the scope. To 
keep the scope beyond the entry and exit of the application’s 
thread, an additional thread can be created, called a wedge 
thread, for the sole purpose of ensuring that the scope’s 
memory is not reclaimed. 
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Application exits the scoped 

wedge thread exits the scope 
because of signallxit. 
nemry is deallocafed. 

E. Static and Dynamic Structure 

The wedge thread extends RealtimeThread, and is created 
with a higher priority than the application thread using the 
scope. When the scope memory needs to be kept alive, the 
wedge thread is started. The wedge thread proceeds to enter 
the scoped memory area, and waits on a lock. The methods 
in the lock are called waitForExit and signalExit. The lock 
is typically stored in the scoped memory area’s portal. The 
application thread can then enter and leave the scope, with the 
wedge thread ensuring that the memory remains alive. Finally, 
when the application is ready to deallocate the memory, the 
application thread notifies the lock object. This signals the 
wedge thread to exit the memory area, thus ensuring all threads 
have exited the memory area and allowing reclamation to take 
place. This is shown in Figure 3. 

E Consequences 

The wedge thread allows extending the life of objects 
allocated within a scope beyond the life of one thread’s entry 
and exit of a scope. This comes at some cost. Firstly, there 
exists additional overhead at run-time of creating a higher- 
priority wedge thread. The wedge thread itself of course 
performs no computations; its sole purpose for existence is 
to provide an indirect way to manipulate the scoped memory 
area’s reference count. Additionally, if the portal is used for the 
purposes of the wedge thread, the application developer may 
need to arrange a way to access the portal for other purposes. 

VI. MEMORY POOLS 
A. Intent 

This pattern, described in [4], allows objects allocated in 
immortal memory to be recycled. This can be used to facilitate 
communication between NHRTTs and the outside world of 
Java threads. 

B. MotivationfProblem 

In the RTSJ, NHRTTs have a limited ability to touch 
memory. Specifically, NHRTTs will be very likely to allocate 
some objects in immortal memory. The lifetimes of the objects 
may not be known at creation time, such as the case where 

D. Applicability 

According to [5],  the wedge thread would be particularly 
applicable for storing an object reference in a scoped memory 
area’s portal. 
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a NHRTT needs to export data to another thread. In such an 
instance, allocating objects in immortal memory will result in 
a memory leak. For such situations, a scoped memory area 
may not be appropriate, especially if the NHRTT needs to 
export objects having varying lifetimes. The need to recycle 
objects allocated in immortal memory becomes apparent. 

C. Solution 

A memory pool is a collection of pre-allocated object of 
a given class, typically created in immortal memory. When a 
developer needs to instantiate a new object of the desired class, 
the developer asks the pool to return an unused object of that 
class. In this respect the pool acts as a factory. However, when 
the developer is finished with the object, the object must be 
returned to the pool. This adds manual memory management 
and de-allocation to the RTSJ. 

In one variation of this pattern, we might desire to express 
the freeing of a component as transparently as possible. In 
this case, we do not want to force users of a component to 
explicitly specify the pool from which the component was 
created. Therefore, we define an interface Poolable, which 
contains a free method. This allows an object to be de- 
allocated without the client having to know which pool to 
return the object to. This then forces the implementation object 
to store a reference to its pool within the pooled object’s 
constructor. 

D. Applicability 

The recycling of immortal memory almost becomes a ne- 
cessity when dealing with NHRTTs. This becomes especially 
important when allocating data to be passed into and out 
of wait-free queues, allowing the communication between 
NHRTTs and the outside world. 

E. Static and Dynamic Structure 

Dibble [4] recommends using two wait-free queues for 
communicating. This is one instance of using a memory pool. 
Memory pools can also be implemented independently of wait- 
free queues. However, wait-free queues are a likely candidate 
for being used in conjunction with memory pools, so they 
serve as an appropriate model. 

We show the dynamic structure of using wait-free queues for 
memory pooling in Figure 4. First, the pool must be created. 
Internal to the pool, two wait free queues are created, the 
communication queue and the recycling queue. N elements are 
created in immortal memory, and are placed on the recycling 
queue. 

When a reader is interested in the data, the reader first 
dequeues the data from the communication queue, and then 
examines it. When the reader is finished with the data, the 
data must then be recycled by placing the data in the recycling 
queue. 

When a writer wants to enqueue data, the writer firsts 
dequeues memory from the recycling queue, and sets the data 
to the appropriate value. The writer then proceeds to enqueue 
the data on the communication queue. 

Fig. 4. Memory Pool Fl @ 1-q 
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E Consequences 

This pattern has the consequence of giving up a major 
advantage of Java: automatic memory management. Even the 
use of scoped memory offers some advantages over fully 
manual deallocation, in that memory deallocation takes place 
automatically. However, the introduction of memory pools 
takes Java a step backwards in terms of maintainability; de- 
velopers must manually manage memory, deallocating objects 
at the proper time, reintroducing the possibility of memory 
leaks. By using pools, memory leaks become more likely 
versus using immortal memory for truly immortal objects 
which require no explicit deallocation. 

A second negative consequence of this pattem is that im- 
mutable objects may not be used in conjunction with memory 
pools. If an application’s architecture already uses immutable 
objects, the application will have to be redesign and re- 
implemented if it is to use memory pools. 

A third disadvantage is that pools themselves must be 
created separately for each class. A single pool can only store 
fixed-sized objects of a single class. 

G. Related Patterns 

An alternative to this pattern is presented in section VII. 

VII. MEMORY BLOCKS 
A. Intent 

Memory pools must contain fixed sized objects of fixed 
classes for a given pool. The intent of the memory block 
pattern is to generalize the situation, by allowing a block of 
bytes to be allocated in immortal memory. Objects are written 
to and read from this memory block. The intent is to allow 
objects of varying sized to be pooled. In other respects, this 
pattern has the same intent as the Memory Pool. 

B. MotivatiodProblem 

The motivation for this pattern is much the same as for 
using Memory Pools. This pattern presents a slightly different 
approach, however. Memory pools are limited to objects of 
a given fixed size and class. Each memory pool therefore 
contains objects of a single implementation type. Memory 
pools force architects to give up immutability, and forces 
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exposure of the implementation classes. This patterns seeks 
to address the problem of importing and exporting data from 
immortal memory without sacrificing immutability. 

C. Solution 

Allocate a byte array in immortal memory. We call this a 
memory block. Objects being sent into the memory block are 
serialized into the memory block‘s byte array. Objects being 
received from the memory block are deserialized from the byte 
array. When an object is discarded, the memory block makes 
those bytes available for further allocations. 

D. Applicability 

This pattern is intended to be used for passing arbitrary 
objects in and out of a NHRTT through an immortal memory 
buffer. 

E. Static and Dynamic Structure 

A memory block is first created. Suppose a NHRTT is 
passing data out to a heap-using thread. The specific class that 
will be passed out of the NHRTT may vary over time. The 
NHRTT then passes the object to the memory block, which in 
turn calls the object’s serialization method, putting the object 
in the memory pool’s byte array. The memory pool is then 
sent out along a wait-free queue to a heap-using thread. The 
heap-using thread then asks the memory pool to deserialize the 
object, passing in the appropriate memory area. The memory 
pool then internally takes note of those bytes which are no 
longer in use. 

E Consequences 

An application designer can re-use immortal memory while 
allowing application designers to pool objects of different 
classes and sizes. Immutable objects can then be used in 
designs, provided that they can be serialized in some form to 
a byte array. The disadvantages are still significant. We have 
reduced Java programming in essence to storing and retrieving 
data from a mechanism not unlike a Fortran common block. 
Additionally, the application must pay for the serialization and 
deserialization costs. And using java.io for serialization in the 
context of a NHRTT is a clear violation of the lessons learned 
in section IV, so some custom serialization will be necessary. 
Fragmentation can occur in the memory block since objects 
can be of different sizes. In the end, the user is forced to 
manually write a memory manager. 

G. Related Patterns 

An alternative to this pattern is presented in section VI. 

VIII. CONCLUSION 
We have provided a survey of some of the known pat- 

terns for using the RTSJ. The RTSJ introduces new memory 
allocation techniques, and we have seen new approaches 
to dealing with the facilities. As developers adopt to new 
features, they should be aware of the consequences of using 

RTSJ’s features for their architectures. Certain patterns limit an 
application’s architecture, eliminating the possibility of using 
immutable classes. Using NHRTTs is analogous to using a 
new language, requiring its own set of libraries. Although 
the RTSJ brings powerful features for working with real-time 
constraints, there is no free lunch: the RTSJ, and by extension 
some RTSJ patterns, introduce new dimensions for developers 
to consider, representing a necessary departure from Java’s 
hallmark simplicity. 
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