
1

A Patterns Catalog for RTSJ Software Designs
Edward G. Benowitz, Albert E Niessner

Jet Propulsion Laboratory, California Institute of Technology
4800 Oak Grove Drive
Pasadena, CA 91 109

{ Edward.G.Benowitz, Albert.F.Niessner } @ jpl.nasa.gov

I. INTRODUCTION

In this survey paper, we bring together current progress
to date in identifying Design Patterns[6] for use with the
Real-time Specification for Java(RTSJ)[2] in a format con-
sistent with contemporary Patterns descriptions. We begin
by discussing some elementary patterns for structuring real-
time applications. Specifically, we discuss the use of scoped
memory for applications with periodic real-time behavior. We
then discuss a simple extension to the factory pattern to
accomodate memory areas. We survey existing work on scoped
memory allocation[5] and recyclable immortal memory[4],
and discuss some of the implications of such approaches for
software design.

Before describing the patterns in detail, we first define the
following acronyms:

RTT Real-time thread
NHRTT: No-heap Real-time thread
RTI: Real-time interval. Each cycle of a periodic thread
occurs in the time span of one RTI.

11. SCOPED MEMORY ENTRY PER RTI

A. Intent

Typical real-time application follow the following sequence

Read sensors
Run a control law, computing actuator commands
Write actuator commands.

of computations:

This sequence of computations occurs periodically, once per
RTI. By integrating the use of scoped memory into this peri-
odic behavior, excessive garbage generation can be avoided.

B. MotivatiodProblem

If a control loop were implemented in pure non-RTSJ
Java, allocations would be performed on the heap during
each RTI. Much of the data allocated per RTI is immediately
discarded, while only a smaller portion of the allocations made
during the RTI contain data which will persist into the next
RTI. Java’s garbage collector, which adds non-determinism
to an application’s execution time and memory usage, would
interfere with the application’s real-time behavior. A real-time
application developer needs a way to deallocate many objects
at the end of an RTI, without requiring the assistance of the
garbage collector.

C. Solution

The steps necessary to combine scoped memory, along with
a typical periodic processing cycle, consists of the following
steps:

Enter a scoped memory area
Read sensors
Run a control law, computing actuator commands
Write actuator commands.
Copy data out to immortal memory or to the heap
Leave the scoped memory area

D. Applicability

This pattern is applicable for real-time applications which
make use of periodic threads. For the case of a real-time
thread, data may be copied out to either the heap or to
immortal memory. However, for NHRTTs, there is little choice
but to copy data to immortal memory for storage between
RTIs. Although scoped memory can be used equally well
for non-periodic threads, the intent of this pattern is to show
how memory deallocation via scopes can be integrated into a
periodic processing cycle.

E. Static and Dynamic Structure

In Figure 1, we show the dynamic structure of this pattern.
From within a real-time thread which is scheduled periodi-
cally, the thread enters a scoped memory area, passing in a
runnable interface. The scoped memory is entered, and calls
the runnable’s run method. Inside the run method, sensors are
read, and the next set of actuator commands are computed.
The runnable then stores any persistent data in a non-scoped
memory region. When the run method completes, the scoped
memory area is exited, and the memory allocated within the
scoped memory region is then freed. Finally, the periodic
thread will call WaitForNextPeriod, blocking until the next
RTI.

E Consequences

The positive consequence of this pattern is that garbage
generation is limited. However, this means that by running
in a scoped memory region, as soon as the RTI has finished,
and the scope has been exited, all allocated data within
that scope will be erased and unavailable. This means that
without intervention, data cannot be stored between RTIs.
Therefore, manual programmer intervention is required. The

http://jpl.nasa.gov

2

Fig. 1. namic structure

1 Scaoed Memorv freed when run cOmDleteS 4

programmer must explicitly identify which pieces of data must
have lifetimes longer than one RTI. Such data must then
be explicitly copied from scoped memory to either immortal
memory(for NHRTTs or RTTs) or to the heap (RTTs only).

G. Related Patterns

Because this pattern changes the default memory allocation
context, this has consequences for other patterns used. Factory
patterns may need to be augmented to use other memory
areas besides the default allocation context. We discuss this
extension to the standard factory pattern in section 111.

111. USING FACTORIES WITH MEMORY AREAS
A. Intent

Factories are used to allow the creation of objects imple-
menting a specific interface, without having to disclose the
implementation class. Aside from the intent for the standard
factory pattern, the additional requirement is that factories be
able to allocate objects implementing a particular interface in
an arbitrary memory area.

B. MotivatiodProblem

While using the traditional factory pattern [6] within the
context of the RTSJ, all objects created by a factory will be
created in the currently active memory area. Designers need
the flexibility to specify in which memory area an object
should be created. The use of newInstance is incompatible with
the traditional factory pattern. Additionally, it is somewhat
inconvenient to create a runnable and entering a memory area
before calling a traditional factory’s creation method.

C. Solution

For object creation methods within a factory, designs should
add an additional parameter to the factory to specify the
memory area in which the object should be allocated. Since
the factory itself is a singleton, the factory should be put in
immortal memory.

D. Applicability

This is applicable to any RTSJ program wanting to program
to interfaces rather than implementations, while maintaining
flexibility in using memory areas.

Fig. 2. Factory
1

Factory
+create (area :MemoryArea, parameter: Object) : In terfac

E. Static and Dynamic Structure

Following the structure of the standard factory pattern, fac-
tories are singletons. The factory must provide methods which
construct object, returning only the Object’s interface, thus
preventing the exposure of the object’s implementation class.
Within the creation method, factories must either allocate the
new object by using the memory area’s newInstance method,
or by entering the memory area first and then performing a
new operation.

E Consequences

Factory classes become dependent upon the RTSJ. The con-
sequences of the standard factory pattern are also gained. Users
are able to program to interfaces, removing the dependency
on the particular implementation class. Factories remove the
necessity of specifying which class to instantiate an object
from.

G. Related Patterns

This pattern is a slight modification to the factory pattern
presented in [6]. Factories themselves are singletons. We
observe that all instances of the singleton pattern should be
allocated in immortal memory.

IV. SANDBOXING NO-HEAP REAL-TIME THREADS
This concept, introduced by Beebee in [11 descends expres-

sion as a single Design Pattern. Instead, the idea introduces a
new way to examine NHRTTs, specifically in the context of
their interaction with existing Java libraries.

Due to the large semantic differences between Real-time
threads and NHRTTs, NHRTTs should be considered to be part
of another language, as they are associated with hard real-time
requirements, have tighter restrictions on what memory areas
they can touch, and have special requirements for communicat-
ing their data to other threads. The RTSJ is then conceptually
divided into two languages, which must not interact directly:
a hard-real time portion using NHRTTs, and a Java portion
consisting of real-time threads and plain Java threads.

NHRTTs should not use standard Java libraries, or any other
third-party libraries with unknown execution characteristics.
Instead, custom libraries should be written for NHRTTs which
can be thoroughly analysed in terms of

1) Meeting stringent real-time requirements
2) Meeting memory allocation requirements

That is to say, by examining the source, devlopers must be
able to ensure that the transitive closure of all objects referred
to by the library does not touch illegal (ie heap) memory.
Additionally, upon analysis the developer must ensure that
memory leaks do not occur when the library is run within
the NHRTT’s allocation context.

3

I

. . /
/ D

Real-time programmers have written stacks and queues
with fixed sizes in the past for the C language. Instead of
using classes from java.uti1, which have unknown real-time
performance and allocation characteristics, developers writing
in the NHRTT “language” should develop new utility libraries
with documented allocation and timing characteristics. A
standardized utility library could be developed for NHRTT
developers; this might be an interesting avenue for further
RTSJ research.

What then is the advantage of the RTSJ? Why not use
C/C++ instead of the new NHRTT “language”? The advantage
comes with the easier interface. WaitFreeQueues provide a
well defined interface for communicating between NHRTTs
and Java. This provides a much more satisfactory mechanism
than dealing with the error-prone JNI interface for interfacing
to C code directly.

In summary, the rules for running code under a NHRTT dif-
fer so greatly from the rules for running under any other Java
thread, that the restrictive subset of Java allowed for NHRTTs
should be considered a different language. The NHRTT lan-
guage should not use libraries provided for use with stan-
dard Java programs. NHRTTs should avoid, to the largest
extenet possible, interactions with heap-using threads, except
via communication by the RTSJ-provided “inter-language”
communication mechansims of wait-free queues.

v. WEDGE THREAD

A. Intent

The developer may desire to prevent scoped memory recla-
mation until a later time. This is accomplished via the wedge
thread pattern, introduced in [SI.

B. MotivatiodProblem

Typically, the memory associated with a scoped memory
region used by one thread only persists for the duration of the
enter method. After the scope has been exited, the memory can
be freed. Developers, however may have the need to make use
of data within the scoped memory area at a later point in their
code, after the scope has been exited.

C. Solution

Acoording to the RTSJ specification, scoped memory will
not be reclaimed until all threads have exited the scope. To
keep the scope beyond the entry and exit of the application’s
thread, an additional thread can be created, called a wedge
thread, for the sole purpose of ensuring that the scope’s
memory is not reclaimed.

Fig. 3. Wedge Thread d namic structure & ~ ~ I E I 1 C p n d l . o n l

/ I I A I
I -

Application exits the scoped

wedge thread exits the scope
because of signallxit.
nemry is deallocafed.

E. Static and Dynamic Structure

The wedge thread extends RealtimeThread, and is created
with a higher priority than the application thread using the
scope. When the scope memory needs to be kept alive, the
wedge thread is started. The wedge thread proceeds to enter
the scoped memory area, and waits on a lock. The methods
in the lock are called waitForExit and signalExit. The lock
is typically stored in the scoped memory area’s portal. The
application thread can then enter and leave the scope, with the
wedge thread ensuring that the memory remains alive. Finally,
when the application is ready to deallocate the memory, the
application thread notifies the lock object. This signals the
wedge thread to exit the memory area, thus ensuring all threads
have exited the memory area and allowing reclamation to take
place. This is shown in Figure 3.

E Consequences

The wedge thread allows extending the life of objects
allocated within a scope beyond the life of one thread’s entry
and exit of a scope. This comes at some cost. Firstly, there
exists additional overhead at run-time of creating a higher-
priority wedge thread. The wedge thread itself of course
performs no computations; its sole purpose for existence is
to provide an indirect way to manipulate the scoped memory
area’s reference count. Additionally, if the portal is used for the
purposes of the wedge thread, the application developer may
need to arrange a way to access the portal for other purposes.

VI. MEMORY POOLS
A. Intent

This pattern, described in [4], allows objects allocated in
immortal memory to be recycled. This can be used to facilitate
communication between NHRTTs and the outside world of
Java threads.

B. MotivationfProblem

In the RTSJ, NHRTTs have a limited ability to touch
memory. Specifically, NHRTTs will be very likely to allocate
some objects in immortal memory. The lifetimes of the objects
may not be known at creation time, such as the case where

D. Applicability

According to [5], the wedge thread would be particularly
applicable for storing an object reference in a scoped memory
area’s portal.

4

a NHRTT needs to export data to another thread. In such an
instance, allocating objects in immortal memory will result in
a memory leak. For such situations, a scoped memory area
may not be appropriate, especially if the NHRTT needs to
export objects having varying lifetimes. The need to recycle
objects allocated in immortal memory becomes apparent.

C. Solution

A memory pool is a collection of pre-allocated object of
a given class, typically created in immortal memory. When a
developer needs to instantiate a new object of the desired class,
the developer asks the pool to return an unused object of that
class. In this respect the pool acts as a factory. However, when
the developer is finished with the object, the object must be
returned to the pool. This adds manual memory management
and de-allocation to the RTSJ.

In one variation of this pattern, we might desire to express
the freeing of a component as transparently as possible. In
this case, we do not want to force users of a component to
explicitly specify the pool from which the component was
created. Therefore, we define an interface Poolable, which
contains a free method. This allows an object to be de-
allocated without the client having to know which pool to
return the object to. This then forces the implementation object
to store a reference to its pool within the pooled object’s
constructor.

D. Applicability

The recycling of immortal memory almost becomes a ne-
cessity when dealing with NHRTTs. This becomes especially
important when allocating data to be passed into and out
of wait-free queues, allowing the communication between
NHRTTs and the outside world.

E. Static and Dynamic Structure

Dibble [4] recommends using two wait-free queues for
communicating. This is one instance of using a memory pool.
Memory pools can also be implemented independently of wait-
free queues. However, wait-free queues are a likely candidate
for being used in conjunction with memory pools, so they
serve as an appropriate model.

We show the dynamic structure of using wait-free queues for
memory pooling in Figure 4. First, the pool must be created.
Internal to the pool, two wait free queues are created, the
communication queue and the recycling queue. N elements are
created in immortal memory, and are placed on the recycling
queue.

When a reader is interested in the data, the reader first
dequeues the data from the communication queue, and then
examines it. When the reader is finished with the data, the
data must then be recycled by placing the data in the recycling
queue.

When a writer wants to enqueue data, the writer firsts
dequeues memory from the recycling queue, and sets the data
to the appropriate value. The writer then proceeds to enqueue
the data on the communication queue.

Fig. 4. Memory Pool Fl @ 1-q

I I

E Consequences

This pattern has the consequence of giving up a major
advantage of Java: automatic memory management. Even the
use of scoped memory offers some advantages over fully
manual deallocation, in that memory deallocation takes place
automatically. However, the introduction of memory pools
takes Java a step backwards in terms of maintainability; de-
velopers must manually manage memory, deallocating objects
at the proper time, reintroducing the possibility of memory
leaks. By using pools, memory leaks become more likely
versus using immortal memory for truly immortal objects
which require no explicit deallocation.

A second negative consequence of this pattem is that im-
mutable objects may not be used in conjunction with memory
pools. If an application’s architecture already uses immutable
objects, the application will have to be redesign and re-
implemented if it is to use memory pools.

A third disadvantage is that pools themselves must be
created separately for each class. A single pool can only store
fixed-sized objects of a single class.

G. Related Patterns

An alternative to this pattern is presented in section VII.

VII. MEMORY BLOCKS
A. Intent

Memory pools must contain fixed sized objects of fixed
classes for a given pool. The intent of the memory block
pattern is to generalize the situation, by allowing a block of
bytes to be allocated in immortal memory. Objects are written
to and read from this memory block. The intent is to allow
objects of varying sized to be pooled. In other respects, this
pattern has the same intent as the Memory Pool.

B. MotivatiodProblem

The motivation for this pattern is much the same as for
using Memory Pools. This pattern presents a slightly different
approach, however. Memory pools are limited to objects of
a given fixed size and class. Each memory pool therefore
contains objects of a single implementation type. Memory
pools force architects to give up immutability, and forces

5

exposure of the implementation classes. This patterns seeks
to address the problem of importing and exporting data from
immortal memory without sacrificing immutability.

C. Solution

Allocate a byte array in immortal memory. We call this a
memory block. Objects being sent into the memory block are
serialized into the memory block‘s byte array. Objects being
received from the memory block are deserialized from the byte
array. When an object is discarded, the memory block makes
those bytes available for further allocations.

D. Applicability

This pattern is intended to be used for passing arbitrary
objects in and out of a NHRTT through an immortal memory
buffer.

E. Static and Dynamic Structure

A memory block is first created. Suppose a NHRTT is
passing data out to a heap-using thread. The specific class that
will be passed out of the NHRTT may vary over time. The
NHRTT then passes the object to the memory block, which in
turn calls the object’s serialization method, putting the object
in the memory pool’s byte array. The memory pool is then
sent out along a wait-free queue to a heap-using thread. The
heap-using thread then asks the memory pool to deserialize the
object, passing in the appropriate memory area. The memory
pool then internally takes note of those bytes which are no
longer in use.

E Consequences

An application designer can re-use immortal memory while
allowing application designers to pool objects of different
classes and sizes. Immutable objects can then be used in
designs, provided that they can be serialized in some form to
a byte array. The disadvantages are still significant. We have
reduced Java programming in essence to storing and retrieving
data from a mechanism not unlike a Fortran common block.
Additionally, the application must pay for the serialization and
deserialization costs. And using java.io for serialization in the
context of a NHRTT is a clear violation of the lessons learned
in section IV, so some custom serialization will be necessary.
Fragmentation can occur in the memory block since objects
can be of different sizes. In the end, the user is forced to
manually write a memory manager.

G. Related Patterns

An alternative to this pattern is presented in section VI.

VIII. CONCLUSION
We have provided a survey of some of the known pat-

terns for using the RTSJ. The RTSJ introduces new memory
allocation techniques, and we have seen new approaches
to dealing with the facilities. As developers adopt to new
features, they should be aware of the consequences of using

RTSJ’s features for their architectures. Certain patterns limit an
application’s architecture, eliminating the possibility of using
immutable classes. Using NHRTTs is analogous to using a
new language, requiring its own set of libraries. Although
the RTSJ brings powerful features for working with real-time
constraints, there is no free lunch: the RTSJ, and by extension
some RTSJ patterns, introduce new dimensions for developers
to consider, representing a necessary departure from Java’s
hallmark simplicity.

REFERENCES
[l] W. Beebee, “Re: Scoped Memory Design Pattems”, posting to RTSJ

mailing list rtj-discuss@nist.gov, 5/27/2003.
[2] G. Bollella , J. Gosling, B. Brosgol, P. Dibble, S. Fun; M. Turnbull, The

Real-Time SpecGcation for Java, Addison-Wesley, 2000.
[3] J. Cooper, The Design Patterns Java Companion, Addision-Wesley, 1998.
[4] P. Dibble, Real-Time Java Platform Programming, Prentice Hall, 2002.
[5] J. Fox, D. Holmes, F. Pizlo, J. Vitek, “Scoped Memory: Design Pattems

and Semantics”, Proc. 24th IEEE International Real-Time Systems Sym-
posium, 2003.

[6] E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design Pafferns: Elements
of Reusable Object-Oriented Sofrware, Addison Wesley, 1994.

mailto:rtj-discuss@nist.gov

