
1

Experiences in Adopting Real-Time Java for
Flight -like S oft w are

Edward G. Benowitz, Albert E Niessner
Jet Propulsion Laboratory, California Institute of Technology

4800 Oak Grove Drive
Pasadena, CA 91109

{ Edward.G.Benowitz, Albert.F.Niessner} @jpl.nasa.gov

Ahtruct- This work involves developing representative
mission-critical spacecraft software using the Real-Time Spec-
ification for Java(RTSJ)[l]. Utilizing a real mission design, this
work leverages the original flight code from NASA’s Deep Space
l(DSl), which flew in 1998. However, instead of performing a line-
by-line port, the code is re-architected in pure Javam, using best
practices in Object-Oriented(00) design. We have successfully
demonstrated a portion of the spacecraft attitude control and
fault protection, running on a standard Java platform, and are
currently in the process of taking advantage of the features pro-
vided by the RTSJ. In particular, we are focusing on interaction
with RTSJ’s scheduling and memory area frameworks. Our goal
is to run on flight-like hardware, in closed-loop with the original
spacecraft dynamics simulation.

In re-designing the software from the original C code, we
have adopted 00 techniques for flight software development.
Specifically, we have taken advantage of design patterns[71,
and have seen a strong mapping from certain patterns to the
flight software. To ensure the correctness of measurement units,
numerical computations are performed via an abstraction layer
that checks measurement units at compile-time.

Our approach places an emphasis on pluggable technology.
Interfaces, in conjunction with a facade pattern, expose only the
behavior of a subsystem, rather than exposing its implementation
details. Since the RTSJ reference implementation does not cur-
rently support debugging, we chose to apply pluggable technology
to the scheduler and memory allocation interfaces. Thus, real-
time client code can be run on a standard Java virtual machine,
allowing the code to be debugged in a graphical development
environment on a desktop PC at the cost of decreased real-time
performance. Once non-real-time issues have been debugged, the
real-time aspects can be debugged in isolation on an RTSJ-
compliant virtual machine.

I. INTRODUCTION
Java introduces a number of advantages for software de-

velopment by improving software maintainability. We seek to
take advantage of Java’s features for flight software develop-
ment. The RTSJ is a relatively new extension to Java which
introduces real-time features. Since the specification is a new
technology, there are few examples of real-time Java being
applied to non-trivial problems. Our work involves creating
real-time Java software which implements a realistic spacecraft
control loop. In this section, we discuss the motivation for our
work, the advantages of Java, and our approach.

A. Motivation

Flight software has a high development cost, due in part to
the difficulty in maintaining the code. The lack of maintain-

ability stems from the limitations of current implementation
languages (typically C or C++). There is a lack of strong
type-checking and parameter checking. Memory can easily
be corrupted due to the lack of pointer checking and array-
bounds checking. Without operating system protections, these
problems can occur as silent failures. Concurrency primitives
are very low-level, and are not part of the language. A typical
program will abound with error-prone switch statements and
preprocessor directives. And only a globally shared namespace
is available.

Pluggable components cannot be expressed with traditional
flight software techniques. A pluggable component is a soft-
ware article which only exposes its interface (behavior) and
not its implementation. Pluggable components allow different
implementations to be swapped, without requiring modifica-
tions to the rest of the code. The C language does not provide
this level of encapsulation mostly because of its procedural
orientation. Although C++ attempts to provide encapsulation,
multiple inheritance problems exist. Additionally, the encap-
sulation can easily be broken by using the friend keyword.

B. Advantages of Java

To address these issues, we are investigating Java as an
implementation language for flight software. Java improves
maintainability with its strong type-checking at both compile-
time and run-time. Additionally, Java checks array boundaries,
and ensures that variables are initialized. Standard Java pro-
vides automatic memory management, and Real-Time Java
allows several forms of manual memory management where
required (see 11-B for details). Multi-threading and higher-level
concurrency primitives are built into the language as well. Java
can easily express pluggable components, as the notion of an
interface is an explicit part of the language. Java provides for
full encapsulation, and allows single inheritance with multiple
interface inheritance. Java also provides extensibility through
inheritance and dynamic class-loading.

Aside from the advantages of the language itself, the Java
platform includes a large standard class library with support
for most programming needs. Due to the large Java developer
community, additional Java components are available from the
intemet, often for free.

According to NIST[9], Java’s higher level of abstraction
leads to increased programmer productivity. The Java platform,

mailto:jpl.nasa.gov

2

coupled with Java language, improves application portability.
Additionally, Java is easier to master than C++, and supports
component integration and reuse.

C. Approach

We specifically chose to favor maintainability above all else
during the architectural, design, and implementation phases of
the development. Maintainability requires making extensive
use of design patterns, taking full advantage of Java language
features, using pluggable technology, and making appropriate
use of commercial, off-the-shelf libraries and tools. During
the performance evaluation phase, it is known that some
maintainability will be sacrificed in order to optimize parts
of the system to meet performance requirements. However,
empirical evidence from systematic profiling of the application
will dictate where and what is to be optimized, as opposed
to prematurely attempting to optimize based on intuition,
instincts, and/or assumptions of behavior.

For our implementation approach, we have chosen two
subsystems to focus on. From the attitude control system, we
have implmented a real-time control loop which detumbles
a simulated spacecraft. In a detumble operation, a spacecraft
with some initial set of angular velocities is controlled such
that its angular velocity is reduced to a value close to zero.
Our pure Java detumble control loop runs in real-time on a
standard Java virtual machine. In addition, we have ported
a C++ fault protection subsystem to Java, demonstrating a
degree of autonomous behavior.

D. Tools

COTS graphical development tools were used extensively in
this project. Specifically, the open-source Eclipse[6] integrated
development environment provided graphical code editing,
browsing, debugging, and refactoring capabilities. Headway’s
Review[8] product was used to graphically inspect our design,
and allowed us to maintain a consistent architecture. Addition-
ally, JProbe[l3] was used to examine memory usage, and to
identify critical regions for future optimization.

An RTSJ-compliant virtual machine is required for running
real-time Java applications. In addition to the the RTSJ refer-
ence implementation, several additional RTSJ implementations
are just now becoming available: JRateD], OVM[10], and
FLEX[11].

E. Pluggable Components, Factories, and Dynamic Class-
Loading

Pluggable components are specified by an interface because
implementation details are not visible from classes using the
components. To hide the implementation class of a particular
component, a factory is used instead of directly calling a
constructor. The factory is tasked with constructing a particular
instance of the pluggable component, and returning the com-
ponent as an interface. An abstract factory provides a further
step of abstraction. Each instance of an abstract factory can
construct an instance of a pluggable component in a differ-
ent fashion, typically instantiating a different implementation
class.

We have used dynamic class-loading, in conjunction with
abstract factories as a replacement for the C preprocessor.
By using this approach, we allow the user of an application
to choose at run-time the implementation corresponding to a
particular interface. That is, the implementation of a pluggable
component can be chosen at run-time. Clients of the interface
use an abstract factory to request an instance of an interface.
A particular implementation of an interface will have its own
concrete factory as a subclass of the abstract class factory.
The proper concrete class factory is dynamically loaded at
run-time, returning the corresponding implementation of the
interface. The advantage of this approach is that we can swap
out implementations at run-time. Specifically, this was used
to choose between our desktop scheduler implementation and
the RTSJ scheduler implementation at run-time.

In the long term, dynamic class-loading has much greater
potential for spacecraft missions. Current practice requires
reloading a binary image of the executable to a spacecraft,
followed by a reboot. We envision that Java’s dynamic class-
loading facilities could be used to provide additional function-
ality to a spacecraft by uplinking new class files to a running
system, without requiring a reboot. This capability is outside
of our current scope, but would be an interesting avenue for
further research.

11. REAL-TIME LAYER

There are several problems with traditional Java implemen-
tations that make it unsuitable for real-time programming,
such as timing, scheduling, and memory management. The
Real-Time Specification for Java addresses these issues by
providing tighter semantics on scheduling, and by providing
new memory management paradigms. We now discuss our
wrapper layer for accessing these real-time services. We briefly
introduce RTSJ’s memory and scheduling features, and discuss
some of the issues involved with the new memory management
paradigm.

A. Scheduler

The nature of flight software requires that certain threads
execute at certain times, and the times that the threads execute
depends on the type of work being done. For instance, control
loops run periodically while watchdogs run once at some
time to signal the system of a potential problem. Defining
the temporal boundaries and constraints for these threads
is independent of the scheduling algorithm being used, but
communicating these constraints to the scheduler is dependent
on the scheduling algorithm and its implementation. We chose
to apply the pluggable technology approach to our scheduler
so that we can use whatever scheduling algorithm is available
to us. Currently, we provide several varieties of scheduling
requests:

A one-shot timer. The scheduler will run a block of code
after at a specific time.
Periodic behavior: The scheduler will then run the block
of code at the client specified rate.
Standard: The scheduler will run the block of code when
possible.

3

All of these behaviors can also specify a deadline that when
crossed will cause a secondary block of code to be executed.
Additionally we provide facilities for specifying a maximum
percentage of CPU usage by a particular thread. The scheduler
to be used is selected at run-time and instantiated through the
use of dynamic class loading and factories.

Since the RTSJ reference implementation does not currently
support debugging, our choice of pluggable technology al-
lowed us to use the desktop for debugging. When running
within an RTSJ-compliant virtual machine, our scheduler
interface simply delegates out to the underlying RTSJ im-
plementation. However, when running on a standard desktop
Java virtual machine, the scheduler component uses our own
implementation, written only using standard Java features. We
emulate, as best as possible, the real-time scheduling features
on a standard Java platform. Clients may chose between the
RTSJ scheduler implementation and the desktop scheduler
implementation at run-time.

Thus, real-time client code can be run on a standard Java
virtual machine, allowing the code to be debugged in a
graphical development environment on a desktop PC at the
cost of decreased real-time performance. Once non-real-time
issues have been debugged on a standard Java VM, the real-
time issues can be debugged in isolation on an RTSJ-compliant
virtual machine.

B. Memory Areas

With the addition of the RTSJ’s scheduling and memory
management features, come new failure modes and program-
ming pitfalls. The developer must consciously avoid violating
memory area rules, and must ensure that no memory leaks
occur. We present a series of guidelines for using the RTSJ
memory management features. We provide a set of recommen-
dations for memory allocation, showing scenarios that take
advantage of memory areas provided by RTSJ. In addition,
restrictions are placed on memory allocation scenarios that
are particularly error-prone.

I) Immortal memory : Immortal memory is a new alloca-
tion scheme provided by the RTSJ. Once an object is allocated
in Immortal memory, it is never freed. The advantage of
this approach is that objects allocated in immortal memory
have no need for interaction with the garbage collector. The
disadvantage is that memory leaks are now possible. We
recommend that allocations to immortal memory be performed
in static initializers. We also require that object which are
running in immortal memory only allocate in their construc-
tors. With these restrictions in place, memory leaks can be
avoided. However, this also places severe restrictions on which
classes may be used. To use a JDK class while running in
immortal memory, one must inspect the source code to ensure
that allocations are only performed in the constructor. For
the purposes of our own application, Immortal memory was
primarily used to load singleton factories.

2) Scoped memory usage: Scoped memory provides a
means to dynamically allocate and free memory without using
the garbage collector. Object allocated within a scope persist
for the lifetime of the scope. Once the number of threads

within a scope reaches zero, all objects allocated within the
scope are destroyed. Additionally, scopes may be nested. The
advantage for application programmers is that a large number
of objects can be allocated and freed at once, without creating
excess work for the garbage collector. One can think of scopes
as a generalization of the C stack with the exception that the
objects are finalized in the case of scopes.

A particular scoped memory region is represented by a
scoped memory object, which itself must be allocated in
a memory region. If one allocated a scoped region on the
heap, the scoped memory object itself would be subject to
interference from the garbage collector. For our application,
all threads are created at application startup time. In this
case, we can allocate scopes in immortal memory, and have
examined the possibility of creating separate scopes on a per-
thread basis. This scope allocation paradigm is quite similar
to having one C stack per thread. The thread would then enter
its own scoped memory, perform allocations, and then leave
the memory area, automatically destroying the scope-allocated
data. The size of the scope can be determined by profiling
the memory usage characteristics of a particular thread, taking
into consideration the requirements of the application and the
available hardware resources.

The difficulty with scopes is their limited lifetimes. We
enter and leaving a scoped memory region once for every
iteration of our control loop. However, some data will need to
persist beyond the lifetime of the scope, so we must provide
mechanisms for copying data out of a scoped memory region.
To facilitate this, we recommend providing memory areas as
parameters to factories. These factories could then be used to
copy and construct objects in arbitrary memory areas.

111. UNITS
A. Problems with past practice

In current flight software projects, the measurement units are
not explicitly part of the software. Perhaps measurement units
are designated in an external document or in code comments,
but there are no automated checks at either compile-time or at
run-time to ensure that unit arithmetic is correct. For example,
multiplying a velocity by a time should result in a distance. But
since values are only represented as doubles, nothing prevents
the developer from incorrectly treating the result of such an
operation as a force, for example. We have already seen the
disastrous consequences of incorrect units in the Mars Climate
Orbiter mission.

B. Our approach

To remedy this problem, we advocate making measurement
units an integral part of the application code. Our package
provides compile-time checking of measurement units. We
provide interfaces for physical units, such as forces, distances,
and times, and allow scalars, matrices, and tensors of values
with physical units. With measurement units explicitly part of
our code, we gain a number of advantages. Since measurement
units are checked at compile-time, bugs are detected sooner,
with a lower cost to repair them. Specifically, by using the
units framework in our development, the detumble control loop

4

was debugged in only 13 iterations. Because we knew that the
measurement units were correct, pinpointing the actual cause
of the errors became simpler.

In implementing our units framework, we have made use
of COTS class libraries. Since units are pluggable compo-
nents, altemative implementations are possible. For perform-
ing matrix and vector operations, we take advantage of the
classes providing such functionality in Java3d. Additionally,
for unit representation, we make use of the Jade library[4]. The
admitted disadvantage of using Java for this situation is the
lack of operator overloading, since the syntax for performing
arithmetic does become quite verbose.

IV. CONCLUSION
A. Summary

We have developed a pure Java prototype attitude control
system, capable of performing a detumble maneuver in real-
time, along with a pure Java fault protection subsystem. In de-
veloping this prototype, we have applied best practices in 00
design, including design pattems. We have demonstrated the
applicability of pluggable components. The measurement units
facility allows the checking of unit correctness at compile-
time. Based on work with our units framework, we believe
that operator overloading would be beneficial to real-time Java
software development. We have explored the features of the
RTSJ, discussing the usage of memory areas. We have created
a pluggable real-time abstraction layer, enabled debugging on
a standard Java platform.

V. ACKNOWLEDGMENTS
This work was supported in part by the Center for Space

Mission Information and Software Systems(CSM1SS) at the
Jet Propulsion Laboratory, and by the Ames Research Center.

REFERENCES
G. Bollella, J. Gosling, B. Brosgol, P. Dibble, S. Fun; M. Turnbull, The
Real-Time Specijication for Java, Addison-Wesley, 2000.
J. Cooper, The Design Patterns Java Companion, Addision-Wesley,
1998.
A. Corsaro and D.C. Schmidt. “Evaluating Real-Time Java Features and
Performance for Real-time Embedded Systems.” Technical Report 2002-
001, University of California, Irvine, 2002.
J.M. Dautelle, “JADE Java Addition to Default Environment”,
http://jade.dautelle.com/, 2002.
P. Dibble, Real-Time Java Platform Programming, Prentice Hall, 2002.
“Eclipse.org” , http://www.eclipse.org/, 2003.
E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Sofhvare, Addison Wesley, 1994.
“Headway Software”, http://www.headwaysoft.com/, 2003.
NIST Special Publication 500-243, Requirements for Real-time Exten-
sions for the Java Platform: Report from the Requirements Group for
Real-time Extensions for the Java Platform, 1999.
OVM/Consortiwn, “OVM: An Open RTSJ Compliant JVM.”
http://www.ovmj.org, 2003.
M. Rinard et al., “FLEX Compiler Infrastructure”, http://www.flex-
compiler.lcs.mit.edu/, 2003.
N. Rouquette. T. Neilson, and G. Chen, ‘The 13th Technology of DS1.”
Proceedings of IEEE Aerospace Conference, 1999.
“Sitraka Probe’’, http://www.sitraka.com/softwaxe/jprobe/, 2003.

http://jade.dautelle.com
http://www.eclipse.org
http://www.headwaysoft.com
http://www.ovmj.org
http://www.flex
http://compiler.lcs.mit.edu
http://www.sitraka.com/softwaxe/jprobe

