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Ahtruct- This work involves developing representative 
mission-critical spacecraft software using the Real-Time Spec- 
ification for Java(RTSJ)[l]. Utilizing a real mission design, this 
work leverages the original flight code from NASA’s Deep Space 
l(DSl), which flew in 1998. However, instead of performing a line- 
by-line port, the code is re-architected in pure Javam, using best 
practices in Object-Oriented(00) design. We have successfully 
demonstrated a portion of the spacecraft attitude control and 
fault protection, running on a standard Java platform, and are 
currently in the process of taking advantage of the features pro- 
vided by the RTSJ. In particular, we are focusing on interaction 
with RTSJ’s scheduling and memory area frameworks. Our goal 
is to run on flight-like hardware, in closed-loop with the original 
spacecraft dynamics simulation. 

In re-designing the software from the original C code, we 
have adopted 00 techniques for flight software development. 
Specifically, we have taken advantage of design patterns[71, 
and have seen a strong mapping from certain patterns to the 
flight software. To ensure the correctness of measurement units, 
numerical computations are performed via an abstraction layer 
that checks measurement units at compile-time. 

Our approach places an emphasis on pluggable technology. 
Interfaces, in conjunction with a facade pattern, expose only the 
behavior of a subsystem, rather than exposing its implementation 
details. Since the RTSJ reference implementation does not cur- 
rently support debugging, we chose to apply pluggable technology 
to the scheduler and memory allocation interfaces. Thus, real- 
time client code can be run on a standard Java virtual machine, 
allowing the code to be debugged in a graphical development 
environment on a desktop PC at the cost of decreased real-time 
performance. Once non-real-time issues have been debugged, the 
real-time aspects can be debugged in isolation on an RTSJ- 
compliant virtual machine. 

I. INTRODUCTION 
Java introduces a number of advantages for software de- 

velopment by improving software maintainability. We seek to 
take advantage of Java’s features for flight software develop- 
ment. The RTSJ is a relatively new extension to Java which 
introduces real-time features. Since the specification is a new 
technology, there are few examples of real-time Java being 
applied to non-trivial problems. Our work involves creating 
real-time Java software which implements a realistic spacecraft 
control loop. In this section, we discuss the motivation for our 
work, the advantages of Java, and our approach. 

A. Motivation 

Flight software has a high development cost, due in part to 
the difficulty in maintaining the code. The lack of maintain- 

ability stems from the limitations of current implementation 
languages (typically C or C++). There is a lack of strong 
type-checking and parameter checking. Memory can easily 
be corrupted due to the lack of pointer checking and array- 
bounds checking. Without operating system protections, these 
problems can occur as silent failures. Concurrency primitives 
are very low-level, and are not part of the language. A typical 
program will abound with error-prone switch statements and 
preprocessor directives. And only a globally shared namespace 
is available. 

Pluggable components cannot be expressed with traditional 
flight software techniques. A pluggable component is a soft- 
ware article which only exposes its interface (behavior) and 
not its implementation. Pluggable components allow different 
implementations to be swapped, without requiring modifica- 
tions to the rest of the code. The C language does not provide 
this level of encapsulation mostly because of its procedural 
orientation. Although C++ attempts to provide encapsulation, 
multiple inheritance problems exist. Additionally, the encap- 
sulation can easily be broken by using the friend keyword. 

B. Advantages of Java 

To address these issues, we are investigating Java as an 
implementation language for flight software. Java improves 
maintainability with its strong type-checking at both compile- 
time and run-time. Additionally, Java checks array boundaries, 
and ensures that variables are initialized. Standard Java pro- 
vides automatic memory management, and Real-Time Java 
allows several forms of manual memory management where 
required (see 11-B for details). Multi-threading and higher-level 
concurrency primitives are built into the language as well. Java 
can easily express pluggable components, as the notion of an 
interface is an explicit part of the language. Java provides for 
full encapsulation, and allows single inheritance with multiple 
interface inheritance. Java also provides extensibility through 
inheritance and dynamic class-loading. 

Aside from the advantages of the language itself, the Java 
platform includes a large standard class library with support 
for most programming needs. Due to the large Java developer 
community, additional Java components are available from the 
intemet, often for free. 

According to NIST[9], Java’s higher level of abstraction 
leads to increased programmer productivity. The Java platform, 
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coupled with Java language, improves application portability. 
Additionally, Java is easier to master than C++, and supports 
component integration and reuse. 

C. Approach 

We specifically chose to favor maintainability above all else 
during the architectural, design, and implementation phases of 
the development. Maintainability requires making extensive 
use of design patterns, taking full advantage of Java language 
features, using pluggable technology, and making appropriate 
use of commercial, off-the-shelf libraries and tools. During 
the performance evaluation phase, it is known that some 
maintainability will be sacrificed in order to optimize parts 
of the system to meet performance requirements. However, 
empirical evidence from systematic profiling of the application 
will dictate where and what is to be optimized, as opposed 
to prematurely attempting to optimize based on intuition, 
instincts, and/or assumptions of behavior. 

For our implementation approach, we have chosen two 
subsystems to focus on. From the attitude control system, we 
have implmented a real-time control loop which detumbles 
a simulated spacecraft. In a detumble operation, a spacecraft 
with some initial set of angular velocities is controlled such 
that its angular velocity is reduced to a value close to zero. 
Our pure Java detumble control loop runs in real-time on a 
standard Java virtual machine. In addition, we have ported 
a C++ fault protection subsystem to Java, demonstrating a 
degree of autonomous behavior. 

D. Tools 

COTS graphical development tools were used extensively in 
this project. Specifically, the open-source Eclipse[6] integrated 
development environment provided graphical code editing, 
browsing, debugging, and refactoring capabilities. Headway’s 
Review[8] product was used to graphically inspect our design, 
and allowed us to maintain a consistent architecture. Addition- 
ally, JProbe[l3] was used to examine memory usage, and to 
identify critical regions for future optimization. 

An RTSJ-compliant virtual machine is required for running 
real-time Java applications. In addition to the the RTSJ refer- 
ence implementation, several additional RTSJ implementations 
are just now becoming available: JRateD], OVM[10], and 
FLEX[11]. 

E. Pluggable Components, Factories, and Dynamic Class- 
Loading 

Pluggable components are specified by an interface because 
implementation details are not visible from classes using the 
components. To hide the implementation class of a particular 
component, a factory is used instead of directly calling a 
constructor. The factory is tasked with constructing a particular 
instance of the pluggable component, and returning the com- 
ponent as an interface. An abstract factory provides a further 
step of abstraction. Each instance of an abstract factory can 
construct an instance of a pluggable component in a differ- 
ent fashion, typically instantiating a different implementation 
class. 

We have used dynamic class-loading, in conjunction with 
abstract factories as a replacement for the C preprocessor. 
By using this approach, we allow the user of an application 
to choose at run-time the implementation corresponding to a 
particular interface. That is, the implementation of a pluggable 
component can be chosen at run-time. Clients of the interface 
use an abstract factory to request an instance of an interface. 
A particular implementation of an interface will have its own 
concrete factory as a subclass of the abstract class factory. 
The proper concrete class factory is dynamically loaded at 
run-time, returning the corresponding implementation of the 
interface. The advantage of this approach is that we can swap 
out implementations at run-time. Specifically, this was used 
to choose between our desktop scheduler implementation and 
the RTSJ scheduler implementation at run-time. 

In the long term, dynamic class-loading has much greater 
potential for spacecraft missions. Current practice requires 
reloading a binary image of the executable to a spacecraft, 
followed by a reboot. We envision that Java’s dynamic class- 
loading facilities could be used to provide additional function- 
ality to a spacecraft by uplinking new class files to a running 
system, without requiring a reboot. This capability is outside 
of our current scope, but would be an interesting avenue for 
further research. 

11. REAL-TIME LAYER 

There are several problems with traditional Java implemen- 
tations that make it unsuitable for real-time programming, 
such as timing, scheduling, and memory management. The 
Real-Time Specification for Java addresses these issues by 
providing tighter semantics on scheduling, and by providing 
new memory management paradigms. We now discuss our 
wrapper layer for accessing these real-time services. We briefly 
introduce RTSJ’s memory and scheduling features, and discuss 
some of the issues involved with the new memory management 
paradigm. 

A. Scheduler 

The nature of flight software requires that certain threads 
execute at certain times, and the times that the threads execute 
depends on the type of work being done. For instance, control 
loops run periodically while watchdogs run once at some 
time to signal the system of a potential problem. Defining 
the temporal boundaries and constraints for these threads 
is independent of the scheduling algorithm being used, but 
communicating these constraints to the scheduler is dependent 
on the scheduling algorithm and its implementation. We chose 
to apply the pluggable technology approach to our scheduler 
so that we can use whatever scheduling algorithm is available 
to us. Currently, we provide several varieties of scheduling 
requests: 

A one-shot timer. The scheduler will run a block of code 
after at a specific time. 
Periodic behavior: The scheduler will then run the block 
of code at the client specified rate. 
Standard: The scheduler will run the block of code when 
possible. 
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All of these behaviors can also specify a deadline that when 
crossed will cause a secondary block of code to be executed. 
Additionally we provide facilities for specifying a maximum 
percentage of CPU usage by a particular thread. The scheduler 
to be used is selected at run-time and instantiated through the 
use of dynamic class loading and factories. 

Since the RTSJ reference implementation does not currently 
support debugging, our choice of pluggable technology al- 
lowed us to use the desktop for debugging. When running 
within an RTSJ-compliant virtual machine, our scheduler 
interface simply delegates out to the underlying RTSJ im- 
plementation. However, when running on a standard desktop 
Java virtual machine, the scheduler component uses our own 
implementation, written only using standard Java features. We 
emulate, as best as possible, the real-time scheduling features 
on a standard Java platform. Clients may chose between the 
RTSJ scheduler implementation and the desktop scheduler 
implementation at run-time. 

Thus, real-time client code can be run on a standard Java 
virtual machine, allowing the code to be debugged in a 
graphical development environment on a desktop PC at the 
cost of decreased real-time performance. Once non-real-time 
issues have been debugged on a standard Java VM, the real- 
time issues can be debugged in isolation on an RTSJ-compliant 
virtual machine. 

B. Memory Areas 

With the addition of the RTSJ’s scheduling and memory 
management features, come new failure modes and program- 
ming pitfalls. The developer must consciously avoid violating 
memory area rules, and must ensure that no memory leaks 
occur. We present a series of guidelines for using the RTSJ 
memory management features. We provide a set of recommen- 
dations for memory allocation, showing scenarios that take 
advantage of memory areas provided by RTSJ. In addition, 
restrictions are placed on memory allocation scenarios that 
are particularly error-prone. 

I )  Immortal memory : Immortal memory is a new alloca- 
tion scheme provided by the RTSJ. Once an object is allocated 
in Immortal memory, it is never freed. The advantage of 
this approach is that objects allocated in immortal memory 
have no need for interaction with the garbage collector. The 
disadvantage is that memory leaks are now possible. We 
recommend that allocations to immortal memory be performed 
in static initializers. We also require that object which are 
running in immortal memory only allocate in their construc- 
tors. With these restrictions in place, memory leaks can be 
avoided. However, this also places severe restrictions on which 
classes may be used. To use a JDK class while running in 
immortal memory, one must inspect the source code to ensure 
that allocations are only performed in the constructor. For 
the purposes of our own application, Immortal memory was 
primarily used to load singleton factories. 

2) Scoped memory usage: Scoped memory provides a 
means to dynamically allocate and free memory without using 
the garbage collector. Object allocated within a scope persist 
for the lifetime of the scope. Once the number of threads 

within a scope reaches zero, all objects allocated within the 
scope are destroyed. Additionally, scopes may be nested. The 
advantage for application programmers is that a large number 
of objects can be allocated and freed at once, without creating 
excess work for the garbage collector. One can think of scopes 
as a generalization of the C stack with the exception that the 
objects are finalized in the case of scopes. 

A particular scoped memory region is represented by a 
scoped memory object, which itself must be allocated in 
a memory region. If one allocated a scoped region on the 
heap, the scoped memory object itself would be subject to 
interference from the garbage collector. For our application, 
all threads are created at application startup time. In this 
case, we can allocate scopes in immortal memory, and have 
examined the possibility of creating separate scopes on a per- 
thread basis. This scope allocation paradigm is quite similar 
to having one C stack per thread. The thread would then enter 
its own scoped memory, perform allocations, and then leave 
the memory area, automatically destroying the scope-allocated 
data. The size of the scope can be determined by profiling 
the memory usage characteristics of a particular thread, taking 
into consideration the requirements of the application and the 
available hardware resources. 

The difficulty with scopes is their limited lifetimes. We 
enter and leaving a scoped memory region once for every 
iteration of our control loop. However, some data will need to 
persist beyond the lifetime of the scope, so we must provide 
mechanisms for copying data out of a scoped memory region. 
To facilitate this, we recommend providing memory areas as 
parameters to factories. These factories could then be used to 
copy and construct objects in arbitrary memory areas. 

111. UNITS 
A. Problems with past practice 

In current flight software projects, the measurement units are 
not explicitly part of the software. Perhaps measurement units 
are designated in an external document or in code comments, 
but there are no automated checks at either compile-time or at 
run-time to ensure that unit arithmetic is correct. For example, 
multiplying a velocity by a time should result in a distance. But 
since values are only represented as doubles, nothing prevents 
the developer from incorrectly treating the result of such an 
operation as a force, for example. We have already seen the 
disastrous consequences of incorrect units in the Mars Climate 
Orbiter mission. 

B. Our approach 

To remedy this problem, we advocate making measurement 
units an integral part of the application code. Our package 
provides compile-time checking of measurement units. We 
provide interfaces for physical units, such as forces, distances, 
and times, and allow scalars, matrices, and tensors of values 
with physical units. With measurement units explicitly part of 
our code, we gain a number of advantages. Since measurement 
units are checked at compile-time, bugs are detected sooner, 
with a lower cost to repair them. Specifically, by using the 
units framework in our development, the detumble control loop 
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was debugged in only 13 iterations. Because we knew that the 
measurement units were correct, pinpointing the actual cause 
of the errors became simpler. 

In implementing our units framework, we have made use 
of COTS class libraries. Since units are pluggable compo- 
nents, altemative implementations are possible. For perform- 
ing matrix and vector operations, we take advantage of the 
classes providing such functionality in Java3d. Additionally, 
for unit representation, we make use of the Jade library[4]. The 
admitted disadvantage of using Java for this situation is the 
lack of operator overloading, since the syntax for performing 
arithmetic does become quite verbose. 

IV. CONCLUSION 
A. Summary 

We have developed a pure Java prototype attitude control 
system, capable of performing a detumble maneuver in real- 
time, along with a pure Java fault protection subsystem. In de- 
veloping this prototype, we have applied best practices in 00 
design, including design pattems. We have demonstrated the 
applicability of pluggable components. The measurement units 
facility allows the checking of unit correctness at compile- 
time. Based on work with our units framework, we believe 
that operator overloading would be beneficial to real-time Java 
software development. We have explored the features of the 
RTSJ, discussing the usage of memory areas. We have created 
a pluggable real-time abstraction layer, enabled debugging on 
a standard Java platform. 
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