
. ,,.-

Fast Query-Optimized Kernel Machine Classification Via
Incremental Approximate Nearest Support Vectors

Dennis DeCoste DENNIS.DECOSTE@JPL.NASA.GOV

Jet Propulsion Laboratory / Caltech, 4800 Oak Grove Drive, Pasadena, CA 91109, USA

Dominic Mazzoni
Jet Propulsion Laboratory / Caltech, 4800 Oak Grove Drive, Pasadena, CA 91109, USA

DOMINIC. MAZZONI@ JPL. NASA .GOV

Abstract
Support vector machines (and other ker-
nel machines) offer robust modern machine
learning methods for nonlinear classification.
However, relative to other alternatives (such
as linear methods, decision trees and neu-
ral networks), they can be orders of mag-
nitude slower at query-time. Unlike exist-
ing methods that attempt to speedup query-
time, such as reduced set compression (e.g.
(Burges, 1996)) and anytime bounding (e.g.
(DeCoste, 2002), we propose a new and ef-
ficient approach based on treating the ker-
nel machine classifier as a special form of
k nearest-neighbor. Our approach improves
upon a traditional k-NN by determining at
query-time a good k for each query, based
on pre-query analysis guided by the origi-
nal robust kernel machine. We demonstrate
effectiveness on high-dimensional benchmark
MNIST data, observing a greater than 100-
fold reduction in the number of SVs required
per query (amortized over all 45 pairwise
MNIST digit classifiers), with no extra test
errors (in fact, it happens to make 4 fewer).

1. Introduction
Kernel machine (KM) methods, such as support vector
machines (SVMs) and kernel Fischer discrmininants
(KFDs), have become promising and popular meth-
ods in modern machine learning research (Scholkopf &
Smola, 2002). Using representations which scale only
linearly in the number of training examples, while (im-
plicitly) exploring large nonlinear (kernelized) feature
spaces (that are exponentially larger than the original

input dimensionality), KMs elegantly and practically
overcome the classic “curse of dimensionality”.

However, the tradeoff for this power is that a KM’s
query-time complexity scales linearly with the num-
ber of training examples, making KMs often orders of
magnitude more expensive at query-time than other
popular machine learning alternatives (such as deci-
sion trees and neural networks). For example, an SVM
recently achieved the lowest error rates on the MNIST
(LeCun, 2000) benchmark digit recognition task (De-
Coste & Scholkopf, 2002), but classifies much slower
than the previous best (a neural network), due to digit
recognizers having many (e.g. 20,000) support vectors.

1.1. The Goal: Proportionality to Difficulty

Despite the significant theoretical advantages of KMs,
their heavy query-time costs are a serious obstacle to
KMs becoming the practical method of choice, espe-
cially for the common case when the potential gains
(in terms of reduced test error) are often relatively
modest compared to that heavy cost. For exam-
ple, it is not atypical in practice for a simple linear
method to achieve 80-95% test accuracy, with a KM
improving this by a few percentages more. Although
such improvements are often significant and useful, it
does raise serious “bang for buck” issues which hin-
der KMs from being more widely deployed, especially
for tasks involving huge data sets (eg. data min-
ing) and/or query-time constraints (e.g. embedded on-
board resource-limited spacecraft or real-time robots).

Also troubling is that KM costs are identical for each
query, even for “easy” ones that alternatives (eg. de-
cision trees) can classify much faster than harder ones.

What would be ideal would be an approach that: 1)

Proceedings of the Twentieth International Conference on Machine Learning (ICML-2003), Washington DC, 2003.

only uses a simple (e.g. linear) classifier for the (major-
ity of) queries it is likely to correctly classify, 2) incurs
the much heavier query-time cost of an exact KM only
for those (relatively rare) queries for which such preci-
sion likely matters, and 3) otherwise, uses something in
between (eg. an approximate KM), whose complexity
is proportional to the difficulty of the query.

1.2. Summary of Our Approach

The approach we propose in this paper directly at-
tempts to find a good approximation to the above
ideal. It is based on our empirical observation that
one can often achieve the same classification as the
exact KM by using only small fraction of the nearest
support vectors (SVs) of a query. Whereas the exact
KM output is a (weighted) sum over the kernel values
between the query and the SVs, we will approximate
it with a k nearest-neighbor (k-NN) classifier, whose
output sums only over the (weighted) kernel values in-
volving the k selected SVs.

Before query-time we gather statistics about how mis-
leading this k-NN can be (relative to the outputs of the
exact KM, for a representative set of examples), for
each possible k (from 1 to the total number of SVs).
From these statistics we derive upper and lower thresh-
olds for each step I C , identifying output levels for which
our variant of k-NN already leans so strongly positively
or negatively that a reversal in sign is unlikely, given
the (weaker) SV neighbors still remaining.

At query-time we then incrementally update each
query’s partial output, stopping as soon as it exceeds
the current step’s predetermined statistical thresholds.
For the easy queries, early stopping can occur as early
as step k = 1. For harder queries, stopping might not
occur until nearly all SVs are touched.

A key empirical observation is that this approach can
tolerate very approximate nearest-neighbor orderings.
Specifically, in our experiments we project the SVs
and query to the top few principal component dimen-
sions and compute neighbor orderings in that sub-
space. This ensures that the overhead of the nearest
neighbor computations are insignificant relative to the
exact KM computation.

2. Kernel Machines Summary
This section reviews key kernel machine terminology.
For concreteness, but without loss of generality, we do
so in terms of one common case (binary SVMs).

Given a d-by-n data matrix (X), an n-by-1 labels
vector (y), a kernel function (K) , and a regularization

scalar (C), a binary SVM classifier is trained by
optimizing an n-by-1 weighting vector a to satisfy the
Quadratic Programming (QP) dual form: + Cyj=, aiajyiyj~(xi, xj) - xzl ai

0 5 ai 5 C ,
where n is the number of training examples and yi is
the label (+1 for positive example, -1 for negative)
for the i-th d-dimensional training example (Xi).

The kernel avoids curse of dimensionality by implicitly
projecting any two d-dimensional example vectors in
input space (Xi and Xj) into feature space vectors
(@(Xi) and @(Xj)), returning their dot product:

minimize:
subject to: XEl cviyi = 0,

K(Xi,Xj) @(Xi). @(Xj). (1)

Popular kernels (with parameters a, p , a) include:
d linear: K(u,w) = ‘11 * 21 = UTW U&,

polynomial: K(u, w) = (u . w + a)P,
RBF:
normalized: K(u , w) := K(u , v)K(u, u) - iK(v , v)- i .

The output f(z) on any query example z, for any KM
with trained weighting vector p, is defined (for suit-
able scalar bias b also determined during training) as
a simple dot product in kernel feature space:

1
K(u,v) = e x P (- s IIU - w1I2),

n
f(z) = W * Q - b, W = pi@(Xi), Q a(.). (2)

i=l

The exact KM output f(z) is computed via:
m m

f(z) = Cp,@(xi).@(z)-b = CpiK(xi,z)-b (3)
i= 1 i=l

For example, a binary SVM (of m support vectors
(SVs)) has pi = yiai and classifies z as sign(f(z)).

3. Related Work on Lower Query Costs
Early methods for reducing the query-time costs of
KMs focussed on optimization methods to compress a
KM’s SVs into a “reduced set” (Burges, 1996; Burges
& Scholkopf, 1997; Scholkopf et al., 1998; Scholkopf
et al., 1999). This involves approximating:

h h

?(z) = W 1 Q - b NN f (x) = W . Q - b (4)

by optimizing over all Zi E IRd and yi E 3 such that:

(5)
i=l

‘Where the 2-norm is defined as IIu - v1I2 E u . u - 2u.

2Assume (without loss of generality) that only the first
v + v . v and uT indicates the matrix transpose.

m (for some m 5 n) columns of X have non-zero pi.

minimizes the approximation cost:

yielding

nz nz
F(x) = C y i s (z i) . 6 (x) - b = C y i K (z i , x) - b (7)

i=l i= 1

When small p M 0 can be achieved with nz << n,
via (often costly) global optimization, significant (e.g.
10-20 fold) speedups with little loss of classification
accuracy have been reported (e.g. (Burges, 1996)).

For linear kernels, it is well known that a KM com-
presses with no error into a single d-dimensional w:

m

f (x) = w - x - b , w = c p i x i . (8)
a= 1

However, for general kerneJs, a shortcoming of reduced
sets is that every output f(x) requires exactly nz >> 1
kernel computations. Thus, (Romdhani et al., 2001)
proposes a sequential approach, stopping early for a
query as soon as its partial output drops below zero
(indicating, in their application, a non-face).

A key problem with all such reduced set approaches is
that they do not provide any guarantees or control con-
cerning how much classification error might be intro-
duced by such approximations. (DeCoste, 2002; De-
Coste, 2003) develop sequential methods which quickly
compute upper and lower bounds on what the KM out-
put for a given query could potentially be, at each step
I C . For classification tasks, these bounds allow one to
confidently stop as soon as both bounds for a given
query move to the same side of zero. However, com-
putation of these bounds involves a IC2 term (due to
the use of incomplete Cholesky decomposition). De-
spite working well over several test data sets, this over-
head makes that bounding approach often useless for
the sort of very high-dimensional image classification
tasks we examine in our empirical work in this paper.

4. Nearest Support Vectors (NSV)
The key intuition behind the new approach proposed
in this paper is that, during incremental computa-
tion of the KM output for a query (via (3), one SV
per step), once the partial KM output leans “strong
enough” either positively or negatively, it will not be
able to completely reverse course (i.e. change sign) as
remaining p i K (X i , x) terms are added. To encourage
this to happen in as few steps as possible (for maxi-
mum speedup at query-time), we will intelligently (and
efficiently) order the SVs for each query, so that the

largest terms tend to get added first. To enable us to
know when a leaning is “strong enough” to “safely”
stop early, we will gather statistics over representative
data (before query-time), to see how strongly the par-
tial output must lean at each step for such stopping to
lead to the same classification (i.e. sign) as the exact
KM output.

That such an approach could work is not so surprising
if one views the KM output computation (i.e. (3)) as
a form of weighted nearest-neighbor voting, in which
the p’s are the weights and the kernel values reflect
(inverse) distances. Our inspiration is that small-k
nearest-neighbor classifiers can often classify well, but
that the best k will vary from query to query (espe-
cially near the discriminant border), prompting us to
consider how to harness the robustness of a KM to
guide determination of a good k for each query. Due to
its relation to nearest-neighbors, we call our approach
“nearest support vectors” (NSV).

Let NSV’s distance-like scoring be defined as:

NNscorei(z) = K(Xi , x). (9)

Figure 1 shows a positive query example (a “3” digit
in a “8 vs 3” binary classification task using MNIST
data), followed by its top 8 nearest SVs from the train-
ing set (those with largest ”score’s being first). The
partial KM outputs (gk) for the first 8 steps using this
SV ordering are shown above each SV. The two fac-
tors in the “score’s are shown in the first line of text
under each SV (i.e. pi followed by the kernel value for
the query and that SV).

Not surprisingly, 3 of the first 4 nearest SVs are of the
query’s class. More importantly, the p iK(X i , x) terms
corresponding to the “score-ordered SVs tend to fol-
low a steady (though somewhat noisy) “two steps for-
ward, one step backward” progression, such that soon
the remaining terms become too small to overcome any
strong leanings. For example, the second four NSVs in
Figure 1 already have considerable smaller PiK(Xi, x)
than the first four.

Encouraging and exploiting this phenomena is the key
behind our approach. We will classify a query as soon
as our pre-query worst-case estimates of how slow this
drop off might occur indicate that a strong leaning is

3Actually, those kernel values are approximated during
NSV ordering, to ensure nominal time costs, as described
in Section 4.3. The exact kernel values (shown in Figure 1
below the approximate kernel values) are computed only
as needed, as partial outputs are incrementally computed.
Also, the KM bias term (b=0.0322 in this example) ac-
counts for the first partial output (91) starting lower than
the product of the first SV’s ,O and exact kernel value.

1. 4 0.99, 0.275 -1.00,0.248 1.00, 0.236 -1.00, 0.215 0.59, 0.322 -0.90, 0.202 -0.78, 0.231
0.148 0.125 0.102 0.129 0.086 0.054 0.012 0.098

Figure 1. Example of Nearest SVs.

unlikely to be reversed in sign, as the remaining (even
lower scoring) NSVs are examined.

Figure 2 summarizes our query-time algorithm. It
trades off speedup (m / k) versus fidelity (likelihood
of sign(g(z)) = sign(f(z))) by the choice of upper
(Hk) and lower (Lk) thresholds, as the next section de-
scribes.

Inputs: query x, SVs Xi, weights P i , bias b ,

Output: g(x), an approximation of f(x).
and statistical thresholds (?&,Ilk).

sort xi’s and pi’s by NNscorei(x); (large 1st)

for k = 1 to m
g = - b ;

9 = 9 + P k K (& , x) ;
if (g < Lk) or (g > Hk) then stop;

end

Figure 2. Pseudo-code for query-time NSV classification.

4.1. Statistical Thresholds for NSV

We derive thresholds Lk and Hk by running the algo-
rithm of Figure 2 over a large representative sample of
pre-query data and gathering statistics concerning the
partial outputs (g). A reasonable starting point is to
include the entire training set X (not just the SVs) in
this sample. Section 5.2 will discuss refinements.

Let gk(x) denote g(x) after k steps. A natural initial
approach to thresholding (denoted Simple) is to com-
pute Lk as the minimum value of gk(x) over all z such
that gk(x) < 0 and f(x) > 0. This identifies Lk as
the worst-case wrong-way leaning of any sample that
the exact KM classifies as positive. Similarly, Hk is as-
signed the maximum g k (x) such that gk(x) > 0 and

When the query data is very similar to the training
data, these Simple thresholds will often suffice to clas-
sify queries the same as the exact KM (but faster).

f(x) 0.

However, in practice, the test and training data dis-
tributions will not be identical. Therefore, we intro-
duce a second method (denoted MaxSmoothed) which is
based on outwardly adjusting the thresholds to conser-
vatively account for some local variance in the extrema
of the gk(2) around each step k.

Specifically, we replace each Hk (Lk) with the maxi-
mum (minimum) of all threshold values over adjacent
steps IC - w through k + w. In our experiments in Sec-
tion 6, we used a smoothing window of w=10. Our
analysis suggests this was more conservative than re-
quired to avoid introducing test errors. However, ex-
periments with narrower windows‘ (eg, w=2, giving
slightly tighter thresholds) did not yield much addi-
tional speedups, suggesting that a moderate window
size such as w=10 (relative to lOOO’s of SVs) is prob-
ably usually prudent. In any case, we assume that
in practice an appropriate method of smoothing (e.g.
choice of w) would be selected via some sort of pre-
query cross-validation process, to see what works best
for a given task and data set.

4.2. “Tug of War”: Balancing SV+ vs SV-

Although the above approach suffices to provide some
query speedups without introducing significant test er-
rors, we have noticed that its speedups can be signifi-
cantly suboptimal. This is because sorting NSVs solely
by NNscorei(x) in the algorithm of Figure 2 leads to
relatively wide and skewed thresholds whenever there
is even a slight imbalance in the number of positive
SVs (i.e. set SV+, with pi > 0) versus negative SVs
(i.e. SV-, with pi < 0). For example, since an SVM
constrains the sum of P over SV+ to be the same as
that over SV-, the P values for the smaller set will be
proportionally larger, making early (small k) leanings
of gk(Z) tend towards the class with fewer SVs. This
results in thresholds that are skewed and much larger
than desired. In particular, we desire all but the earli-
est (strongest scoring) NSVs to effectively cancel each
other, and thus make it unnecessary to explicit touch
them during queries. However, such skewed leanings
make that especially difficult to achieve.

To overcome this problem, we replace the simple NSV

sort with an ordering we call “tug of war”. This in-
volves adjusting the “score-based ordering so that
the cumulative sums of the positive p and the nega-
tive /3 at each step k are as equal as possible. This
often results in orderings which alternate between the
top scoring positive and negative SVs, though not al-
ways - especially at later steps (large k) , when ,f3 values
are smaller and more widely varying.

4.3. Fast Approximate NSV Ordering

Metric (e.g. vp-trees, (Yianilos, 1998)) and spatial
(e.g. kd-trees) indexing methods are often employed
to avoid the expensive of full linear scans in nearest-
neighbor search. However, for the high-dimensional
data targeted by this work, we find such indexing
methods to often be practically useless. For exam-
ple, the distribution of kernel distances using a degree
9 polynomial kernel on the MNIST data is so narrow
that, for instance, triangular inequalities used by met-
ric trees prune almost no neighbor candidates. That
is, the minimum (non-zero) distance is greater than
half the maximum distance, forcing full linear scans.

Instead, we find that simple (though approximate)
low-dimensional embeddings work much better on
such data. Specifically, we do pre-query principal com-
ponent analysis (PCA) on the matrix of SVs:

u s vT = x. (10)

The k-dimensional embeddings of the SVs (pre-query)
and the query x (during query) are given by projection:

X@) = V (: , 1 : k)T x, z (k) = V (: , 1 : k)T z. (11)

We use these small k-dimensional vectors, instead of
the much larger original d-dimensional ones, to quickly
compute (approximate) kernels and to approximately
order NSVs for each Q as needed. When k << d, the
cost of NSV ordering becomes an insignificant part
of the overall cost. For example, our empirical re-
sults indicate that even k=20 (denoted as PCA(20)),
for MNIST images with d=784, gives sufficiently accu-
rate NSV orderings, incuring a query-time projection
overhead equivalent to computing only about 20 dot-
product kernels (i.e. touching 20 SVs) per query.

It is also useful to note that using excessively approx-
imate kernels (eg. small PCA embedding dimension)
will not make our threshold approach “unsafe” - it
will just require more query time steps because the
MaxSmoothed thresholds will be proportionally wider.
So, as with the threshold smoothing method, we as-
sume in practice that pre-query cross-validation would
select appropriate levels and methods of approxima-
tion. Indeed, a wide assortment of other existing ap-

proximate nearest-neighbors methods would be com-
patible with our approach and worth consideration.
In particular, we suspect promising future work would
be to use FastMAP (Faloutsos & Lin, 1995) to ap-
proximate kernel PCA (Scholkopf et al., 1999), ex-
ploiting FastMAP’s ability to quickly find good low-
dimensional nonlinear embeddings. This would im-
prove the kernel approximations we currently get us-
ing linear PCA (which really just approximates the dot
products themselves, and then squashes those approx-
imate dot products using the kernel function).

5. Enhancements
Several enhancements to the above basic approach can
be useful, as described below.

5.1. Linear Methods as Initial Filters

To directly attempt to achieve the speed of linear
methods, we find it useful to train (pre-query) a linear
SVM and use it as an initial filter (with an overhead
equivalent to touching just one SV), using (8). This
can be done by computing upper and lower Simple
thresholds as before (in Sectionsect:statsthresholds),
except using the linear SVM’s output as the “partial
output” g~(z), for the one and only step, and with
f(z) still being the main (nonlinear) KM’s output.

However, to avoid outlier training examples from dom-
inating the thresholds for the linear SVM, we find it
better to compute the high threshold as the mean lin-
ear SVM output (for positive-leaning negative exam-
ples) plus 3 standard deviations, and, similarly, the low
threshold being the mean output for negative-leaning
positive examples minus 3 standard derivations, when-
ever that gives tighter bounds. When the training set
is larger or more varied than the expected query set
(as seems true for MNIST), this seems reasonable (and
we note it does work well for MNIST). In any case, as
mentioned earlier, we believe all such choices must ul-
timately be based on some pre-query search process.

As reported in Section 6, this linear filtering typically
boosts our amortized speedups on the MNIST tasks by
an additional factor of 3 or more, without introducing
any new test errors.

5.2. Better Thresholds via Data Generation

Perhaps the main concern with our approach is that
it could potentially introduce large numbers of test er-
rors (with respect to the exact KM’s classifications)
if the queries does not fall within the statistical ex-
tremas identified for the “representative” sample (e.g.
training) set used to compute the thresholds.

To address this concern, we have begun considering
methods that generate additional data for which there
are reasons to believe both: 1) the current thresholds
would likely be insufficient and 2) they could plausibly
occur in actual query sets. One promising method
involves generating data which falls within the convex
hull of the training data (i.e. plausibility) and occurs
close to a large cluster of SVs from one class and yet
is on the other side of the discriminant border (i.e.
challenging the sufficiency of the current thresholds).

However, none of the tasks we have explored so far
have ultimately required this level of care, so we omit
details here, except to note that this would seem to be
an important area for future work, ensuring wider and
safer applicability of our NSV approach.

Nevertheless, we suspect that query-time checks - such
as running the exact KM machine on, say, a ran-
dom 1% of a large query set and comparing them to
those based on early stopping using our NSV method
- might provide reasonable diagnostics for detecting in
practice when the current set of thresholds is inappro-
priate to the given query set. Even better would be
checks with probability proportional to dissimilarity
of a query to the training data as a whole. In short,
although the issue of training and test data distri-
butions being “significantly different” is a classic and
well-known issue in machine learning, approaches such
as NSV provide additional motivations (and contexts)
to seriously explore this issue in future work.

5.3. Nearest Reduced Set Neighbors

Using reduced sets (summarized in Section 3) in place
of the SVs also seems to be a promising direction
for future work to improve NSV. In principal, the
compression-based speedups from reduced sets are
largely disjoint from NSV’s speedups from ordering
SVs by weighted similarity to the query. However,
our initial attempts to exploit reduced sets did not
seem to speedup NSV much. Reduced sets involve
a costly global optimzation and our current simple
greedy methods yield vectors which are not very or-
thogonal (i.e. ideally kernel values between reduced set
vectors would be near 0, but ours rarely are). We sus-
pect nearly-orthogonal reduced set vectors could avoid
a key limitation of our current approach, which is that
clusters of nearly-identical SVs each must be touched
during NSV if they are near the query.

Fortunately, for our MNIST experiments, this does not
seem to be common, as is reflected in the narrow distri-
bution of kernel distances that makes nearest-neighbor
indexing methods degrade on that domain (for highly
nonlinear kernels), as mentioned earlier.

6. Experiments
For reproducibility and comparison to other work,
we report on pairwise digit classification tasks using
the well-known benchmark MNIST data set (LeCun,
2000). This data has very high input dimensionality
(d) and large numbers of SVs (m), typical of the sort
of challenging tasks our approach is intended to help.

Table 1 details 3 of the 45 pairwise MNIST cases.
ROWS labeled 1-2 summarize input dimension and
number of positive and negative training examples.
Rows 3-6 summarize the trained SVMs for each case.

Row 10 notes the number of test examples (out of
MNIST’s 10,000 total), over both digit classes. Row
11 indicates the test errors using exact SVM classifica-
tion, while row 12 similarly reports tests errors using
an exact linear SVM (which is generally worse).

Row 21 indicates that our NSV method never dis-
agreed with the classifications of the exact SVM for
these 3 cases. Row 22 illustrates that linear filtering
alone typically pruned 50-90% of the test queries.

Rows 23-24 shows statistics on how many steps k were
required by NSV per query. Row 25 computes the
speedup, relative to exact classification.

Rows 31-35 similarly report without linear filtering,
indicating that filtering improves by factors of 3-4.

Rows 40-45 similarly reports when using all 10,000 test
examples (with linear filtering). Speedup is generally
much less (though still significant) in this case, appar-
ently because many test digits which are not of either
pairwise class will tend to get small partial and ex-
act KM outputs and thus will seldom lean strongly
enough and early enough for our current NSV ap-
proach to exploit. This suggests that future research is
required if NSV is to hope to achieve the same sort of
large speedups on multi-class classification (e g using
(Platt, 1999)) that it seems to enjoy on binary ones.

Figure 3 plots all 1984 queries for the “8 vs 3” case
(without using linear filtering), with exact SVM out-
puts (f(x)) on the y-axis and steps k , at which each
query’s partial output (gk (x)) exceeds the thresholds,
on the x-axis. It illustrates “proportionality to diffi-
culty” - queries requiring the largest k tend to have
f(x) N 0. Also, the solid lines are MaxSmoothed’s
thresholds. Note that some queries plot within those

4T0 enable many experiments, we trained SVMs with
only the first 4,000 digits of about 12,000 per case (given
10 similar-sized digit class sets and 60,000 training digits).

51t is well-known (and we verified) that fixed-k NN does
not work nearly as well as SVMs for MNIST. So, NSV’s
good performance here is not matched by simpler k-NN.

21
22
23
24
25

31
33
34
35
40
42
43
44
45

of some MNIST experi

784 I 784
8 v s 3 1 O v s l

w/ linear filter:
NSV disagrees

filter skips
k min,max
k mean,median
mlk speedup

w/o linear filter,
NSV disagrees

k min,max
k mean,median
mlk speedup

all test data
filter skips
k min,max
k mean,median
m/k speedup

849,904 191,598
1984 2115

0 1 2 3 4 5 6 7 8 9
0 54 18 66 34 41 16 333

12
37

35 160

0
1402

1, 1478
132.2, 1.0

13.3

1 789 70 27 26 31 49 23 28

10
2

19

0
1766

1, 435
14.6, 1.0

54.2

10000

22.4

ents.
2 vs 5

784
944, 2056

1
1840 (11)
951, 889

1924

5
24

0
1687

(. . VI”

1, 999
12.2, 1.0
150.2

0
1, 998

37.0, 20.0
49.7

10000
2912

1, 1134
! l l .O , 42.0

8.7

solid lines, indicating that their gk(x) leaned outside
[Lk,Hk], even though f(x) does not.

., ___I I 3r. .. I

--. - __ __-_-=--- - . .

200 400 6W 800 1WO 1200 1400 1M)o

Figure 3. Example proportionality to difficulty (f(z) vs k) .

We initially experimented on just two cases - “3 vs 8”
(hard) and “0 vs 1” (easy) - to develop our method and
fix our design choices (such as MaxSmoothed’s window
size (w=lO) and the sufficiency of PCA(2O) for fast
NSV ordering). This minimizes concerns of overfitting
design choices to this data, enabling us to test over-
all robustness of our method by then running experi-
ments over all 45 pairwise classifiers (using linear fil-
tering and test queries only from the pairwise classes).
The speedup results are summarized in Table 2, with a
mean m / k speedup of 111 per query over all 45 cases.
Table 3 shows that this large speedup was achieved
with only 6 disagreements. Investigation showed that
the 2 disagreements on “4 vs 9” are a wash (NSV is
correct on one and wrong on the other).

For all 4 other disagreements, NSV was correct, re-
sulting in NSV achieving 4 less test errors than the
exact SVMs. Although we cannot claim, nor expect,
that this will usually happen, it is encouraging and in-
teresting - especially given that some of the very best
speedups achieved in related reduced set work have
typically came at some small, but significant, price
(e.g. 22-fold with 10% more test errors, in (Burges
& Scholkopf, 1997)). This result seems likely to
be a consequence of the fact that, unlike reduced set
methods, our NSV approach tunes under the (more ag-
gressive) assumption that the available training data
is very representative of the test data. Thus, we would
expect reduced set approaches to likely better ours
when this assumption does not hold well (and cannot
be easily detected at query-time).

Table 2. 45 pairwise MNIST classifiers. Lower: SV counts
(m). Upper: Amortized m/k speedups over all queries.

Table 3. Number of t e s t e r r o r s for each SVM. Number of
NSV classification disagreements with each SVM.

6.1. Implementation Issues

For common dot-product kernels and high d , the cost
of dotting each query point against all of the SVs domi-
nates computation of exact KM outputs. When classi-
fying large numbers of querys at once, these dot prod-
ucts can be computed using optimized matrix-multiply
code (e.g. cache-efficient BLAS dgemm from ATLAS

‘However, we must note that such reduced set results
cannot be directly and fully compared to our new results,
for various reasons, including that they performed full 10-
way classification, and used 10 “one vs rest” - instead of
the 45 pairwise binary classifications we explored here.

(Whaley & Dongarra, 1997)), often being 3-8x faster
(depending on platform) than a naive matrix-multiply.

Our NSV approach greatly reduces the number of SVs
that each query point must dot against on average,
but, because the order of the SVs is unique to most
every query point, it is difficult to be as efficient as
ATLAS. Projecting each query point using PCA and
sorting its NSV orderings also adds some overhead.

As a result, the best speedups, measured in actual
clock time, that we have achieved so far are not yet
as impressive as NSV’s potential, though they are
O((mlk)) . Using modern cache-prefetch instructions
and more carefully blocked computations, we suspect
much of our existing inefficiencies are avoidable. For
now, we must note in fairness that, in the worst-case,
NSV speedups may necessarily be (for current mem-
ory cache hardware) 3-8x less than the ideal factor of
m/k over exact KM computations.

<

7. Discussion
We have proposed a method which essentially treats
a kernel machine at query-time as an improved k
nearest-neighbor method. Empirical work indicates
that it can tolerate quite approximate (i.e. very fast)
nearest-neighbor computations and effectively auto-
matically pick an appropriate k at query-time (for each
query), guided by pre-query analysis of the KM’s per-
formance on representative data (e.g. large train set).

We note that our approach applies to any form of
KM classifier, regardless of the training method used
(e.g. KFD (Mika et al., 2001), MPM (Lanckriet et al.,
2002), etc.) - including both linear and quadratic pro-
gramming approaches.

We report some promising and exciting speedups ob-
served to date (including lll-fold average speedup
across 45 pairwise MNIST digit classification tasks),
offering a compelling existence proof that this idea has
merit for at least some challenging tasks. Nevertheless,
further and deeper understanding of the practical and
theoretical limitations and tradeoffs between tighting
thresholds and introducing additional test errors is re-
quired. We believe that a particularly promising future
direction to address this central issue involves finding
(recursive) partitionings of input space, within which
different thresholds might be appropriate. This might
involve applying our variant of the nearest-neighbors
method at the leaves of some sort of decision tree struc-
ture. This work thus motivates and positions us to-
wards further study to combine three distinct and im-
portant threads of machine learning methods: kernel
machines, nearest-neighbors, and decision trees.

Acknowledgments

This research was carried out by the Jet Propulsion
Laboratory, California Institute of Technology, under
contract with the National Aeronautics and Space Ad-
ministration.

References
Burges, C. (1996). Simplified support vector decision rules.

Intl. Conf. on Machine Learning (ICML).

Burges, C., & Scholkopf, B. (1997). Improving the accuracy
and speed of support vector machines. NIPS.

DeCoste, D. (2002). Anytime interval-valued outputs for
kernel machines: Fast support vector machine classifica-
tion via distance geometry. Proceedings of ICML-02.

DeCoste, D. (2003). Anytime query-tuned kernel machines
via Cholesky factorization. Proceedings of SIAM Inter-
national Conference on Data Mining (SIAMDM-03).

DeCoste, D., & Scholkopf, B. (2002). Training invariant
support vector machines. Machine Learning, 46.

Faloutsos, C., & Lin, K.-I. (1995). FastMap: A fast al-
gorithm for indexing, data-mining and visualization of
traditional and multimedia datasets. ACM SIGMOD
Intl. Conf. on Management of Data.

Lanckriet, G., Ghaoui, L. E., Bhattacharyya, C., &Jordan,
M. I. (2002). Minmax probability machine. Advances in
Neural Information Processing Systems (NIPS) 14.

LeCun, Y . (2000). MNIST handwritten digits dataset.
http: //www.research.att .com/-yann/ocr/mnist/.

Mika, S., Ratsch, G., & Muller, K.-R. (2001). A mathe-
matical programming approach to the kernel Fisher al-
gorithm. NIPS 13.

Platt, J. (1999). Large margin dags for multiclass classifi-
cation. NIPS 11.

Romdhani, S., Torr, P., Scholkopf, B., & Blake, A. (2001).
Computationally efficient face detection. Intl. Conf. on
Computer Vision (ICCV-2001).

Scholkopf, B., Knirsch, P., Smola, A., & Burges, C. (1998).
Fast approximation of support vector kernel expansions,
and an interpretation of clustering as approximation in
feature spaces. Mustererkennung 1998 - 20. DAGM-
Symposium. Springer.

Scholkopf, B., Mika, S., Burges, C., Knirsch, P., Muller,
K.-R., Riitsch, G., & Smola, A. (1999). Input space vs.
feature space in kernel-based methods. IEEE Dansac-
tions on Neural Networks, 10.

Scholkopf, B., & Smola, A. (2002). Learning with kernels.
Cambridge, MA: MIT Press.

Whaley, R. C., & Dongarra, J . J. (1997). Automatically
tuned linear algebra software. TR UT-(397-366.

Yianilos, P. N. (1998). Excluded middle vantage point
forests for nearest neighbor search (Technical Report).
NEC Research Institute, Princeton, NJ.

