
AN EXTENSIBLE JAVATM
USER INTERFACE

FRAMEWORK
FOR CONTROLLING

DISTRIBUTED SYSTEMS
Glenn Eychaner

Interferometry Systems and Technology
Jet Propulsion Laboratory, California Institute of Technology

4800 Oak Grove Drive, M/S 17 1 - 1 13
Pasadena, CA 9 1 109-8099

Glenn.Eychaner@ipl.nasa.qov

OBJECTIVE
Develop, deploy, and maintain graphical user interfaces
(GUIs) for a number of distributed systems (in this case,
interferometer test beds) consisting of:

Remote objects (used to command the systems)
Telemetry streams (carrying data from the systems)

Since each distributed system has different objects and
telemetry, each GUI requires custom control panels and
telemetry displays. In addition, a particular distributed
system may require customization of other aspects of the
GUI (e.g. the processing of incoming telemetry).

IMPLEMENTATION
Despite their superficial differences, the user interfaces
for the distributed systems will contain a lot of common
functionality, and are built on a unifiedframework.

The framework is itself nearly a complete GUI, and can
be run independently of the code for a particular system.
It creates, displays, destroys, and otherwise manages the
GUI elements (control panels and telemetry displays) and
other custom code specified by a particular system.

The custom classes for a particular system implement
abstract classes provided by the framework. These

implementations are specified to the framework at
runtime by class name (on the command line or in an
initialization file), and are then loaded and instantiated
dynamically by the framework. The framework itself
may provide some implementations.

The abstract classes in the framework allow methods,
fields, or properties of arbitrary objects (e.g. the remote
objects for commanding the system) to be connected to
arbitrary GUI elements (e.g. buttons, input fields, and
pull-downs) by introspecting the objects at run-time.

This flexibility is not without cost; the framework
sections that interact with the distributed system must be
carefully designed to permit the runtime customizations.

EXAMPLE: CONTROLLING
A REMOTE OBJECT

Consider a distributed system that contains a simple
camera. The remote object that represents the camera
(through which the camera is controlled, as written in
CORBATM IDL) might look like:

interface Camera {
void On() ;
void Off () ;
void TakePicture(doub1e exposure);

A control panel for this camera (generated using the
drag-and-drop GUI designer in the Borland@ JBuilder TM

development environment) might look like:

import j ava . awt . * ;
import javax.swing.*;

public class CameraPanel extends JPanel {
FlowLayout flowLayoutl

= new FlowLayout 0 ;
JButton jButtonOff = new JButtono;
JButton jButtonOn = new JButtonO;
JLabel jLabell = new JLabelO ;
JTextField jTextFieldExposure

= new JTextFieldO ;
JLabel jLabel2 = new JLabelO ;
JButton jButtonTakePic = new JButtonO;

public Camerapanel() {
try {
jbInit 0 ;

} catch (Exception ex) {
ex.printStackTrace (1 ;

void jbInit (1 throws Exception {
jButtonOf f . setText ("Off I f) ;
this.setLayout(flowLayout1) ;
j But tonOn. setText (IIOnl') ;
jLabell.setText ("Exposure: I !) ;
jTextFieldExposure. setText () ;

jTextFieldExposure.setCo~umns(5);
jLabel2. setText (IlmsIl) ;
jButtonTakePic.setText ("Take Picture") ;
this.add(jButtonOff, null) ;
this. add (j But tonOn, nul 1) ;
this. add (j Label1 , null) ;
this.add(jTextFieldExposure, null) ;
this. add (jLabel2 , null) ;
this.add(jButtonTakePic, null) ;

To display the control panel, an object that implements
the abstract framework class Commander must be
created and specified to the framework at initialization:
public class Cameracommander extends Commander {
protected Controlset createcontrolset() {
return new Controlset (this) {
private Camerapanel panel = new CameraPanel(this);
private CameraMenu menu = new CameraMenu(this);

protected JMenu getCommandMenu0 {
return menu () ;

protected JComponent getMainControlPanel() {
return panel;

1
1 ;

1
1
(Note that a menu can be displayed in addition to the panel; the menu implementation is not shown.)

[One detail has been left out of the Cameracommander
class shown above; it must also connect to and
disconnect from the remote camera object in addition to
creating and returning the control panels.

However, connecting to the remote object is specific to a
distributed system’s architecture and not particularly
interesting. In an actual GUI based on the framework,
the superclass of Cameracommander would extend
Commander I and implement the connect () and
disconnect () methods specific to the architecture.
This superclass may be provided as part of the
framework (as it is for a COMA-based svstem). Once
the remote object is connected,
internally, and no hrther effort

J /

the framework manages it
must be expended.]

The buttons in the Camerapanel are configured to call
the methods of the remote camera object (and the input
field similarly sets the input to the takepicture ()
method) by modifying the panel's constructor.
public Camerapanel (Controlset c) {

try {
j But tonon. se tAc tion (c . bindMethod ("On")) ;
jButtonOf f . setAction (c . binmethod ("Off")) ;
ExecuteAction a = c.bindMethod"TakePicture'') ;
a.bindInput (jTextFieldExposure, 0) ;
jButtonTakePic.setAction(a) ;

jbInit () ;
} catch (Exception ex) {
ex.printStackTrace () ;

1
1

It seems simple only because the framework does the real
work. The bindMethod () methods, provided by the
framework, introspect the remote object for the named
method and return an Action that calls the remote
object’s method when the button is pushed.

Similarly, the bindInput () method, also provided by
the fiamework, introspects the input field and the remote
object’s method. The framework creates temporary
objects that set the remote method’s parameters from the
input field (with appropriate type conversion).

Using introspection, the framework can connect arbitrary
GUI elements to arbitrary objects, creating a flexible GUI
while minimizing the amount of custom code.

ACKNOWLEDGEMENT
This work was performed at the Jet Propulsion Laboratory,
California Institute of Technology, under a contract with the
National Aeronautics and Space Administration.

NOTICES
Java and all Java-based marks are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and/or
other countries. C O M A is a registered trademark of Object
Management Group, Inc. in the United States and/or other
countries. Borland Trademarks and logos are trademarks or
registered trademarks of Borland Software Corporation in the U.S.
or other countries and are used under license.

m

0

1

-

m

