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ABSTRACT 

Understanding the behavior of post-correction speckles in adaptive optics systems at very high Strehl ratio is critical to 
determining the ultimate effectiveness of such systems for companion searches that may eventually allow the study of 
extrasolar planets. Recent investigations indicate that speckles, to first order in remnant phase left by the A 0  system, 
have a strong "anomalous" component that is not included in the standard (1-S) estimates of the power in the focal plane 
halo. Brightness of individual anomalous speckles can exceed that of 'klassical" speckles by orders of magnitude, 
although it is expected that other unusual properties of the anomalous speckles may cause them to average away rapidly 
in time integrations, or be instantaneously cancelled by suitable observational techniques. For example, the anomalous 
speckles are also "pinned", or spatially localized, on secondary Airy maxima, causing them to be suppressed on Airy 
nulls; they also have zero mean over time, as well as distinct symmetry properties that might be exploited. In thls paper, 
I explore in some detail the range of operational parameters over whch anomalous speckles are problematic. 
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1. INTRODUCTION 
Adaptive optics (AO) has begun to deliver remarkably good image correction at optical and near-infiared wavelengths. 
Using a relatively modest 16x1 6 array of wavefiont sensing subapertures, and 24 1 controlled actuators on its deformable 
mirror, the PALAO system on the Palomar 5 meter telescope has achieved Strehl ratios S - 0.60 at K-band (2.2 pm)'. 
Observations with this high degree of adaptive correction commonly reveal pattems with apparent spatial regularity and 
temporal persistence in the residual speckle halo, effects which have been noted by other 
persistent means enduring for many temporal update cycles 70 - 100 ms for PALAO, roughly the inverse of the high- 
order correction bandwidth of the A 0  system.) 

(In this context, 

Our systematic studies of the adaptively corrected diffraction-limited point-spread function (PSF) clearly revealed 
persistent spatial pattems of bright intensity knots, having low-order symmetry (three- or four-fold), on the inner Airy 
rings at high Strehl ratio4. Amplitudes were not consistent with diffraction from the four-fold symmetric telescope 
spiders, which would in any case not explain shifts to three-fold symmetric pattems on timescales of tens of minutes. 
Instead, these image features are generally attributed to slowly-varying non-common-path aberrations causing the PSF 
calibration, whch in PALAO consists of about ten low-order Zemike functions, to become outdated. In PALAO, as in 
most A 0  systems, the optical beamtrain is split into two "non-common" paths by a dichroic mirror. Visible 
wavelengths are directed into the wavefiont sensor, a Shack-Hartmann, and infrared wavelengths into the science 
camera. Differing aberrations between these paths will cause errors, and the differences are calibrated only periodically; 
flexure will cause that calibration to become invalid, so that optical aberrations will be present in the science image 
although the wavefront sensor path is well corrected. Since PALAO is mounted at the telescope's Cassegrain focus, and 
experiences changing orientation as a celestial source is tracked, this problems are expected to be particularly important. 

An example of a high-Strehl image is shown in Figure 1, obtained by PALAO with a narrow spectral filter at K-band 
(2.2 pm) under conditions of relatively good initial seeing. The exposure time was about 0.5 s, and an image quality of 
about S = 0.6 was achieved. The first Airy rinG shows a 3-fold symmetric pattem of bright knots, but the outer part of 
the halo also shows speckle-like structures that iappear to cluster in rings and have arc-like individual morphologies, 
possibly following Airy rings. (Some extremely persistent compact features in the speckle halo are ghost reflections in 
the PALAO optics, and the four characteristic spots near the comers of the image are of course waffle-mode artifacts.) 



Figure 1 - Highly corrected riear-infrared (2.2 pm) image from the Palomar adaptive 
optics system (PALAO). Initial seeing was good, allowing a final Strehl ratio in this 
corrected image of S = 0.60; exposure time was short (about 0.5 s). (Left) 3D 
display showing 3-fold symmetric structures on the first Airy ring, due to changing 
non-common-path errors. (Right) 2D intensity plot, with a logarithmic display to 
bring out the fainter features in the outer halo. In addition to instrumental ghosts and 
“waffle mode”, there are maqy speckles that seem to group in rings and show arc- 
like individual morphologies buggestive of clustering on Airy rings. 

These studies suggested an interaction between the PSF and remnant aberrations in the A 0  system, and led to 
speculation as to whether the more subtle patterns that seem to exist in the outer speckle halo could also be traced to an 
interaction between the diffraction-limited PSF and the remnant aberrations of the turbulent atmosphere that the A 0  
system could not correct. Since these effects were seen only at lugh Strehl, it was natural to seek an explanation that 
exploited a small-phase expansion of the complex exponential in the standard Fourier-optical expression for the image. 
The mathematical machinery for this is reviewed in Section 2. 

Images such as the one shown in Figure 1 motivated our investigations of speckle structure in highly corrected images, 
and led to the deduction of the unanticipated spkckle properties discussed in Sections 3 to 6. Ironically, a full empirical 
study of these experimental PALAO images ha$ not yet been completed. Such a study would be extremely valuable and 
could solidify our understanding of the unusualleffects and strategies described in the present paper, possibly uncover 
new effects not yet considered, and also c o n f i i  that they become relevant in the regimes of image correction (Strehl 
ratios S - 0.6) that are currently accessible to A 0  systems. But the speckle pinning, speckle symmetry, and related 
effects that these observations inspired are quite secure, following straightforwardly from the basic mathematics of 
image formation. 

The discussion in this paper will be somewhat idealized in isolating the fundamental dependence of speckle behavior on 
remnant phase fluctuations in the pupil plane: the intensity-fluctuation component of atmospheric turbulence 
(“scintillation”) will be neglected. Also, an ideal telescope is assumed, and no explicit accounting is made of scattering 
from surface imperfections on individual mirrors in the imaging system. 



2. REVIEW OF THE DERIVATION OF HIGH-STREHL SPECKLE TERMS 
The derivation of speckle behavior at high adaptive correction’ begins with the fundamental Fourier-optical expression 
relating the focal-plane intensity from an unresolved guide star to the disturbance at the pupil plane, or rather to an 
effective pupil plane at which atmospherically induced phase perturbations have been reduced to very small “remnant” 
values by the corrective action of the adaptive optics system. The remnant phase function is denoted by &(s,q) over a 
pupil described by the aperture h c t i o n  A([,q), where ([,r) are two spatial coordmates across the pupil, essentially the 
primary mirror of the telescope. Then the imaqe-plane intensity due to remnant aberrations due to atmospheric 
turbulence that the A 0  system could not complbtely correct is 

Here the Fourier transform is denoted by F.T.[. .], and also by the compact overbar notation, which is particularly useful 
for many algebraic manipulations. If the comp]ex exponential in Equation (1) is expanded for small 4, and terms of 
higher than first order in 4 are neglected, the sqhared modulus will result in two terms, one linear in %-hat and one 
quadratic: 

The two-dimensional convolution is here denoted by xxx, and Re[. . .] denotes the real component of a complex-valued 
expression. The first term in Equation (2), by fbr the largest in amplitude, is the diffraction-limited PSF of the aperture 
A, while the remaining two terms are much srndller, and represent two kinds of patterns occurring in the spatially 
extended speckle halo. An unlimited number of additional terms may be derived in a straightforward way by keeping 
higher-order terms in the expansion of the c o q l e x  exponential6, but the two speckle terms in Equation (2) will 
determine all the essential characteristics of the speckle halo by virtue of having much larger amplitude than any terms 
arising from retaining higher orders of Q in the expansion. 

The basic physics of Equation (2) is more clearly illustrated by considering the pedagogically instructive case of a 
circular, unobstructed (and unapodized, or “clear”) aperture A, for which the diffraction-limited PSF, and the stellar 
image at perfect correction, S = 1, is the Airy pattern: 

The two speckle terms of Equation (2) then simplify to the following expression for the PSF plus speckle halo: 

This is a useful working form that captures speckle halo behavior due to remnant phase fluctuations at high Strehl. 
Speckle noise has been shown by Racine et al. to be proportional to speckle intensity, and to the square root of the 
number of statistically independent speckle realizations that are co-added’. Observational evidence indicates that some 
effects predicted by Equation (4) may become wticeable at adaptive corrections as modest as S = 0.6. 

A number of unusual properties of the two speckle terms in Equation (4) are immediately implied by their mathematical 
form, and these will be discussed in the next few sections. In Section 4, their relative magnitudes are estimated as a 
function of Strehl ratio and density of actuators on the deformable mirror used for image correction, which controls the 
number of speckles by controlling the size of the speckle halo. The magnitudes of all speckle intensities derived fiom 
retaining higher-order terms in the small-phase expansion of the exponential are much smaller, as is expected and is 
easily shown by application of the Rayleigh theorem of Fourier transforms’ term-by-term to that expansion: the lowest- 
order non-trivial terms, which appear in Equation (2) or Equation (4), control the essential physics of the speckle halo. 



Nomenclature for the first type of high-Strehl speckle, i.e. the second term in Equation (2) or Equation (4), will 
sometimes be the “linear” term, for itspsential linearity in phi-hat, and sometimes the “anomalous” term, for the fact 
that multiplication by A-hat can amplify this term to anomalously high intensity not budgeted for in the usual (1-S) 
power budget7. Nomenclature for the second type of high-Strehl speckles, the third term in those equations, will 
sometimes be the “quadratic” term and sometimes be the “classical” term, referring to the fact that this term does 
account for the “classical” estimate of power in the speckle halo, (1-S). 

3. SYMMETRIES OF THE HIGH-STREHL SPECKLE TERMS 
The two speckle terms of Equation (2) have definite spatial symmetries, which may be useful as a practical observational 
tool. These symmetries are inherited from the even symmetry of A-hat and the Hermitian symmetry of phi-hat, which is 
the Fourier transform of a real function*. The linear-term speckle pattern, -2 Im(4)A, is antisymmetric with respect to 
spatial inversion, while the quadratic-term speckle pattern, 1412, is spatially symmetric (or centrosymmetric). 
Centrosymmetry of speckles at high adaptive correction was noted experimentally in the context of coronagraphy by 
Rouan et ai.’ , and explained in terms of the small-phase expansion of the exponential by arguments similar to those just 
given. 

Figure 1 shows numerical simulations of the two speckle terms in Equation (4) for a number of realizations of the pupil 
phase function phi and resulting speckle amplitude ph-hat. In each case, the pupil is divided into a grid of positions that 
may be thought of as seeing cells or as individual deformable-mirror actuators, and a random number generator is used 
to assign the local value of remnant phase. Intensities are not well shown, as the amplitude scales are arbitrary, but the 
spatial symmetry of the linear-term speckles and the antisymmetry of the quadratic-term speckles are readily apparent. 
Detailed examination shows that the linear speckle intensity has nulls matching those of the diffraction-limited PSF, 
though this is difficult to see in a casual inspection. 

The distinct symmetry of the two dominant speckle terms at high adaptive correction suggests symmetry-based 
observational tactics to suppress one term or the other. Antisymmetrizing images (extracting the antisymmetric 
component) by subtracting a spatially inverted replica has been suggested for enhancing the sensitivity of high-Strehl 
coronagraphy. This could be effective in the current case as well, if noise due to the symmetric quadratic-term classical 
speckles were great enough to offset the l/sqrt2 loss of signal that would occur on deleting the symmetric component of 
any companion image being sought (a point-likc companion would be an equal mix of symmetric and antisymmetric 
components. Similarly, if the antisymmetric linear-term anomalous speckles were sufficiently dominant, it could help to 
symmetrize an image by adding a spatially inverted replica. 

It will be use l l  in the next section to know the spatial density of speckles in the focal plane. Being manifestations of 
diffraction from an aperture of diameter D, individual speckles have size of order -MD, the diffraction limit. (For 
PALAO at 2.2 pm, this is about 0.090 arcseconds.) The spatial scale of correction applied in the pupil plane may be 
taken to be a, the spacing of individual actuators in the deformable mirror (often, a is roughly matched to ro, the 
transverse coherence scale of atmospheric turbulence). Then the linear size of the speckle halo is of order Na; for 
PALAO at 2.2 pm, this is about 1.6 arcseconds. The number of speckles of diameter - MD that will fit inside a halo of 
diameter - Na is of order (Oh)’; Roddier” derived the numerical prefactor to arrive at the following expression for the 
total number of speckles in the halo: 

Ns = (0.342)(%)2 ( 5 )  

The simulations in Figure 2 show that the classical speckles fading out in intensity on a scale of lla, as expected, and 
detailed examination over the full halo confirms a speckle count compatible with the prediction of Equation (5 ) .  



Figure 2 - Linear speckle intensity from Equation 4 (left column), a horizontal cut, 
the corresponding quadratic speckle intensity, and a cut through that. Each row is 
derived from a new, statistically independent random phase function across the pupil, 
@([ ,q) .  
of correcting actuators. Note the antisymmetry and centrosymmetry, respectively, of 
the linear (anomalous) and of the quadratic (classical) speckle patterns. 

Scales are arbitrary; amplitudes will depend on the Strehl ratio and density 



4. RELATIVE INTENSITY IN “ANOMALOUS” SPECKLES VS “CLASSICAL” SPECKLES 
Qualitatively, the interplay of intensity between anomalous and classical speckles can be discerned by careful study of 
Figure 2. For example, the third speckle realization has a speckle intensity phi-hat of only moderate intensity at the PSF 
origin, as indicated by the moderate peaks in the classical speckle pattern, [phi-hatl2, in the third column. By virtue of 
occurring where the PSF amplitude A-hat is large, though, this speckle amplitude produces a very bright antisymmetric 
signature in the anomalous speckle pattern, -21m{phi-hat}A-hat7 in the fust column. 

More systematically, some simple estimates of the magnitude of anomalous speckles” may be made by estimating the 
magnitude of 19 I in Equation (4). For this purpose, the total integrated power in the speckle halo is simply the integral of 
the last term in Equation (4), due to the classical speckles, because the spatial integral of the antisymmetric anomalous 
term vanishes. The classical speckles may be thought of as a collection of Ns diffraction-limited spots of light of typical 
intensity we wish to calculate, where the number of speckles is given by Equation (5).  The anomalous linear-term 
speckles, by their antisymmetry, contribute no power to the speckle halo12, and so the total power in the halo, 
proportional to (1-S), may be divided by Ns to give the relative power in a typical classical speckle, arising from the 
quadratic term, modphihatsq: (Because speckles are diffraction-limited, this power is also the measure of a typical 
speckle’s height, or peak intensity, as a fraction of the height of the PSF) 

( S  -1) quadratic intensity = - = 

With this estimate for the quadratic-term (classical) speckle intensity, [ + I 2 ,  it is straightforward to estimate the ratio of 
linear to quadratic terms (anomalous to classical, i.e. the 2”d to the 3rd term in Equation (4)): 

This Equation may be used to estimate the impact of anomalous speckles, as the speckle noise will be proportional to 
speckle intensity’. 



Ratio of Linear to Quadratic Speckle Intensity 

Figure 3 - Surface plot of the ratio of linear (anomalous) to quadratic (classical) 
speckle intensity, on the 1 0 ~  Airy peak (A-hat=0.00891), as a function of Strehl ratio 
and DM actuator density. The ratio would be 10 times as large on the 2”d Airy peak. 
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Figure 4 - Contour plot of Figure 3. Linear (“anomalous”) speckles are dominant in 
the upper right part of the plot; quadratic (“classical”) speckles in the lower left. 



5. ZERO TEMPORAL MEAN OF ANOMALOUS SPECKLES 

It was shown in Section 3 that the integral over the focal plane of any instantaneous realization of the anomalous, linear- 
term speckle pattern vanishes, as a result of that pattern’s spatial antisymmetry. A related consequence is that 
anomalous speckles are as likely to have negative intensity (surface brightness) as positive (they can only occur on non- 
zero Airy rings, and carve into their intensity, so the net surface brightness is always non-negative). Hence, statistically- 
independent speckle realizations will tend to cancel out, and a long time integration at a given point in the speckle halo 
will sum to zero: the anomalous speckle noise term has zero temporal mean at any point in the halo. 

A simple tactic for avoiding excess speckle noise from anomalous speckles is then to integrate over many correction 
cycles, tau-0, of the A 0  system; this will result in a speckle noise level consistent with the classical prediction, (I-S). 
Rather than assuming that each new cycle produces a statistically independent realization of the remnant speckle pattern, 
some more realistic assumptions about the A 0  system and its control loop must be made to determine how long this time 
is, and how reliably the anomalous speckle noise term integrates to zero. There have been indications that coherence 
times in actual A 0  systems will be longer than current idealized  assumption^'^, so this area seems worth further 
investigation. 

6. “PINNING” AND “REGULATION” OF ANOMALOUS SPECKLES 

The natural time averaging of zero-mean anomalous speckles described in the previous section makes some assumptions 
about the temporal behavior of the A 0  system: it is assumed to produce a residual phase function phi(xi,eta) that is 
spatially uncorrelated and also statistically independent of earlier residuals, on a short timescale comparable to tau-0. It 
has been proposed that real A 0  systems may have much longer correlation timescalesxx, in which case the anomalously 
large amplitude speckles will not vanish as quickly with simple long time integrations. 

There are some special cases in which excess speckle noise due to anomalous linear-term speckles can be defeated by 
observational techniques. These make use of the fact that the linear-term speckles have the PSF (Airy pattern) imposed 
upon them by the multiplicative appearance of the PSF amplitude, A-hat, in Equations 2 and 4. It follows that the linear- 
term speckles vanish on nulls of the Airy pattern. This fact is termed “pinning” of the speckles to Airy maxima. 

One might consider observing on the Airy nulls to take advantage of this reduction of speckle noise, even in short 
exposures. Schematically, such an observation is drawn in Figure xx, where one pixel of the science camera CCD is 
carefully positioned on the IO’ Airy null. Since remnant speckles are diffraction-limited, they will have spatial scales no 
smaller than l a m b d a ,  and so phi-hat will be relatively constant over a pixel small compared to this. Then the linear- 
term anomalous speckles will have a radial dependence that is approximately linear, inherited from the linear zero- 
crossing of the PSF amplitude, A-hat, so the total linear-term speckle intensity integrated over that pixel vanishes. 



“Renulated” Speckle lntensitv on Airy Null: 
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Figure 5 - Schematic illustration of “regulated” vanishing linear-term speckle 
intensity across a small pixel located on an Airy null, for the simplest case 
(monochromatic illumination). The speckle amplitude ph-hat is roughly constant 
over a pixel small compared to MI, so the linear speckle intensity term inherits sign 
changes at the zeroes of A-hat. The total intensity integrated over the pixel is 
regulated to zero if the pixel is symmetrically position on the null of A-hat, as the 
shaded integrals cancel regardless of the turbulent strength. 

As indicated in Figure 2, the vanishing integral of anomalous linear-term speckle noise across a pixel carefully 
positioned on an Airy null is regulated to be zero regardless of the strength of the turbulence or the precise quality of the 
adaptive correction, as long as it is high: the strength of the remnant imPhi-hat simply controls the slope of the linear 
intensity term as it crosses the Airy null. Also from Figure 2, it is apparent that regulation to a non-zero value is not 
possible. 

The situation in Figure 2 was diagrammed assuming monochromatic observations, for simplicity, but regulation at an 
Airy null will still occur for polychromatic light. If the bandwidth is relatively narrow, the single wavelength in Figure 2 
is replaced by a bundle of straight lines crossing zero at slightly different x-intercepts, and the radial axis must be labeled 
in arcseconds rather than in units of lambdm. The net speckle intensity registered by a pixel is now the result of an 
integral over wavelength, as well as the spatial integral previously assumed, and there will be a pixel position at which 
this integral vanishes; this will be regulated as well. 

Finally, more detailed investigation reveals cancellation of linear-term anomalous speckle noise will occur for relatively 
broad spectral bandwidths and pixel sizes, if they are appropriately positioned. Since all the components that sum to 
give the net intensity are proportional to a common factor of modphihatsq, a vanishing s u m  will be regulated. This 



regulated cancellation marks the first observational quantity in A 0  that is robust with respect to fluctuations in the 
seeing strength or quality of the adaptive correction. 

7. CONCLUSIONS AND FUTURE DIRECTIONS 

The picture that emerges is that the classical estimates of power in the speckle halo, (1-S), traditionally used in 
estimatin how well future A 0  systems will have to perform to reduce speckle intensity below some threshold for planet 
detectioJ, describes only the classical, quadratic-term speckles (the third term in Equations 2 or 4). They provide an 
estimate that is relevant still, if the anomalous speckles, which may be of much greater local intensity, are first reduced 
by the techniques of Sections 5 and 6: long time integrations, observations on Airy nulls, averages over wavelength. 
Those speckles are always present at t h~s  strength, and they are free to move anywhere within the speckle halo of 
diameter l/a, though they have a centrosymmetry that might be exploited to reduce their effects. 

The impact of the bright, anomalous speckles on highly-corrected adaptive imaging depends on the degree to which their 
spatial and temporal properties can be used to cancel them out. In short exposures, representing a single random 
realization of the speckle pattern, anomalous speckles at S=0.99 will have roughly ten times the intensity of classical 
speckles on the tenth Airy ring, and -100 times the intensity on the second Airy ring. A detector appropriately located 
on an Airy null, even for broad spectral bandwidth, can exploit the spatial antisymmetry of the anomalous speckle 
pattern to obtain a high degree of cancellation even in short exposures. In long exposures, the antisymmetry of the 
anomalous pattern gives it a vanishing temporal mean everywhere in the image, so speckle noise will approach the limits 
set by (1-S), an estimate of speckle power that includes only the classical speckles. (The instantaneous integral of 
intensity of the anomalous speckles over an image vanishes, as the pattern is antisymmetric, so they contribute no 
power.) 

In principle the temporal cancellation of anomalous speckles will be rapid, as they may change sign from one realization 
to the next. But it is important to determine how reliably the cancellation proceeds in practice, particularly since 
temporal or spatial correlations, or long-term instrumental biases, may mean that a real A 0  system does not deliver a 
statistically independent speckle realization with each cycle time T ~ .  It has been suggested6 that this assumption, though 
a logical limiting case and useful in analyzing the most fundamental limitations of companion searches with adaptive 
optics13, may not strictly hold in practice, and actual coherence times of A 0  systems may be substantially longer. This 
would have the effect of making the higher speckle noise due to anomalous speckles more long-lasting, and the effects 
and techniques discussed in the present paper all the more important. . 
The remnant phase effects isolated and discussed here are a large component of the problem of imaging with high 
adaptive correction, and as such will play an important role in the design and use of instruments being planned to search 
for exosolar p1anetsI3. 
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