
Using Component Technology to Facilitate
External Software Reuse in Ground-based

Planning Systems

Adam Chase - Jet Propulsion Laboratory, Caltech Institute of Technology

06/ 12/2003

Abstract

APGEN (Activity Plan GENerator - 314), a multi-mission planning
tool, must interface with external software to best serve its users. AP-
GEN’s original method for incorporating external software, the User-
Defined library mechanism, has been very successful in allowing APGEN
users access to external software functionality. A few drawbacks to this
method, however, have been identified: lack of library reuse and diffi-
culty in library implementation, installation, configuration, portability
and maintenance. A new method, the Adapter-Defined Component mech-
anism, is proposed t o augment and someday even replace the User-Defined
Library facility. The new method uses JCOM (JPL COM - Laverne Hall et
al, 369) technology (a Unix-based implementation of Microsoft’s Compo-
nent Object Model) to create and dynamically load objects in a structured
way. Because the component interfaces and implementations are carefully
controlled, encapsulation and re-usability are promoted. The registration
database can control which versions of which components are loaded at
runtime. To allow JCOM components to be used from within APGEN,
a SEQDispatch interface was created which allows APGEN to locate and
invoke methods without access to component signature information. A
command-line tool will use templates to generate all of the boilerplate
necessary for creating a component that can be used from within AP-
GEN, leaving only the implementation of the methods themselves to the
component developers. This strategy should reduce the amount of work
missions do by eliminating boilerplate, fostering reuse, and facilitating
configuration management.

Contents
1 Introduction 2

1.1 Mission Planning . 2
1.2 APGEN . 2
1.3 Challenges. 2

1

2 Existing System 3

3 ADef System 3
3.1 JCOM . 3
3.2 1ibADeNariant.so . 3
3.3 SEQDispatch . 4
3.4 adeftemplates . 4
3.5 Adaptation . 4

4 Conclusion and Future Work 4

1 Introduction
1.1 Mission Planning
Planning spacecraft and rover missions is difficult. In the beginning of the
process, the requirements are so loosely defined, it is hard to know where to
begin. At the end of the process, there are so many constraints and variables
that getting the most science out of your hardware can be daunting. Planning
software must support an iterative process that takes our models of spacecraft
and mission from something very abstract to something exceedingly detailed
and provide answers to important questions along the way. The software must
provide the planner with access to a varied array of tools and a means visualize
and manipulate a plan easily.

1.2 APGEN
APGEN (Activity Plan Generator) is a GUI application from JPL’s Sequence
group that supports a version of user-driven, iterative planning. This is achieved
through the modeling of scenarios on a timeline. An APGEN adapter defines
the types of activities supported by her plan, how they will affect viewable
state variables in her plan (resources), and any constraints that may exist on
those activities and resources. The APGEN planner then assembles a scenario
(plan) of activity instances and models it. As the spacecraft model becomes
more complex, so does the APGEN plan and adaptation. Frequently, in order
to make the model detailed enough, it is necessary to interface APGEN with
highly specialized software (mmpat, cspice, mission specific). APGEN has been
interfaced to AI-planners, databases, and mission-specific software.

1.3 Challenges
Mission planning software faces a number of challenges in the years ahead. There
will be more missions and those missions will be more complex. There will be
less time to spend adapting multi-mission software. There will be less time
to do mission planning in general. Mission planning software must meet these
schedule and complexity challenges while also providing planners with access to
new planning tools and techniques.

2

2 Existing System
In order to give planners access to important features and functionality not pro-
vided by APGEN, APGEN adopted a User Defined Library. APGEN is linked
to the User-Defined Library dynamically, and APGEN adapters can write their
own User-Defined Libraries. A function to register functions that are callable
from APGEN’s adaptation language must be defined in the user-defined library.
Adapters can link their User-Defined library to whatever C++ libraries they
wish to use in their adaptation. This method has been used by a number of
missions including MER, Cassini and Deep Impact. Though interaction with
the external software is restricted to the base types supported by the APGEN
adaptation language, there is no limit to the types of software that can be inter-
faced. There are a couple of drawbacks to this strategy. There is little reuse of
User-Defined Libraries across missions or across Sequence tools because libraries
become specific to APGEN and their mission. This prevents the adaptation that
uses the functionality defined in those libraries from being reusable. Since there
can only be one library, library writers cannot break the external software they
want to use into modules. User-Defined Libraries must frequently be recompiled
for each version of APGEN.

3 ADef System
3.1 JCOM
JCOM stands for JPL COM. It was developed by Laverne Hall et a1 in JPL’s
section 369. It is a C++ Unix-based implementation of a subset of Microsoft’s
Component Object Model. JCOM allows a user to instantiate a C++ object
that implements an interface. The implementation of that interface is fully
encapsulated. A registration database controls which implementations are in-
stantiated at runtime. In JCOM, the components that are instantiated are
always in the same process as the program that creates them. JCOMGen, a
program designed to facilitate the creation of components, generates a number
of boilerplate component source files and build files by applying the method
signature data to a directory of WebMacro files.

3.2 1ibADefVariant.so
1ibADefVariant .so contains C++ classes that represent APGEN’s fundamental
data types. The classes were created with no dependencies on APGEN. The
intent of this was that we could create components that acted on types defined
in 1ibADefVariant.so and then APGEN could create these types from its own in-
ternal types. Changes then to APGEN’s core classes would not break APGEN’s
interoperability with JCOM Components.

3

3.3 SEQDispatch
Typical usage of a JCOM component would require that the user of the com-
ponent have a header file corresponding to the interface that the component
implements. In our case of components being called from our adaptation, the
APGEN core doesn’t know at compile time the interfaces that its adapter’s
components will have. The solution was to create a SEQDispatch interface that
all components being used by APGEN must implement. There are a number
of methods in the SEQDispatch interface, but the important one is Invoke. If
we pass the name of the components method to Invoke along with an array of
arguments, the Invoke interface will call the correct method.

3.4 adeftemplates
A set of JCOMGen templates for use with APGEN were created. The templates
create a set of empty methods for each of the signatures specified in the file.
They also implement the SEQDispatch interface in terms of the other interface.
Using these templates, creating components that can be used from APGEN
becomes a lot easier.

3.5 Adaptation
A standard function ADef was added to the suite of internally defined APGEN
functions. ADef’s first parameter is ‘ ‘progID: :methodName’ ’, where progID
is a string that corresponds to a registered JCOM Component. The rest of
the arguments are the arguments to the method in question. APGEN loads
the component that corresponds to the progID, converts the internal data class
arguments to the ones defined in libADefVariantso, and calls ’invoke’ on the
component with the methodName. If the method succeeds, the returned value
classes are translated back into APGEN’s internal data types and the modeling
continues.

4 Conclusion and Future Work
With this system, high-quality reusable software components can be easily made
available to users of APGEN. Hopefully, this will give mission planners and
adapters more time and tools to better meet their demanding schedules. User
Defined Libraries that are in use for current missions are being examined and
we are creating components that encapsulate that functionality. There is some
desire to see if the 1ibADefVariant.so types can be used with some of the other
Sequence tools. There is also an effort to start capturing adaptation patterns
for reuse in assembling new missions.

4

Acknowledgement
This work was performed at the Jet Propulsion Laboratory, California Insti-
tute of Technology, under a contract with the National Aeronautics and Space
Administration.

5

