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ABSTRACT 

NASA has sent, and continues to send, many missions to 
the Martian surface. These landers and rovers typically 
have onboard stereo cameras that take in-situ pictures of the 
surface. The Multimission Image Processing Lab (MIPL) 
at JPL has written a reusable software suite to handle these 
kinds of surface-based cameras. Called PIG (Planetary 
Image Geometry), it consists of an object-oriented, 
multimission framework which abstracts out elements 
common to all surface-based missions. To this are added 
mission-specific modules (subclasses). The application 
programs themselves, performing tasks such as mosaicking, 
pointing correction, stereo correlation, and terrain 
generation, do not need to be rewritten for each new 
mission, and contain no mission-specific references 
whatsoever. 

The cost of adaptation to a new mission is very small 
compared to the cost to rewrite the application suite each 
time. Mission adaptation time has ranged from a few days 
to two months, compared to years to write the original code. 
This frees up a lot of resources that can be used to extend 
the library and provide additional functionality, rather than 
re-implementing the core functions each time. 

So far the library has been adapted for use with Mars 
Pathfinder, Mars Polar Lander, the Mars '01 Athena 
Testbed, the FIDO test rover, and the Mars Exploration 
Rovers (MER). In the case of MER, basic capability was 
available even before ATLO, enabling use during testing 
and allowing time to work on functionality new to the 
mission, such as support for long-range traverses. 

Several challenges to multimission use remain, however. 
Chief among them is the historic trend to redesign metadata 
(image labels) for each mission; support for this tends to be 
a driving factor in adaptation time. Future missions would 

be well served to use existing metadata designs as much as 
possible in order to minimize costs. 

An overview of the library's design will be presented, along 
with mission adaptation experiences and lessons learned, 
and the kinds of additional functionality that have been 
added while still retaining its multimission character. The 
application programs using the library will also be briefly 
described. 

1. INTRODUCTION 

NASA's exploration of Mars has increasingly focused on 
in-situ, landed missions. These landers and rovers have 
onboard stereo frame cameras that take images of the 
surface. The Multimission Image Processing Lab (MIPL) 
at JPL has been tasked with processing these images for 
science, operations, and public affairs. A number of 
products are derived from the images, including mosaics 
and terrain. 

The current trend began with the highly successful Mars 
Pathfinder (MPF) in 1997. Mars Polar Lander (MPL) failed 
in 1999, but the ground system at MIPL was in place and 
ready to go. MIPL provided support for the Mars '01 
Athena testbed (intended for a 2001 lander, which was 
cancelled), and the Field Integrated Design & Operations 
(FIDO) rover testbed. Most recently, MIPL is providing 
support for the twin Mars Exploration Rovers (MER), 
slated for launch in June, 2003. Looking forward, the Mars 
Science Laboratory and other landed missions are in the 
planning stages, which MIPL is planning on supporting. 

While the missions have many similarities, each one is 
different, and the software used to produce the image 
products must be adapted for each mission. This paper 
describes how MIPL has reused the bulk of this software 
for each mission by creating a multimission framework. 
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Figure I :  Mosaics taken by MER-2 during ATLO processing at Kennedy Space Center in March, 2003. Top is a 
360 cylindrical panorama using 3Oframes; bottom is a vertical projection (same data) showing the rover itself. 

2. PROBLEM DOMAIN 

Before describing the software itself, some background on 
the input images for these missions and the output products 
produced by MIPL will be helpful. 

2.1. Input Images 

The input images for all of these missions are similar. A 
CCD array in a frame camera produces monochrome 
images ranging from 248x256 pixels (MPF) to 1024x1024 
(MER). Images typically have 8 or 12 bits per pixel. The 
cameras are either fixed to the body of the lander or rover, 
or are on an articulating device such as a mast or arm. 
Color images are produced from some cameras by a filter 
wheel in the optical path. [1,6,7,9] The images are often 
stereoscopic, Le. pairs of left and right images taken at the 
same time from slightly different vantage points. Such 
stereo images are processed more than their non-stereo 
cousins, as terrain data can be derived from stereo pairs. 

The input images all contain some sort of metadata (a.k.a. 
image labels) which describe the conditions under which 
the image was taken - exposure, pointing, compression, 
temperature, instrument modes, etc. [1,7,9] These labels are 
critical for determining how to interpret and use the images. 
For example, mosaics are assembled by looking at the label 
for each image to determine where the camera was pointing 
(e.g. mast articulation angles) and using that to control the 
mosaic ray-tracing process. 

2.2. Output Products 

There are many different output products that can be 
generated using the MIPL software suite described herein. 
Some examples will be shown, and the actual program 
names are in parentheses for reference. 

Mosaics: The mosaics seem to be the most popular output 
products for science and public use. Since each input 
image has a relatively narrow field of view, many images 



Figure 2: Images taken by a MER testbed rover by the lefrfront hazard avoidance camera. Lef is the raw image; 
right is the same image afer linearization. Note how straight lines become straight once lens distortion is removed. 

must be stitched together to create a panoramic view of the 
scene. It can take over 200 images to create a complete 
panorama for some instruments. 

Mosaics are created by a ray-tracing process. Conceptually, 
the input images are projected out into space via their 
camera model (a mathematical model that describes the 
relationship between linekample in the image and x/y/z in 
3-D space), laid on top of a surface (usually a flat plane), 
and then are projected back into the output mosaic. [2] 

The output can be in one of five projections (using three 
programs): Cylindrical (marsmap), Polar (marsmap), 
Vertical (marsmap), Perspective (marsmos), or a hybrid 
Cylindrical-Perspective projection (marsmcauley). Each 
projection has its advantages and disadvantages. Examples 
of the cylindrical and vertical projections are shown in 
Figure 1. 

Pointing Correction: The spacecraft’s knowledge of where 
its cameras are pointed is not precise. Mechanical backlash 
on articulation joints is a primary cause, but there are 
others. For this reason, several methods are available to 
correct the pointing by analyzing the images, using either 
automatedhemi-automated (marstie, marsnav) or manual 
(MICA) methods. Correction can be based on physical 
modeling, or unconstrained. The results feed back into the 
mosaic program in order to reduce seams between frames. 

Linearization (marscahv): Input images are often “warped” 
to remove lens distortion so that they can be described by a 
linear camera model. This model is epipolar aligned, 
meaning that lines in stereo images match up, making 
correlations easier. An example is shown in Figure 2. 

Radiometric correction (marsrad, mosaics): This may be 
applied independently, or through the mosaic programs. 

Figure 3: Stereo imagesfrom a MER testbed rover front hazard avoidance camera. kf: the linearized lef eye. 
Middle: the linearized right eye. Right: the XYZ image derivedfrom the stereo pair. A “contour” stretch has been 
applied in order to show the coordinate grid lines. Red lines represent constant X values, green lines represent 
constant Y, and blue lines represent constant Z. 



The simplest example is exposure time compensation, but 
flat fields and temperature compensation are also used. 

Disparity (marscorr, marscor2, marsjplstereo, 
marsseedgen): This isc reated from stereo pairs by 
correlating each point in the two images. A disparity image 
describes, for each pixel in one input image, where the 
corresponding pixel is in the other input image. 

XYZ (marsxyz): This is an image derived from a disparity 
image and the camera models, describing the location of 
each pixel in XYZ (Cartesian) space. This is ap rimary 
product used by operations personnel for driving the rover 
on MER. An example is shown in Figure 3. 

Range (marsrange): Derived from an XYZ image, this is 
simply the Cartesian distance from a point to each pixel. 

Surface normal (marsuvw): Derived from XYZ, this is the 
surface normal for each pixel, computed over a small area. 

Reachability (marsreach): Derived from XYZ and surface 
normal, this describes whether or not some instrument (e.g. 
instruments on the arm for MER) can reach the object 
depicted by each pixel. 

3. HISTORY OF THE SOFTWARE 

In early 1994, development began in MIPL on a set of 
software to accomplish some of the above tasks for Mars 
Pathfinder. The software was ready for use by the time 
MPF landed, after approximately 3 work-years of effort. 
The programs worked well, but they were specific to Mars 
Pathfinder. Constants such as camera models, image sizes, 
and mast articulation parameters were hard-coded in the 
software, algorithms were not flexible, and there was a lot 
of repetition of code among the various programs. 

When development began for Mars Polar Lander, the basic 
requirement for MIPL could be summarized as “Do what 
you did for Pathfinder, just ab it better”. Knowing that 
future missions would also want to use the same kinds of 
capabilities, we realized that simply updating the programs 
for each mission would be quite expensive, not to mention 
error-prone due to the repetition of certain key functions. 

After some analysis, we came up with a set of abstractions 
that seemed to work well for both MPF and MPL, and we 
thought they might apply equally well to future missions. 
So, we decided to restructure the MPF-specific code using 
these abstractions and the Planetary Image Geometry (PIG) 
library was born. While we were at it, we moved the code 
from C to C++. 

specific code is encapsulated in PIG subclasses. Both MPL 
and MPF were supported in the first release. Since then, 
four additional missions have been added to PIG, proving 
the concept and saving a lot of development time. 

4. MULTIMISSION DESIGN 

The MIPL Mars in-situ image processing software is 
divided into two distinct pieces: the application programs 
themselves, and the supporting library, known as Planetary 
Image Geometry, or PIG. 

4.1. PIG Library 

The Planetary Image Geometry (PIG) library is a set of 
classes and an API that provides a common, multimission 
interface for retrieving and using image projection and 
pointing metadata. Its primary intent is to provide support 
for in-situ missions, although it should be extensible to 
orbital missions if needed. It provides abstractions for 
processing camera models, pointing models, coordinate 
system definitions, site/position information, Experiment 
Data Record (EDR) metadata (labels), surface definitions, 
and radiometric correction. [3] 

PIG is divided into two parts: base classes, and mission- 
specific subclasses. The base classes provide the common 
interface, and are the only part the applications see. A 
representative selection of base and subclasses is shown in 
Figure 4 and several of the classes are described below. 

4.2. Primary Classes 

PigModelBase: All models derive from PigModelBase. 
This ultimate base class provides facilities for obtaining 
user parameters and printing messages. These facilities 
operate via callbacks so applications can override e.g. the 
message printing function so messages go into a GUI 
instead of the terminal. The model base also provides some 
utility functions such as configuration file access. 

PigCameraModel: These describe the relationship between 
ap ixel (linekample) and av ector in 3-D space (X/Y/Z) 
containing points viewable by that pixel. Subclasses 
represent types of camera models. CAHV [8], CAHVOR 
[4], and CAHVORE [5] (acronyms based on mathematical 
model vectors) are types used in the Mars surface missions 
at JPL. Other types are possible, such as one based on focal 
length. The types represent the math used to compute the 
image to 3-D transformation. The term “camera model” is 
also used for the numeric parameters that describe a 
specific camera, both in its calibration position, and after 
pointing for a specific image. These parameters are 
provided when a camera model instance is created. 

The result was a set of application programs with absolutely 
no mission-specific references whatsoever. All mission- 
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Figure 4: UML diagram depicting some of the major classes and subclasses in the PIG library. 
The diagram is representative, not exhaustive. For example, for each subclass named MER, there 
are analoxous subclasses for most other missions. 

PigPointingModel: These describe how to point the 
camera for a specific image. Subclasses are mission and 
camera specific. Each subclass knows how to extract 
pointing information from the image (actuator angles, 
spacecraft position, etc.) and use that to transform a 
calibration camera model parameter set into a model 
specific to a given image, which can be used for image to 
3-D transformations. Pointing models also allow correction 
or adjustment of the pointing for an image. They expose 
their parameters via “pointing Parameters”, which are a set 
of floating-point numbers that describe the pointing (e.g. a 
set of joint angles, or an azimutNelevation of the camera). 
Each subclass can have a different set of pointing 
parameters. They key point is that applications can adjust 
these based on their effects on the image, without knowing 
how to interpret them. 

PigSurfaceModel: These describe the ground and provide 
facilities to intersect view rays with it. Subclasses can 
include flat planes, infinity (no surface), spheres, and 
surfaces based on terrain models. 

PigFileModel: These represent the input images and 
provide high-level access to the metadata, and the image 
data, contained within them. Subclasses are used to handle 
the inevitable differences in metadata across missions. 

PigCoordSystem: These describe the orientation of 
coordinate systems, and their relationship to each other. 
Subclasses are used for each coordinate system defined by a 
mission - for example, Mars Pathfinder used Surface Fixed, 
Local Level, Lander, and Rover, while MER uses Site and 
Rover. Instances of these coordinate systems depend on a 
PigSite object and can be used to translate positions and 



orientations from any coordinate frame to any other, at least 
within a single mission. 

PigSite: These define the position of a movable object, such 
as ar over or lander, at one specific instant. They work 
closely with PigCoordSystem objects to provide coordinate 
frame conversions. The base class defines a site using a 
quaternion and offset; subclasses may be necessary if other 
representations are needed. PigSite has been greatly 
expanded for MER, where long-range traverses create many 
different Sites which must be tracked. 

Applications 
PIG library (total) 

PIG multimission base 

RadiometryModel: These describe how to correct the 
radiometry (or brightness) of an image. This can include 
things like dark current, flat field, exposure time, and 
temperature correction. Subclasses are generally per 
mission. or instrument. 

66,500 
27,700 
14.600 

PigLabelModel: A recent addition, these classes handle 
writing output labels (metadata) for each type of image 
product. Subclasses exist per mission, where the metadata 
format deviates from the “standard output labels. 

PIG MPF 
PIG MPL 
PIG Mol 
PIG Generic 
PIG FIDO 
PIG MER 

PigMission: Mission objects contain factory methods 
which create all of the other objects described above. 
Subclasses exist per mission, and know which specific 
subclass to create for any given occasion. Subclasses often 
examine the metadata of an image (via the PigFileModel) to 
determine which subclass to create (e.g. which instrument 
generated the image). 

2,100 
2,800 
1,200 
1,300 
2,600 
3.100 

Table I :  Lines of Code for MIPL in-situ image processing 

4.3. Application Programs 

As described previously, the application programs contain 
absolutely no mission-specific code. They work the same 
regardless of the mission. Furthermore, when application 
capabilities are enhanced, old missions are able to take 
advantage of the new features just as well as the new 
missions. The available applications are described in 
Section 2.2. 

Lest one think that the applications are trivial, and all the 
code is in PIG, Table 1 shows the lines-of-code breakdown 

for the software suite as of the time this paper was written. 
The application code is almost 2.5 times larger than the PIG 
library itself, 

5. ADAPTATION EXPERIENCES 

The PIG library has now been adapted to work with data 
from 6 distinct “missions” (5 real missions and a “generic” 
mission). Adaptation times have ranged from 2 days to a 
few months. Compare this with 3 years to write the original 
code and one finds that new missions can be supported in 
about 1/20 the time it took to write the original library. 
While algorithm development certainly contributed a lot to 
the time required to write the original code, the difference is 
still dramatic. Adaptation of the original code, without the 
PIG library, would probably take 4-5 times longer, and be 
more error-prone due to the required duplication of effort 
and divergent versions. 

As shown in Table 1, each mission averages just 2200 lines 
of mission-specific code. Compare that to 14,600 for the 
PIG base and 66,500 for the applications, and it should be 
obvious the extent to which the multimission framework 
has saved time, money and effort. 

5.1. Mars Polar Lander/Mars Pathfinder 

These two missions are lumped together because they were 
developed simultaneously, along with the basic PIG 
framework. This makes determination of the time to do 
either adaptation by itself nearly impossible. The entire 
MPL task, which included creating the abstraction layer, 
writing PIG, adapting to MPL and retrofitting MPF, and 
adding additional application functionality required by 
MPL, took approximately 1 work year. It is this author’s 
estimate that the MPL adaptation, if done separately with 
the framework in place, would have taken perhaps 6 weeks, 
and MPF perhaps 3 weeks. 

5.2. Mars ’01 

Before MPL failed, there were plans for a1 ander in the 
2001 time frame. A testbed for this was actually built, and 
the PIG library was adapted to work with this testbed. 
Owing to the similarity to MPF and MPL and the heavy use 
of cut-and-paste, the adaptation took (by actual 
measurement) 2 days. 

5.3. Generic “Mission” 

In order to support ad-hoc images, a generic “mission” was 
developed, which requires that the camera model be present 
in the image label or ancillary file, but no other information 
is needed. This adaptation took an estimated 1 week. 



5.4. FIDO 

The FIDO testbed rover is a close analogue to MER and 
was used to test concepts for MER. Support for this took 
about 3 weeks. 

5.5. MER 

Many enhancements have been made to the PIG library and 
applications for MER. Most of these are in order to support 
additional capabilities and requirements that MER has but 
previous missions don’t (see Section 6). As such, it is hard 
to estimate the pure adaptation time (plus, as of this writing, 
it is not entirely complete), but it is probably around 2 work 
months, most of which has been spent dealing with a 
redesigned label format. 

One nice thing about MER is that we were able to use the 
generic “mission” immediately with the very first images. 
Thus we had much of the MIPL functionality available 
even before ATLO, which has helped tremendously in early 
testing. As the development team got MER-specific 
capabilities working, the results simply got better. 

6. EXTENDING THE LIBRARY 

One measure of the quality of a design is how easy it is to 
add new capabilities or features to the design after the 
baseline has been built. Assumptions made early on in the 
design process can come back to haunt you if additional 
requirements change those assumptions. It may be easy, or 
almost impossible, to adapt to such changes. On this score, 
the PIG library design has been successful so far. To 
illustrate, a few of the more significant enhancements are 
described here. 

6.1. Coordinate systems 

The first version of PIG implicitly assumed one coordinate 
system would be used for all 3-D coordinates used in the 
geometry calculations. About 2 months before the landing 
of MPL, the science team decided they wanted to change 
the definitions of several important coordinate systems, 
with the result that they were no longer compatible and 
conversions would be required. A month of intense effort 
followed, resulting in an overhaul of the system such that 
every 3-D coordinate is now tagged with the coordinate 
system in which it is measured, and conversions between 
systems are handled automatically by the framework. The 
modifications were ready in time for operations. 

6.2. New Camera Model Type 

Previous missions used the CAHV (linear) camera model, 
[8] and the CAHVOR (adds radial distortion) model [4]. 
However, MER has extremely wide field-of-view hazard 

avoidance cameras (close to 180 degrees), which cannot be 
successfully modeled by CAHV or CAHVOR. A new type 
of model that handles fisheye and wide field-of-view 
cameras, CAHVORE [5] (developed elsewhere at JPL), 
was integrated into the PIG framework in about 1.5 weeks. 

6.3. Multiple Sites 

MER is a long-range rover. As such, it can travel to areas 
out of view of the original landing site. In order to deal 
with this, the concept of multiple Site frames was 
introduced. Each Site frame is a reference for all activities 
contained within the Site. The support for this is quite 
involved and includes maintaining XML files containing 
the Site locations, as well as locations of interest within the 
Site. This concept fit rather well into the PIG library, at a 
cost of perhaps 4 work months. Interestingly enough, the 
application modifications to support this were extremely 
minor (mostly adding a few parameters and help updates); 
most of the changes are encapsulated in PIG itself, and are 
transparent to the applications. 

6.4. Output Label Models 

The metadata (labels) for MER are a radical departure from 
previous missions (see Section 7). While the input side was 
handled using the existing PigFileModel, output of labels 
had previously been something the applications themselves 
did. It quickly became obvious that a PIG model was 
needed to handle output labels as well, allowing them to be 
different for different missions. Total time to implement 
this, including the model itself and all the actual output 
labels for MER, was approximately 4 work weeks. 

7. LESSONS LEARNED 

While the PIG library concept and implementation have 
performed admirably, with huge cost savings, there are a 
few lessons that can be learned from the experience, which 
could save even more money in the future. 

7.1. Labels (Metadata) 

Most important is the design of the image labels (metadata). 
Historically, each mission has redesigned their label 
structures virtually from scratch. Label contents are often 
the subject of heated debate among the operations and 
science teams, and it is all too easy to depart from existing 
norms in order to make this mission “better”. This wreaks 
havoc with multimission designs; a lot of new code must be 
written to accommodate the vagaries of label structures. 

Well over half of the MER adaptation time, and most of the 
time spent creating the output label model, is attributable to 
changes in the MER label structure with respect to the 
“baseline” we hoped would be established by MPL. That’s 



easily over two work months just in implementation, not 
counting the time spent designing, debating, and 
documenting the label changes. 

As ac ounter-example, the extraordinarily fast adaptation 
time for MOI was largely due to the fact that no new labels 
were designed; the MPL label structure was simply re-used. 

Missions will be well served in the future to simply adopt 
existing metadata standards with only minor modifications. 
This should help all multimission programs, not just the 
MIPL software suite. 

7.2. Other Lessons 

In hindsight, it is easy to say that these programs should 
have been implemented using a multimission framework 
from the beginning, for Pathfinder. However, that may not 
have been practical. Experience derived during algorithm 
development in that first program set was critical in 
determining just what abstractions were necessary and what 
didn’t make sense. Spending time to create a framework 
for functionality that is later discarded is just time wasted. 

Thus, developing the algorithms first, then going back and 
making them reusable, seems to have been the right idea for 
this software set, at least. You do have to know what 
you’re trying to build, before you can figure out the 
abstractions that will make the code reusable and adaptable. 

It is worthwhile taking the time to thoroughly analyze the 
situation before creating a reusable framework. This author 
studied the situation for nearly 2 months, becoming familiar 
with the MPF code, before beginning the actual design and 
implementation of the PIG library. As detailed elsewhere 
in this paper, this forethought appears to have paid off. 

The generic “mission” has come in quite handy. As 
mentioned in Section 5.5, it allowed MIPL to process MER 
data even before ATLO, before MER-specific development 
had begun. 

8. CONCLUSION 

The multimission framework embodied in the PIG library 
has had a tremendous impact on the ability of MIPL to 
quickly and inexpensively support new missions. As Table 
1 shows, only about 2-3% of the code base needs to be 
touched in order to support a new mission. This is reflected 
in the adaptation times described in Section 5. New 
missions can be supported in approximately 1/20 the time it 
took to write the original library. This cost savings can 
either be returned to the customer, or invested in improving 
the products themselves via better algorithms or new 
features - an activity that benefits all prior missions as 
well as the one under development. 
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