
COST SAVINGS THROUGH MULTIMISSION CODE REUSE FOR MARS IMAGE
PRODUCTS

Robert G. Deen

Space Science Data Systems Section
Jet Propulsion Laboratory

Mail Stop 168-514
Pasadena, CA 9 1 109

Bob.Deen@jpl.nasa.gov

ABSTRACT

NASA has sent, and continues to send, many missions to
the Martian surface. These landers and rovers typically
have onboard stereo cameras that take in-situ pictures of the
surface. The Multimission Image Processing Lab (MIPL)
at JPL has written a reusable software suite to handle these
kinds of surface-based cameras. Called PIG (Planetary
Image Geometry), it consists of an object-oriented,
multimission framework which abstracts out elements
common to all surface-based missions. To this are added
mission-specific modules (subclasses). The application
programs themselves, performing tasks such as mosaicking,
pointing correction, stereo correlation, and terrain
generation, do not need to be rewritten for each new
mission, and contain no mission-specific references
whatsoever.

The cost of adaptation to a new mission is very small
compared to the cost to rewrite the application suite each
time. Mission adaptation time has ranged from a few days
to two months, compared to years to write the original code.
This frees up a lot of resources that can be used to extend
the library and provide additional functionality, rather than
re-implementing the core functions each time.

So far the library has been adapted for use with Mars
Pathfinder, Mars Polar Lander, the Mars '01 Athena
Testbed, the FIDO test rover, and the Mars Exploration
Rovers (MER). In the case of MER, basic capability was
available even before ATLO, enabling use during testing
and allowing time to work on functionality new to the
mission, such as support for long-range traverses.

Several challenges to multimission use remain, however.
Chief among them is the historic trend to redesign metadata
(image labels) for each mission; support for this tends to be
a driving factor in adaptation time. Future missions would

be well served to use existing metadata designs as much as
possible in order to minimize costs.

An overview of the library's design will be presented, along
with mission adaptation experiences and lessons learned,
and the kinds of additional functionality that have been
added while still retaining its multimission character. The
application programs using the library will also be briefly
described.

1. INTRODUCTION

NASA's exploration of Mars has increasingly focused on
in-situ, landed missions. These landers and rovers have
onboard stereo frame cameras that take images of the
surface. The Multimission Image Processing Lab (MIPL)
at JPL has been tasked with processing these images for
science, operations, and public affairs. A number of
products are derived from the images, including mosaics
and terrain.

The current trend began with the highly successful Mars
Pathfinder (MPF) in 1997. Mars Polar Lander (MPL) failed
in 1999, but the ground system at MIPL was in place and
ready to go. MIPL provided support for the Mars '01
Athena testbed (intended for a 2001 lander, which was
cancelled), and the Field Integrated Design & Operations
(FIDO) rover testbed. Most recently, MIPL is providing
support for the twin Mars Exploration Rovers (MER),
slated for launch in June, 2003. Looking forward, the Mars
Science Laboratory and other landed missions are in the
planning stages, which MIPL is planning on supporting.

While the missions have many similarities, each one is
different, and the software used to produce the image
products must be adapted for each mission. This paper
describes how MIPL has reused the bulk of this software
for each mission by creating a multimission framework.

mailto:Bob.Deen@jpl.nasa.gov

Figure I : Mosaics taken by MER-2 during ATLO processing at Kennedy Space Center in March, 2003. Top is a
360 cylindrical panorama using 3Oframes; bottom is a vertical projection (same data) showing the rover itself.

2. PROBLEM DOMAIN

Before describing the software itself, some background on
the input images for these missions and the output products
produced by MIPL will be helpful.

2.1. Input Images

The input images for all of these missions are similar. A
CCD array in a frame camera produces monochrome
images ranging from 248x256 pixels (MPF) to 1024x1024
(MER). Images typically have 8 or 12 bits per pixel. The
cameras are either fixed to the body of the lander or rover,
or are on an articulating device such as a mast or arm.
Color images are produced from some cameras by a filter
wheel in the optical path. [1,6,7,9] The images are often
stereoscopic, Le. pairs of left and right images taken at the
same time from slightly different vantage points. Such
stereo images are processed more than their non-stereo
cousins, as terrain data can be derived from stereo pairs.

The input images all contain some sort of metadata (a.k.a.
image labels) which describe the conditions under which
the image was taken - exposure, pointing, compression,
temperature, instrument modes, etc. [1,7,9] These labels are
critical for determining how to interpret and use the images.
For example, mosaics are assembled by looking at the label
for each image to determine where the camera was pointing
(e.g. mast articulation angles) and using that to control the
mosaic ray-tracing process.

2.2. Output Products

There are many different output products that can be
generated using the MIPL software suite described herein.
Some examples will be shown, and the actual program
names are in parentheses for reference.

Mosaics: The mosaics seem to be the most popular output
products for science and public use. Since each input
image has a relatively narrow field of view, many images

Figure 2: Images taken by a MER testbed rover by the lefrfront hazard avoidance camera. Lef is the raw image;
right is the same image afer linearization. Note how straight lines become straight once lens distortion is removed.

must be stitched together to create a panoramic view of the
scene. It can take over 200 images to create a complete
panorama for some instruments.

Mosaics are created by a ray-tracing process. Conceptually,
the input images are projected out into space via their
camera model (a mathematical model that describes the
relationship between linekample in the image and x/y/z in
3-D space), laid on top of a surface (usually a flat plane),
and then are projected back into the output mosaic. [2]

The output can be in one of five projections (using three
programs): Cylindrical (marsmap), Polar (marsmap),
Vertical (marsmap), Perspective (marsmos), or a hybrid
Cylindrical-Perspective projection (marsmcauley). Each
projection has its advantages and disadvantages. Examples
of the cylindrical and vertical projections are shown in
Figure 1.

Pointing Correction: The spacecraft’s knowledge of where
its cameras are pointed is not precise. Mechanical backlash
on articulation joints is a primary cause, but there are
others. For this reason, several methods are available to
correct the pointing by analyzing the images, using either
automatedhemi-automated (marstie, marsnav) or manual
(MICA) methods. Correction can be based on physical
modeling, or unconstrained. The results feed back into the
mosaic program in order to reduce seams between frames.

Linearization (marscahv): Input images are often “warped”
to remove lens distortion so that they can be described by a
linear camera model. This model is epipolar aligned,
meaning that lines in stereo images match up, making
correlations easier. An example is shown in Figure 2.

Radiometric correction (marsrad, mosaics): This may be
applied independently, or through the mosaic programs.

Figure 3: Stereo imagesfrom a MER testbed rover front hazard avoidance camera. kf: the linearized lef eye.
Middle: the linearized right eye. Right: the XYZ image derivedfrom the stereo pair. A “contour” stretch has been
applied in order to show the coordinate grid lines. Red lines represent constant X values, green lines represent
constant Y, and blue lines represent constant Z.

The simplest example is exposure time compensation, but
flat fields and temperature compensation are also used.

Disparity (marscorr, marscor2, marsjplstereo,
marsseedgen): This isc reated from stereo pairs by
correlating each point in the two images. A disparity image
describes, for each pixel in one input image, where the
corresponding pixel is in the other input image.

XYZ (marsxyz): This is an image derived from a disparity
image and the camera models, describing the location of
each pixel in XYZ (Cartesian) space. This is ap rimary
product used by operations personnel for driving the rover
on MER. An example is shown in Figure 3.

Range (marsrange): Derived from an XYZ image, this is
simply the Cartesian distance from a point to each pixel.

Surface normal (marsuvw): Derived from XYZ, this is the
surface normal for each pixel, computed over a small area.

Reachability (marsreach): Derived from XYZ and surface
normal, this describes whether or not some instrument (e.g.
instruments on the arm for MER) can reach the object
depicted by each pixel.

3. HISTORY OF THE SOFTWARE

In early 1994, development began in MIPL on a set of
software to accomplish some of the above tasks for Mars
Pathfinder. The software was ready for use by the time
MPF landed, after approximately 3 work-years of effort.
The programs worked well, but they were specific to Mars
Pathfinder. Constants such as camera models, image sizes,
and mast articulation parameters were hard-coded in the
software, algorithms were not flexible, and there was a lot
of repetition of code among the various programs.

When development began for Mars Polar Lander, the basic
requirement for MIPL could be summarized as “Do what
you did for Pathfinder, just ab it better”. Knowing that
future missions would also want to use the same kinds of
capabilities, we realized that simply updating the programs
for each mission would be quite expensive, not to mention
error-prone due to the repetition of certain key functions.

After some analysis, we came up with a set of abstractions
that seemed to work well for both MPF and MPL, and we
thought they might apply equally well to future missions.
So, we decided to restructure the MPF-specific code using
these abstractions and the Planetary Image Geometry (PIG)
library was born. While we were at it, we moved the code
from C to C++.

specific code is encapsulated in PIG subclasses. Both MPL
and MPF were supported in the first release. Since then,
four additional missions have been added to PIG, proving
the concept and saving a lot of development time.

4. MULTIMISSION DESIGN

The MIPL Mars in-situ image processing software is
divided into two distinct pieces: the application programs
themselves, and the supporting library, known as Planetary
Image Geometry, or PIG.

4.1. PIG Library

The Planetary Image Geometry (PIG) library is a set of
classes and an API that provides a common, multimission
interface for retrieving and using image projection and
pointing metadata. Its primary intent is to provide support
for in-situ missions, although it should be extensible to
orbital missions if needed. It provides abstractions for
processing camera models, pointing models, coordinate
system definitions, site/position information, Experiment
Data Record (EDR) metadata (labels), surface definitions,
and radiometric correction. [3]

PIG is divided into two parts: base classes, and mission-
specific subclasses. The base classes provide the common
interface, and are the only part the applications see. A
representative selection of base and subclasses is shown in
Figure 4 and several of the classes are described below.

4.2. Primary Classes

PigModelBase: All models derive from PigModelBase.
This ultimate base class provides facilities for obtaining
user parameters and printing messages. These facilities
operate via callbacks so applications can override e.g. the
message printing function so messages go into a GUI
instead of the terminal. The model base also provides some
utility functions such as configuration file access.

PigCameraModel: These describe the relationship between
ap ixel (linekample) and av ector in 3-D space (X/Y/Z)
containing points viewable by that pixel. Subclasses
represent types of camera models. CAHV [8], CAHVOR
[4], and CAHVORE [5] (acronyms based on mathematical
model vectors) are types used in the Mars surface missions
at JPL. Other types are possible, such as one based on focal
length. The types represent the math used to compute the
image to 3-D transformation. The term “camera model” is
also used for the numeric parameters that describe a
specific camera, both in its calibration position, and after
pointing for a specific image. These parameters are
provided when a camera model instance is created.

The result was a set of application programs with absolutely
no mission-specific references whatsoever. All mission-

&alr w imams tk4 &nt
h m a rocognued mission

--.
NICIDSCOPC unaper camefa

L
RadiometryModelMER

Plg FileModelFlDO
Row& access to FWO

p c i p c l0b.d I t e m s

Figure 4: UML diagram depicting some of the major classes and subclasses in the PIG library.
The diagram is representative, not exhaustive. For example, for each subclass named MER, there
are analoxous subclasses for most other missions.

PigPointingModel: These describe how to point the
camera for a specific image. Subclasses are mission and
camera specific. Each subclass knows how to extract
pointing information from the image (actuator angles,
spacecraft position, etc.) and use that to transform a
calibration camera model parameter set into a model
specific to a given image, which can be used for image to
3-D transformations. Pointing models also allow correction
or adjustment of the pointing for an image. They expose
their parameters via “pointing Parameters”, which are a set
of floating-point numbers that describe the pointing (e.g. a
set of joint angles, or an azimutNelevation of the camera).
Each subclass can have a different set of pointing
parameters. They key point is that applications can adjust
these based on their effects on the image, without knowing
how to interpret them.

PigSurfaceModel: These describe the ground and provide
facilities to intersect view rays with it. Subclasses can
include flat planes, infinity (no surface), spheres, and
surfaces based on terrain models.

PigFileModel: These represent the input images and
provide high-level access to the metadata, and the image
data, contained within them. Subclasses are used to handle
the inevitable differences in metadata across missions.

PigCoordSystem: These describe the orientation of
coordinate systems, and their relationship to each other.
Subclasses are used for each coordinate system defined by a
mission - for example, Mars Pathfinder used Surface Fixed,
Local Level, Lander, and Rover, while MER uses Site and
Rover. Instances of these coordinate systems depend on a
PigSite object and can be used to translate positions and

orientations from any coordinate frame to any other, at least
within a single mission.

PigSite: These define the position of a movable object, such
as ar over or lander, at one specific instant. They work
closely with PigCoordSystem objects to provide coordinate
frame conversions. The base class defines a site using a
quaternion and offset; subclasses may be necessary if other
representations are needed. PigSite has been greatly
expanded for MER, where long-range traverses create many
different Sites which must be tracked.

Applications
PIG library (total)

PIG multimission base

RadiometryModel: These describe how to correct the
radiometry (or brightness) of an image. This can include
things like dark current, flat field, exposure time, and
temperature correction. Subclasses are generally per
mission. or instrument.

66,500
27,700
14.600

PigLabelModel: A recent addition, these classes handle
writing output labels (metadata) for each type of image
product. Subclasses exist per mission, where the metadata
format deviates from the “standard output labels.

PIG MPF
PIG MPL
PIG Mol
PIG Generic
PIG FIDO
PIG MER

PigMission: Mission objects contain factory methods
which create all of the other objects described above.
Subclasses exist per mission, and know which specific
subclass to create for any given occasion. Subclasses often
examine the metadata of an image (via the PigFileModel) to
determine which subclass to create (e.g. which instrument
generated the image).

2,100
2,800
1,200
1,300
2,600
3.100

Table I : Lines of Code for MIPL in-situ image processing

4.3. Application Programs

As described previously, the application programs contain
absolutely no mission-specific code. They work the same
regardless of the mission. Furthermore, when application
capabilities are enhanced, old missions are able to take
advantage of the new features just as well as the new
missions. The available applications are described in
Section 2.2.

Lest one think that the applications are trivial, and all the
code is in PIG, Table 1 shows the lines-of-code breakdown

for the software suite as of the time this paper was written.
The application code is almost 2.5 times larger than the PIG
library itself,

5. ADAPTATION EXPERIENCES

The PIG library has now been adapted to work with data
from 6 distinct “missions” (5 real missions and a “generic”
mission). Adaptation times have ranged from 2 days to a
few months. Compare this with 3 years to write the original
code and one finds that new missions can be supported in
about 1/20 the time it took to write the original library.
While algorithm development certainly contributed a lot to
the time required to write the original code, the difference is
still dramatic. Adaptation of the original code, without the
PIG library, would probably take 4-5 times longer, and be
more error-prone due to the required duplication of effort
and divergent versions.

As shown in Table 1, each mission averages just 2200 lines
of mission-specific code. Compare that to 14,600 for the
PIG base and 66,500 for the applications, and it should be
obvious the extent to which the multimission framework
has saved time, money and effort.

5.1. Mars Polar Lander/Mars Pathfinder

These two missions are lumped together because they were
developed simultaneously, along with the basic PIG
framework. This makes determination of the time to do
either adaptation by itself nearly impossible. The entire
MPL task, which included creating the abstraction layer,
writing PIG, adapting to MPL and retrofitting MPF, and
adding additional application functionality required by
MPL, took approximately 1 work year. It is this author’s
estimate that the MPL adaptation, if done separately with
the framework in place, would have taken perhaps 6 weeks,
and MPF perhaps 3 weeks.

5.2. Mars ’01

Before MPL failed, there were plans for a1 ander in the
2001 time frame. A testbed for this was actually built, and
the PIG library was adapted to work with this testbed.
Owing to the similarity to MPF and MPL and the heavy use
of cut-and-paste, the adaptation took (by actual
measurement) 2 days.

5.3. Generic “Mission”

In order to support ad-hoc images, a generic “mission” was
developed, which requires that the camera model be present
in the image label or ancillary file, but no other information
is needed. This adaptation took an estimated 1 week.

5.4. FIDO

The FIDO testbed rover is a close analogue to MER and
was used to test concepts for MER. Support for this took
about 3 weeks.

5.5. MER

Many enhancements have been made to the PIG library and
applications for MER. Most of these are in order to support
additional capabilities and requirements that MER has but
previous missions don’t (see Section 6). As such, it is hard
to estimate the pure adaptation time (plus, as of this writing,
it is not entirely complete), but it is probably around 2 work
months, most of which has been spent dealing with a
redesigned label format.

One nice thing about MER is that we were able to use the
generic “mission” immediately with the very first images.
Thus we had much of the MIPL functionality available
even before ATLO, which has helped tremendously in early
testing. As the development team got MER-specific
capabilities working, the results simply got better.

6. EXTENDING THE LIBRARY

One measure of the quality of a design is how easy it is to
add new capabilities or features to the design after the
baseline has been built. Assumptions made early on in the
design process can come back to haunt you if additional
requirements change those assumptions. It may be easy, or
almost impossible, to adapt to such changes. On this score,
the PIG library design has been successful so far. To
illustrate, a few of the more significant enhancements are
described here.

6.1. Coordinate systems

The first version of PIG implicitly assumed one coordinate
system would be used for all 3-D coordinates used in the
geometry calculations. About 2 months before the landing
of MPL, the science team decided they wanted to change
the definitions of several important coordinate systems,
with the result that they were no longer compatible and
conversions would be required. A month of intense effort
followed, resulting in an overhaul of the system such that
every 3-D coordinate is now tagged with the coordinate
system in which it is measured, and conversions between
systems are handled automatically by the framework. The
modifications were ready in time for operations.

6.2. New Camera Model Type

Previous missions used the CAHV (linear) camera model,
[8] and the CAHVOR (adds radial distortion) model [4].
However, MER has extremely wide field-of-view hazard

avoidance cameras (close to 180 degrees), which cannot be
successfully modeled by CAHV or CAHVOR. A new type
of model that handles fisheye and wide field-of-view
cameras, CAHVORE [5] (developed elsewhere at JPL),
was integrated into the PIG framework in about 1.5 weeks.

6.3. Multiple Sites

MER is a long-range rover. As such, it can travel to areas
out of view of the original landing site. In order to deal
with this, the concept of multiple Site frames was
introduced. Each Site frame is a reference for all activities
contained within the Site. The support for this is quite
involved and includes maintaining XML files containing
the Site locations, as well as locations of interest within the
Site. This concept fit rather well into the PIG library, at a
cost of perhaps 4 work months. Interestingly enough, the
application modifications to support this were extremely
minor (mostly adding a few parameters and help updates);
most of the changes are encapsulated in PIG itself, and are
transparent to the applications.

6.4. Output Label Models

The metadata (labels) for MER are a radical departure from
previous missions (see Section 7). While the input side was
handled using the existing PigFileModel, output of labels
had previously been something the applications themselves
did. It quickly became obvious that a PIG model was
needed to handle output labels as well, allowing them to be
different for different missions. Total time to implement
this, including the model itself and all the actual output
labels for MER, was approximately 4 work weeks.

7. LESSONS LEARNED

While the PIG library concept and implementation have
performed admirably, with huge cost savings, there are a
few lessons that can be learned from the experience, which
could save even more money in the future.

7.1. Labels (Metadata)

Most important is the design of the image labels (metadata).
Historically, each mission has redesigned their label
structures virtually from scratch. Label contents are often
the subject of heated debate among the operations and
science teams, and it is all too easy to depart from existing
norms in order to make this mission “better”. This wreaks
havoc with multimission designs; a lot of new code must be
written to accommodate the vagaries of label structures.

Well over half of the MER adaptation time, and most of the
time spent creating the output label model, is attributable to
changes in the MER label structure with respect to the
“baseline” we hoped would be established by MPL. That’s

easily over two work months just in implementation, not
counting the time spent designing, debating, and
documenting the label changes.

As ac ounter-example, the extraordinarily fast adaptation
time for MOI was largely due to the fact that no new labels
were designed; the MPL label structure was simply re-used.

Missions will be well served in the future to simply adopt
existing metadata standards with only minor modifications.
This should help all multimission programs, not just the
MIPL software suite.

7.2. Other Lessons

In hindsight, it is easy to say that these programs should
have been implemented using a multimission framework
from the beginning, for Pathfinder. However, that may not
have been practical. Experience derived during algorithm
development in that first program set was critical in
determining just what abstractions were necessary and what
didn’t make sense. Spending time to create a framework
for functionality that is later discarded is just time wasted.

Thus, developing the algorithms first, then going back and
making them reusable, seems to have been the right idea for
this software set, at least. You do have to know what
you’re trying to build, before you can figure out the
abstractions that will make the code reusable and adaptable.

It is worthwhile taking the time to thoroughly analyze the
situation before creating a reusable framework. This author
studied the situation for nearly 2 months, becoming familiar
with the MPF code, before beginning the actual design and
implementation of the PIG library. As detailed elsewhere
in this paper, this forethought appears to have paid off.

The generic “mission” has come in quite handy. As
mentioned in Section 5.5, it allowed MIPL to process MER
data even before ATLO, before MER-specific development
had begun.

8. CONCLUSION

The multimission framework embodied in the PIG library
has had a tremendous impact on the ability of MIPL to
quickly and inexpensively support new missions. As Table
1 shows, only about 2-3% of the code base needs to be
touched in order to support a new mission. This is reflected
in the adaptation times described in Section 5. New
missions can be supported in approximately 1/20 the time it
took to write the original library. This cost savings can
either be returned to the customer, or invested in improving
the products themselves via better algorithms or new
features - an activity that benefits all prior missions as
well as the one under development.

9. ACKNOWLEDGEMENTS

The original MPF code was developed by lean Lorre. The
PIG library was designed by Bob Deen. Contributors to the
library also include Oleg Pariser, Justin Maki, and Anton
Ivanov. All are from JPL’s Space Science Data Systems
Section (382). Development funding was provided by
JPL’s Science Instrument Services, and the Projects.

10. REFERENCES

[13 Alexander, D., et al, “Mars Exploration Rover Project
Software Interface Specification (SIS) Camera
Experiment Data Record (EDR) and Reduced Data
Record (RDR) Operations Data Products”. JPL D-
22846,2003.

[2] Deen, R., 0. Pariser and J. Lorre, “Creation of Surface-
Based Image Mosaics for MERIFIDO”. JPL IT
Symposium poster session, Nov. 4,2002.

[3] Deen, R. and H. Mortensen, “Planetary Image Geometry
(PIG) Application Programming Interface (API) and
Library Software Requirements Document (SRD)
Version 1.0”. JPL Internal Document, Dec. 3,2001.

[4] Gennery, D.B., “Least-Squares Camera Calibration
Including Lens Distortion and Automatic Editing of
Calibration Points”, Calibration and Orientation of
Cameras in Computer Vision, Springer-Verlag, 200 1,
p.123-136.

[5] Gennery, D.B., “Generalized Camera Calibration
Including Fish-Eye Lenses”, to be published, 2003.
<http://eis.jpl.nasa.gov/-telitwinlpublic-jpVsrc/ccal/ccal
-references. htmlx

[6] Maki, J.N. et al, “The Mars Exploration Rover
Engineering Cameras”, Journal of Geophysical
Research - Planets, MER special issue, publication
pending (2003).

[7] Runkle, R., “Mars Pathfinder Project Imager for Mars
Pathfinder (IMP) Experiment Data Record (EDR)”.
JPL D-12003, 1998.

[8] Yakimovsky, Y. and R. Cunningham, “A System for
Extracting Three-Dimensional Measurements from a
Stereo Pair of TV Cameras”, Computer Graphics and
Image Processing, vol, 7, p. 195-210, 1978.

[9] Zamani, P., “Mars Surveyor Project Mars Volatiles And
Climate Surveyor (MVACS) Experiment Data Record
(EDR) Software Interface Specification (SIS)”. JPL D-
17891. 1998

http://eis.jpl.nasa.gov/-telitwinlpublic-jpVsrc/ccal/ccal

