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Abstract 
Finding a preferred solution to a complex design 

problem is challenging. On the one hand the problem 
space is too large and convoluted for human 
comprehension, while on the other hand it is infeasible to 
elicit the entirety of design knowledge required for fully 
automatic problem solving. We face this challenge 
repeatedly when planning the development of 
technologies for spacecraft applications. In this context 
numerous risk abatement options give rise to a huge space 
of potential design solutions. 

We report on application of a combination of data 
mining steps guided by user-directives, and appropriate 
visualizations to present the results of these steps to the 
users. The core ideas are use of heuristic search to locate 
near-optimal design solutions, and user-defined 
“dissimilarity” metrics to characterize interestingly 
distinct design solutions. The search, data mining and 
visualization capabilities are implemented features of the 
risk management tool we use to support a risk-centric 
design methodology developed and applied at JPL and 
NASA. 

This approach is demonstrated on the selection of risk 
abatement solutions in the design of advanced technology. 
The study was performed at JPL to plan the development 
of technology for future spaceflight missions. 

1. Introduction 
Risk concerns play a prominent role in planning the 

design and development of complex systems. Typically 
there are numerous risk abatement options (e.g., analyses, 
tests) and decision alternatives (e.g., architecture choices, 
implementation alternatives) with significant risk 
implications. Their costs (time, budget, etc.) and benefits 
(their effectiveness at risk abatement) have to be taken 
into account when selecting among them. 

For complex systems, the selection space of risk 
abatement solutions can be very large. While the number 
of individual risk abatement options may be modest, the 
choice of selections from among them is large (e.g., given 
50 binary options, there are 250 z 1015 ways of selecting 
fi-om among them). We use data mining and visualization 
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to assist experts to make these selections. 
The main steps of our approach are sketched in Figure 

1. An engineering design model is developed based on 
inputs fi-om technical experts. Heuristic search is used to 
reveal the costhenefit trade space implied by this model. 
Experts identify the design neighborhood in which they 
are most interested. The space is culled to just the 
solutions within that neighborhood. Experts provide 
“dissimilarity metrics” that indicate what they consider to 
be important distinctions among neighboring solutions. 
Dispersal and clustering algorithms are used to locate a 
modest number of distinct designs from within that 
neighborhood. Custom visualization presents the located 
designs to the experts, allowing them to make their choice 
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Figure 1. Overall approach 
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of preferred design. 
Throughout this paper we use data from one of the 
technology assessment and inhsion planning efforts 
performed at JPL. The details are proprietary, so we avoid 
revealing specifics. Nevertheless, all the quantities we 
report (e.g., the number of distinct mitigations) are actual 
figures from the assessment effort, and charts shown have 
all been generated from this data. Briefly, the assessment 
concerned an electronics packaging technique that has 
seen wide use on Earth, and on some space missions but 
only inside a temperature controlled housing. The focus of 
the assessment was its novel application to settings where 
the electronics would be exposed to the harsh conditions 
( e g ,  extreme cold temperature) of planetary 
environments. The end goal was to identify and select 
appropriate design, fabrication, assembly and testing 
methods for the packaging technique so that it could be 
incorporated reliably into future spacecraft. 

2. A Risk-Informed Design 
Methodology 

A risk-informed design methodology underpins our work. 
Motivation for this stems from a vision of using risk as a 
resource, one that can be traded against other resources 
such as schedule, cost and performance [Greenfield, 
19981. The methodology we have developed and applied 
at JPL and NASA supports this vision. It combines 
insights and skills of spacecraft experts, a model for 
representing their knowledge, a process for building and 
exploring the model, and custom software to support this 
process. 

At its heart, it relies on users to identify: objectives to 
be achieved (and their relative priorities), the various risks 
to achieving those objectives, and options for risk 
mitigation (prevention, detection ahead of time, and 
alleviation). The connectivity among these pieces of 
information is as follows: risks are connected to the 
objectives that they would impact (should those risks 
occur), and mitigations are connected to the risks they 
reduce (should those mitigations be applied). Note that a 
risk may impact multiple objectives, an objective may be 
impacted by multiple risks, etc. Note also that different 
risk impacts and mitigation effects may have different 
strengths, for example, one risk may detract from one 
objective more than it does from another. 

Models of actual technologies and systems are 

typically voluminous and convoluted, as illustrated by the 
data in Figure 2 extracted from the technology study used 
throughout this paper. This comprises 50 objectives, 31 
risks, 58 mitigations, and some 800 links among them, 
numbers typical of the order of magnitude of data 
gathered in these assessment efforts. 

This data was gathered from experts in a series of 
facilitator-led sessions, following the elicitation process 
we have established for our risk-centric models. 

The risk-centric design model offers a selection of risk 
mitigations. For any given selection, the model can be 
evaluated to yield two measures: 
0 cost, calculated as the sum of the costs of the selected 

mitigations (e.g., the cost to perform a test), and of 
the repairs of risks they detect (e.g., the cost of fixing 
the bugs revealed by testing), and 
beneJit, calculated as the sum total attainment of 
objectives taking risks into account. Risks detract 
from objectives’ attainment, however risks 
themselves are reduced (in likelihood and/or impact) 
by the selected mitigations. Risk reduction leads to 
increased attainment of objectives. 

For further details of our model, and how it is applied, 

0 

see [Feather&Comford, 20031. 

3. Optimal Designs and Heuristic 
Search 

An optimal design is one that attains its objectives at 
minimal expense. Generally speaking mitigations increase 
expected objective attainment (by reducing risks), but 
incur costs. In most instances the total cost of all possible 
mitigations far exceeds the resources available. The 
primary purpose of our methodology is to help identify 
and select the set of mitigations to apply to achieve an 
optimal design within some cost bound. 

In typical designs there will be many mitigations 
(dozens, possibly hundreds). The combinatorial choices 
from among these imply a space containing huge numbers 
of possible candidate solutions. In our application, 58 
mitigations represented design and development choices 
whose costs range from the low thousands of dollars to, in 
a few cases, hundreds of thousands of dollars. Since there 
are 58 mitigations, there are in principle 2” 
(approximately lo”) different selections from among 
them. 

We use simulated annealing (a form of heuristic 
search), included as part of our 
software, to locate near-optimal 
solutions. We have also explored 
genetic algorithms, and machine 
learning [Comford et al, 20031. On 
our electronics technology dataset, a 
detailed search was performed, 
organized as a series of individual 

,# 

Figure 2. Topology of data in a completed risk model 



cost-bounded optimal searches at successive cost levels. 
The resulting cost-benefit trade space is the background 
portion of Figure 3. The sum total cost of all mitigations 
(approximately $4,750,000) determines the rightmost 
value of the x-axis, and the sum total value of all 
objectives (approximately 3,600) determines the topmost 
value of the y-axis. Its generation took on the order of 10 
hours running on a 1.8 GHz PC. 

Each of the approximately 300,000 individual points in 
the black “cloud” corresponds to a design solution (i.e., 
selection of mitigations). For a given solution, the 
software uses the quantitative risk-centric model to 
calculate cost and benefit. A small black point 
corresponding to the solution is then drawn on the plot - 
solution cost determines horizontal position, solution 
benefit vertical position. The upper-left frontier of the 
cloud is thus the “optimal” boundary, also referred to as 
the “Pareto front” [Sen&Yang, 19981. Note that we plot a 
point for every solution investigated by the search, not just 
the “near-optimal” solution points on the boundary. This 
is important data, since the steps that follow investigate 
points close to, but not necessarily on, that optimal 
fiontier. The simulated annealing search is designed to 
concentrate towards this optimal boundary. 

4. Experts Select Neighborhood of 

The experts know of funding availability, and level of 
benefit (attainment of objectives) desired. They use this 

Interest 

knowledge to identify their neighborhood(s) of interest 
within the costhenefit trade space revealed by the 
previous search. 

The reasons we identify a neighborhood of interest, 
rather than simply picking specific near-optimal solutions 
on the frontier are twofold. First, the data over which the 
search is performed was produced through expert 
judgment. We do not assume all of those expert judgments 
to be perfectly accurate. That is, solutions within a small 
percentage of the near optimal solution may in truth be no 
more costly andor attain no less benefit than ones 
calculated as the “near-optimal” in that neighborhood. 
Thus such a neighborhood encompasses different design 
solutions that, from the standpoint of cost and benefit, we 
judge to be equally acceptable within the accuracy of our 
data. Second, there may be factors other than overall cost 
and benefit that would lead us to prefer one solution 
within this neighborhood over another. For example, one 
design solution in the neighborhood may make use of a 
hard-to-schedule test facility, while another does not, in 
which case we might prefer the latter. 

While it should in principle be possible to encode such 
preferences within the utility fimction that guides the 
optimal search, we believe this to be infeasible in practice. 
In the first place, much of this may be “tacit” knowledge - 
not evident until the experts see concrete examples of 
design solutions. Even if the experts could foresee all 
these preferences in advance, our suspicion is that it would 
be a waste of time to ask them to try to articulate them all. 
Better, have them list just the ones that they recognize as 

Figure 3. Selection of a neighborhood of interest 
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the major impediments, perform the search, identify the 
neighborhood, scrutinize the results, and select the 
preferred solution. 

An expert-identified neighborhood of interest defined 
as solutions costing I $1,000,000 and attaining 2 95% of 
the objectives attainment of the best solution found at or 
below that cost limit is shown superimposed and 
magnified in Figure 3. For the dataset, 3,391 solutions 
(i.e., distinct selections of mitigations) fall within the 
neighborhood. 

5. Dissimilarity Metrics 
Manual scrutiny of each of 3,391 solutions is tedious at 

best. Since many will be very similar (differing by a small 
number of the selected mitigations), we use data mining to 
more effectively explore this neighborhood. We define a 
metric of dissimilarity - two design solutions (each a set 
of selected mitigations) will have a larger dissimilarity 
value according to this the more they differ from one 
another. Using this metric, solutions that lie within the 
neighborhood of interest, but which are distinct from one 
another with respect to this dissimilarity metric, are 
located and presented to the users. 

In our risk-centric model, a design solution is described 
by a set of mitigations, each of which is either “on” or 
“off ’. A dissimilarity metric takes as input a pair of design 
solutions, and returns a numerical measure of 
dissimilarity. 

A simple metric is to count the number of differences 
between the two design solutions’ mitigations, that is, 
count how many mitigations are “on7’ in one but not in the 
other of those solutions. If bit strings represent solutions, 
each bit corresponding to a mitigation, with value 1 if that 
mitigation is “on”, 0 otherwise, then this metric is the 
Hamming distance between solutions’ representations. 

Another metric is to sum the costs of all the mitigations 
that are “on” in one but not both of two solutions. This 
metric therefore ranks as more dissimilar solutions that 
differ by higher cost mitigations. 

Yet another metric makes use of relevant groupings 
of mitigations. For example, in our technology assessment 
studies, it is common to classify mitigations according to 
the phase in which they would apply - design, fabrication, 
assembly, test. We can define a metric of dissimilarity 
based on the difference in costs between these phases. 

The experts using our software select which metrics 
to use to explore the neighborhood of design solutions. 

6. Data-Mining for Interesting Design 
Solutions 

Given a neighborhood of solutions, and a dissimilarity 
metric chosen by the experts, we use two data mining 
techniques to locate solutions distinct with respect to the 
chosen metric: 

0 Dispersal: a set of maximally dispersed (using the 
metric of “dissimilar”) solutions is extracted from the 
neighborhood of interest. 
Clustering: similar solutions, i.e., solutions that are 
close in distance according to the metric of 
“dissimilar”, are aggregated into clusters. 

6.1. Data-Mining by Dispersal 

0 

We have implemented a dispersal method that is a fast 
approximation of an idealized dispersal algorithm. It 
works as follows: 

Input C (> 1) the number of dispersed solutions that the 
method is to find. Let N be the set of design solutions in the 
neighborhood of interest.: 

Initialize S to be the singleton set holding the optimal 
design solution in N; 
While S’s cardinality < C, do: 

0 Find a design solution ds in (N - S) such that ds’s 
minimum distance from all the design solutions in S 
is as great as possible. 
Add ds to S. 

This approximate dispersal algorithm was applied to 
find 10 dispersed solutions with respect to each of the 
three metrics discussed above from the expert-identified 
neighborhood. It took under 2 minutes to find and plot the 
visualization of the 30 dispersed solutions - 10 dispersed 
solutions for each of the three metrics. The table below 
shows the dispersal distances between solution point sI 
and its shortest metric distance to the points s2.. . s, where 
n = card(N) 

Table 1 : Dispersal Distances 

6.2. Data-Mining by Clustering 
The intuition behind this method is that we partition 

similar solutions into groups (clusters). Resulting from 
this will be clusters such that the solutions within a cluster 
will all be similar to one another (hence if we examine 
one, there is little point to examining another solution 
drawn from that same cluster), while the clusters 
themselves will tend to represent distinct design solutions. 

The clustering method works by first picking a 
prototype that will serve as a seed for the first cluster. 
(We have arbitrarily picked the near-optimal solution 
found by the search to be this initial seed.) Then, each 
design solution in the neighborhood of interest is 
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compared to the seed solution by means of the 
dissimilarity metric of our choosing (e.g., one of 
those discussed in the preceding section). If the 
measure it returns is sufficiently ;mall (below some 
threshold value), this solution set is included in the 
cluster. 

= Mitigation included in solution 0 = Mtigation not included in solution 

Figure 4. Fragment of visualization of dispersal 

7. Visualization of the Data-Mining 

Visualization is used to present results of dispersal and 
clustering to the experts, allowing them to see what 
distinct solutions are available, and understand the ways in 
which those solutions differ (and the ways in which they 
do not differ). 

Results 

7.1. Visualization of Dispersal Results 
We use a simple tabular display as the means to 

visualize dispersal results. Figure 4 shows a fragment of 
such a display, and Figure 5 gives a key to its elements. In 
practice the visualization would list the title of each of the 
migitigations, but in order to protect the proprietary nature 
of this information, such titles have been omitted here. 

The display shows dispersal results using the 
metric of the sum of the costs of all the mitigations 
that are “on” in one but not both of two solutions. 
Since the focus is on how solutions differ, 
mitigations that are either always on in all of the 
dispersal solutions, or always off, are omitted, 
hence every row in the displayed results involves at 
least one black square (mitigation included) and 
one white square (mitigation not included). 

The mitigations are arranged in order of 
decreasing cost. From the visualization we can 
readily discern alternative solutions some of which 
make use of the relatively expensive mitigation 
3.7.2, and some of which do not. This kind of 

Figure 5. Key to visualization of dispersal results 

visualization aids the experts in making their selection of 
the preferred solution. 

7.2. Visualization of Clustering Results 
Figure 6 shows a fragment of the visualization of the 

clustering results from our data, and Figure 7 gives a key 
to its elements. As before, the names of mitigations would 
normally be listed alongside their numbers, but are 
omitted in this paper to conceal proprietary information. 

Each cluster is represented by one column of boxes. 
The shading of the boxes indicates the proportion of 
solution sets of that cluster that include that particular 
mitigation. The darker the shading, the greater the 
percentage of solutions that include the mitigation. 
Using this display, the experts can quickly determine 
which clusters are preferred. When the best cluster is 
determined, clicking on that cluster produces another 
graphic display of all of the solutions in that cluster so that 
the manager may fine-tune hisher choices. 

8. Conclusions 
This paper has described application of data mining 

and visualization to aid experts in making design 

350,000 

12.1 I 160,000 1 

Figure 6. Fragment of visualization of clustering results 

EacR column is a c&&w of sollhtions, tach row a mitigption 

1 Number I Cost 1 Titit 

Shadlng lndlcatts % of roh&ons wfthln the cluster (column) that iaccinbe the mitigation (row) 

Figure 7. Key to visualization of clustering results 
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decisions. The approach is demonstrated on the selection 
of risk abatement solutions in the design of advanced 
technology. The study was performed at JPL to plan the 
development of technology for future spacecraft missions. 

Our use of dissimilarity metrics bears a resemblance to 
the “unexpectedness” measures of [Padmanabhan & 
Tuzhilin, 19991, but is perhaps simpler because we seek 
only to locate unexpected data, not patterns in that data. 

In future work we plan to investigate a closer 
connection between the dispersal and clustering 
techniques. In particular, we plan to use the former to 
rapidly get an overall feel for how solutions are dispersed, 
and use that information to guide slower but more 
revealing clustering algorithms. We also would like to 
take into account knowledge of uncertainty distributions 
in the input data to help better identify neighborhoods of 
interest. 

More details of our risk-informed methodology, and 
the tool support we have built to support it, can be found 
at http://ddptool.jpl.nasa.gov 
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