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ABSTRACT 

A long-standing problem in NASA is how to 
allocate scarce technology development 
resources across advanced technologies in order 
to best support a large set of future potential 
missions. Within NASA, two (orthogonal) 
paradigms have received attention in recent 
years: the real-options approach and the broad 
mission model approach. This paper focuses on 
the latter. Two broad mission models are 
developed for Mars Science Laboratory (MSL)- 
type missions-a large mobile rover/laboratory 
versus a fixed laboratory with a small “fetch” 
rover. Two technologies that are critical to the 
amount of science returned make up the 
technology portfolio. Within each mission 
model, the technology program manager (TPM) 
maximizes the science return by allocating a 
technology development budget and controlling 
reserves across the two technologies. The TPM 
must ultimately choose between a higher science 
return and a higher probability of development 
success for the technology portfolio. The paper 
concludes with prospects for implementing the 
broad mission model approach. 

INTRODUCTION 

The work reported in this paper is part of 
NASA’s effort to improve the allocation of 
technology development resources. The focus 
here is on Mars robotic exploration technologies 
that have achieved the proof-of-concept stage of 
development, but have not yet been 
demonstrated in a space environment. (Those 
familiar with NASA’s Technology Readiness 
Level (TRL) scale will recognize this range as 
TRL 3 through TRL 6.) The overall objective of 
this work is to create a consistent, rigorous, and 
risk-based approach to guide the Mars 
Exploration Program in selecting its technology 
investment portfolio (TIP). 

Within NASA, two (orthogonal) paradigms for 
TIP selection have received attention in recent 
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years: the real-options approach and the broad 
mission model approach. Since the real-options 
approach has been documented elsewhere”2, this 
paper demonstrates the broad mission model 
approach. The real-options approach focuses on 
one technology investment and its application to 
missions that potentially might use it. The 
question the real-options approach addresses is: 
“How much is it worth for the right to undertake 
this technology development?” The broad 
mission model approach focuses on one broad 
mission concept and all the technology 
investments that could potentially be made. The 
question the broad mission model approach 
addresses is: “HOW should limited technology 
development resources be applied to improve 
that mission’s outcome?” Clearly, the two 
approaches answer different questions, yet both 
could be used for TIP selection. 

This paper applies the broad mission model 
approach to two Mars Science Laboratoryt 
(MSL)-type missions-a large mobile 
rover/laboratory versus a large fixed laboratory 
with a small “fetch” rover to gather rocks and 
other samples. One conclusion is that even a 
modest change in mission concept like this 
requires a completely different mission model. 

OPTIMIZATION IN MODEL 1 

In the first model, a long-range rover/ laboratory 
acquires samples and makes measurements on 
them at a number of widely separated science 
investigation sites on Mars. There are two 
technologies that are candidates for fwther 
investment-a sample acquisition technology 
that decreases acquisition and handling time, and 
a roving technology that increases the average 
velocity over Martian terrain. 

The objective fkction to be maximized is the 
science measurement rate, $I , which depends 
on the performance achieved by these two 
technologies. This objective function, given in 

MSL is a NASA mission, slated for launch in 2009, to land 
laboratory instruments on Mars with capabilities to enable a 
significant breakthrough in the area of astrobiology. 
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Eq.( l), was developed by Professor Dave Miller 
and his student Julien Lamamy at M.I.T. The 
maximization is subject to three constraints that I 
have added. The first two are mission 
constraints: reliability and site diversity; the third 
is the technology development budget constraint, 
i.e., the proposed cost of developing the two 
technologies should not exceed a futed budget. 

The reliability constraint is stated in terms of 
total distance travelled, including travel within a 
site prior to final approach to a sample. The site 
diversity requirement is stated in terms of an area 
over which the search for scientifically 
interesting sites must be conducted. The 
reliability constraint keeps the rover fiom 
exceeding its design capabilities, while the 
diversity constraint acts as a countervailing 
condition that forces the rover to travel fbrther in 
its search for diverse sites. Other expressions 
could be used for the site diversity requirement; 
the one in this paper is based on the idea that the 
rate of change of site diversity with traverse 
distance (per site) is a power function of the 
intersite traverse distance. 

subject to 

In Model 1, the endogeneous variables are: 

A 

= number of science sites investigated 
= typical intersite distance 
= surface mission time 
= optimal surface velocity 
= optimal sample acquisition and handling 

= total science measurements 
= science measurements per unit of 

= marginal science measurements per 

time 

surface mission time 

technology investment dollar 

(3) 

(4) 

The exogeneously supplied variables in Model 1 
are: 

= site characteristic size 
= number of science measurements per site 
= reliability requirement 
= site diversity requirement 
= traverse efficiency = Uodometer multiplier 
= constant of proportionality 
= technology development budget 
= technology development reserve 
= site reconnaissance time 
= sample analysis time 
= typical intrasite distance = (Msite) 112 

DSjw 

Irrespective of whether the objective function is 
to maximize the science measurement rate, Eq. 
(l), or to maximize the total science 
measurements subject to an additional constraint 
on total surface mission time, or to minimize 
total surface mission time subject to an 
additional constraint on science measurements, 
the first-order conditions are the same! These 
are: 

- & f 2  

a =  dC I aTacq l ( v * .  T * a w )  (9) 

An examination of the objective fimction reveals 
that the shortest possible Dlrm (Le., D,r, = 0) 
maximizes Eq.( 1). However, this degeneracy is 
avoided by the diversity constraint. The feasible 
region, shown in Figure 1, is the area below the 
reliability constraint curve and above the site 
diversity constraint curve. In fact, the reliability 
and site diversity contraints in Eqs. (6) and (7) 
interact in a stable manner to determine unique 
values for Nsires and D,,, given by the 
intersection of the two curves in Figure 1. 
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Figure 1- Solutions for NSites and Dpuy for 
Typical Model I Parameters 

The Cost Functions 

To determine the optimal mix of technology 
investments, Eqs. (5) and (8) must be solved 
together. Eq. ( 5 )  simply states that the optimum 
lies where the ratio of marginal payoffs in terms 
of the science measurement rate equals the ratio 
of marginal technology development costs. 
Knowledge of each technology development cost 
function is therefore critical to obtaining a 
quantitative solution. 

In this paper, the combined technology 
development cost function is shown as Eq. (10). 

where a, b, c, co and vo are all positive constants 
and are chosen so as to reflect current technology 
when C, and C, = 0. The linear form for C, 
results in a significant computational benefit, 
since the marginal cost of decreasing sample 
acquisition and handling time is constant. 

Solving for v* and T*% in Model 1 

Figure 24olut ions  for v* and T*,,,, for 
Typical Model 1 Parameters 

With the convenience assumption of a constant 
marginal cost for decreasing Tacq, note that Eq. 
( 5 )  depends only on v, holding the other Model 1 
input parameters fixed. Consequently, with these 
technology development cost functions, an 
increase in the technology development budget 
leaves v* unchanged, and only serves to decrease 
T*,,,. Consequently, the proportion of the fixed 
technology development budget spent on 
velocity improvements decreases as the 
technology budget increases, with the proportion 
spent on sample acquisition and handling gaining 
accordingly. In general, one would expect that 
both v* and T*acq would change with alternative 
budget leve Is. 

The objective function, the science measurement 
rate, is an indirect function of the technology 
development budget in Model 1. That indirect 
function is shown in Figure 3. 

Model 1 can be "deepened'¶--that is, expanded to 
include other technologies and multiple kinds of 
science measurements. Adding another 
technology adds another unknown variable to be 
optimized, but also adds another equation similar 
to Eq. ( 5 )  among the first-order conditions.S 

Using typical values for these cost fimction 
parameters, Figure 2 plots the marginal science 
payoff ratio and marginal cost ratio against v; the 
optimal v occurs at the intersection of the two 
curves. 

' It can be shown that the second-order conditions for a 
maximum are also satisfied with typical values for Model 1 
parameters. 
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Figure 3-Science Rate Versus Budget for 
Typical Model 1 Parameters 

Technology DeveloDment Uncertainty 

So far technology development has been treated 
as a deterministic process-a given proposed cost 
yields a certain performance outcome. For a 
variety of reasons most of us are familiar with, 
technology development is anything but certain. 
I take the view that each technology 
development cost functions, Ci(x), in this paper 
is a response function to a demand for 
performance x. Both the demander (usually a 
technology program manager), and the supplier 
(a technology developer) recognize that the 
actual performance outcome is highly uncertain, 
and that to achieve a given level of performance 
may require considerably more resources (and 
rarely less) than the proposed cost. 

In this paper, I assume that the technology 
program manager holds reserves, R, that can be 
allocated across several technology 
developments to increase the probability of 
success in achieving the originally sought 
performance in any one of them. The technology 
program manager deals with the cost risk 
problem by allocating these reserves so as to 
maximize the joint probability of technology 
development success. Mathematically, 

subject to 

where F( ) and G( ) are the cumulative 
distribution functions (cdf) for the cost of 

meeting the perfomance outcomes for rover 
velocity and sample acquisition and handling, 
respectively. Note that both distributions are 
conditioned on the proposed budgets (and 
schedules) derived from the technology 
development cost hnctions. How these cdf's can 
be determined is described more fully in Fox, et 

The first-order conditions to the above 
maximization are straightforward when 
stochastic independence is assumed, and are 
shown as Eqs. (1 1) and (12) (for an arbitrary 
number of technologies). 

x + y +  ...= R (12) 

Again, to obtain a quantitative solution, I 
assumed a lognormal cdf for F ( )  and a Weibull 
cdf for G O .  The specific parameters used in 
what follows produced the graphs in Figures 4 
and 5 .  

Cost Rsk CDFfor v 

E 0.4 I 
~ g 0.3 

10 20 30 40 

Rserves Allocated 

Figure M o s t  Risk CDF for Rover Velocity 
Improvements 

Applying Eqs. (1 1) and (12) to these two cost 
risk distributions permits the construction of the 
relationship between the maximized joint 
probability of success and the level of reserves, 
R. A graph of this relationship is shown as 
Figure 6 for typical model values. 
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Figure M o s t  Risk CDF for Sample 
Acquisition and Handling Improvements 

At this point the technology program manager 
faces a significant tradeoff. The broad mission 
model approach cannot relieve the technology 
program manager from having to choose 
between buying more technology performance 
(and reaping a higher science measurement rate) 
and buying down the risk that one or more of the 
technology developments will fail to deliver. In 
other words, the technology program manager 
needs to choose the right values for B and R 
within the context of total programmatic 
resources, presumably B + R. 

MaxirrhedJoint ProbofSuccess 

Figure 6-Relationship Between Reserve 
Level and Maximized Joint Probability of 

Success 

One canonical approach to this choice problem is 
to postulate a utility function reflecting the 

technology development manager's preference 
for science rate versus risk, 
U(hk(B),p, ( R ) ) ,  where hk(B)is the 
maximized science measurement rate of Figure 3 
and ps(R) is the maximized joint probability of 
technology development success of Figure 6. 
The utility function is assumed to have 
indifference curves reflecting a declining 
marginal rate of substitution between science 
rate and risk. 

Reading the graphs of Figures 3 and 6, one can 
construct the combinations of maximized science 
rate and maximized joint probability of success 
that are consistent with a fixed level of 
programmatic resources. Figure 7 shows the 
result for $225, consistent with previous graphs, 
and overlays some representative indifference 
curves of the postulated utility function. 

The optimal combination occurs at the tangency 
point shown where: 

Tradeoff 

Figure 7 4 p t i m a l  Combination of Science 
Rate and Risk for Model 1 

OPTIMIZATION IN MODEL 2 

In Model 2, I retain the same technology 
development cost functions, cost risk cdfs, and 
technology program manager utility function as 

' MRS i s  the marginal rate of substitution and MRT i s  the 
marginal rate of transformation 
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in Model 1. The second model is based on a 
concept of operations in which a large fixed 
laboratory is landed on Mars that carries a 
deployable short-range “fetch” rover. In this 
broad mission model, samples of Martian 
material are obtained by the fetch rover one-at-a- 
time, and are brought to the laboratory where 
they are analyzed by its advanced instruments. 

One question for modeling this concept concerns 
how big the “waiting room” is on the laboratory. 
With no waiting room for samples, the rover 
must wait until the laboratory has finished the 
last sample analysis before depositing the most 
recently collected sample into the first 
instrument.** A waiting room would allow the 
rover to temporarily place samples in the 
laboratory until it is ready to begin the analysis 
process. The rover is then fi-ee to search out other 
interesting samples. 

In a purely deterministic world, the rate of 
science measurements would be the smaller of 
the (fixed) arrival rate of samples and the (also 
fixed) laboratory servicing rate of samples. This 
is independent of whether or not there is a 
waiting room. A better model treats both arrivals 
and servicing as stochastic processes with the 
arrival and servicing rates as parameters of a 
queueing process. 

In Model 2, the objective function to be 
maximized, given in Eq. (14), is the expected 
rate of science measurements. The maximization 
is subject to a technology development cost 
constraint, Eq. (1 5) .  

,U = llTsa 
il = 1 /(Tacq +OS& / 2v) 

I* 
Each sample is processed serially through the laboratory’s 

instruments. 

In Model 2, the new endogenous variables are: 

E(M) 
z 

a 
PO 

= total expected science measurements 
= marginal expected science measurements 

per technology investment dollar 
= arrival rate for samples 
= probability that no sample is in or awaiting 

laboratory analysis 

Model 2 also requires new exogeneous variables: 

P 
N 

= servicing rate for samples 
= maximum number of samples that can be 

awaiting analysis (waiting room size) 

The servicing rate is the reciprocal of the sample 
analysis time, which is a attribute of the 
laboratory’s instruments and is exogenously 
given. The arrival rate is the reciprocal of the 
sample acquisition and handling time plus the 
average round-trip time between the sample and 
the laboratory. For the greatest simplicity here, I 
assumed that suitable samples are uniformly 
distributed and randomly selected over the 
science site. Obviously, if samples were selected 
fiom the periphery of the site, then the round-trip 
time would be double that shown. 

The objective function here, Eq. (14), is a 
weighted average of the arrival and servicing 
rates, with the proportions determined by the 
probability that there is no sample in or awaiting 
laboratory analysis. The equation for that 
probability is a well-known result for a single- 
server exponential queueing system having a 
finite capacity of N+1! The first-order 
conditions for the maximization are: 

and when N = 0 

- 2  a 
dc I dTacq ((1 + A I pJ2 I (v*’T*acq) 

z= 

Solving for v* and T*% in Model 2 

The convenience assumption of a constant 
marginal cost for decreasing Tacq means that Eq. 
(1 6) depends only on v, holding the other Model 
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2 input parameters fixed. This, of course, is not 
necessarily the case, but it highly simplifes these 
illustrative calculations. Again, with these 
technology development cost functions, an 
increase in the technology development budget 
leaves v* unchanged, and only serves to decrease 
T*,,,. Figure 8 shows the indirect expect€ 
science measurement rate function. 

Sciince RateVersus Wgd 

60 Bo 1w 120 140 18) 180 Mo 

Budget SM 

Figure %Expected Science Rate Versus 
Budget for Typical Model 2 Parameters 

In Figure 8, the waiting room size is zero, which 
is consistent with the wishes of the MSL 
scientists to avoid any additional potential 
sources of sample contamination. 

Using typical Model 2 parameter values and 
keeping parameters common to both Models 1 
and 2 the same (especially the technology 
development budgets), one observes that v* and 
T*ocq are higher in Model 1 than in Model 2. This 
is exactly what one would expect since long- 
range roving consumes so much time that it pays 
to invest in technologies that can reduce that 
time when site diversity is a mission 
requirement. That science measurements are not 
be performed while roving means that the overall 
science rate in Model 1 is much lower than in 
Model 2. It is, however, the project scientists 
who must decide whether site diversity is 
important enough to forego the higher science 
rate. 

Technolonv Development Uncertainty 

The previous discussion and results regarding the 
maximized joint probability of technology 
development success apply to Model 2 as well. It 
is possible then to construct a new figure similar 
to Figure 7, which shows the optimal 
combination of science rate and technology 

development risk. Figure 9 shows that for Model 
2. 

Tladeoff 
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Figure 9- Optimal Combination of Science 
Rate and Risk for Model 2 

The tangency condition in Eq. (13) applies in 
Model 2, and results in the optimal allocation of 
technology development resources to each 
technology, based on the demand for 
performance, and to reserves, based on portfolio 
risk. 

CONCLUDING REMARKS 

The work described in this paper was meant to 
demonstrate how a broad mission model can be 
developed and used to solve the TIP selection 
problem in a risk-based framework. Several 
issues can be raised in that regard. 

Feasibility 

In order to be truly useful to NASA’s Mars 
Exploration Program, there is a need to broaden 
the mission model so that the optimization can 
include technology developments related to Mars 
precision landing and safe landing (i.e., landing 
hazard detection and avoidance). This can be 
done with a more complex mission model. Next, 
there is a related need to develop the means to 
precisely translate improvements in the technical 
attributes of hardware and software to 
improvements in the mission performance 
variables used in the broad mission model. In 
this regard, some good work has been done with 
respect to rover a~tonomy.~ 
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One of the essential elements of analysis in the 
broad mission model approach to TIP selection 
is knowledge of the technology development 
costs, expressed as functions of the mission 
performance variables. Unfortunately, this is an 
area in which many unfounded assumptions are 
typically made (including in this paper). In 
connection with translating improvements in 
technical attributes into improvements in mission 
performance variables, there is a parallel need to 
translate the costs and cost risk information 
(often available only at the technical attribute 
level) to the level required by the optimization in 
the broad mission model approach. 

Another essential element of analysis is the 
technology program manager’s utility function. 
The tradeoff between portfolio risk and 
performance is essentially unavoidable, but 
different stakeholders may have different risk 
preferences. Whose utility finction will be used 
is, as we know from Arrow’s Impossibility 
Theorem, a thorny issue. 

As I mentioned earlier, even a modest change in 
mission concept may require a completely 
different mission model. Once an appropriate 
mission concept has been selected and the 
corresponding mission model objective function 
and constraint equations developed, optimization 
should not be difficult given today’s tools. In 
fact, all the calculations for this paper were done 
using a commonly available spreadsheet tool. 
(Appendix A shows the user input area and 
output area of the spreadsheet for Models 1 and 
2. These are included to inform the reader as to 
the typical values of the inputs used and output 
variables obtained.) 

Which Approach Is Better? 

In my introduction, I alluded to two paradigms 
for TIP selection-the real-options approach and 
the broad mission model approach. A 
comparison of the two seems inevitable. While 
this topic certainly could be the subject of a 
separate paper, several points are worth making 
here. 

First, the technology development cost functions 
and cost risk cdfs are essential elements of 
analysis in both approaches. Both also require 
some metric of value for performance 
improvements. In the broad mission model 
approach, the value is generally associated with 
the amount or rate of science measurements. 

This is a metric that is clear and meaningful to 
scientists, engineers, and project managers. In 
the real-options approach, the value of 
performance improvements in NASA flight 
projects is measured in dollars, which, while 
clear enough, is harder to quantify and to explain 
to the above groups.++ 

Second, schedules-the timing of both costs and 
benefits-are generally implicit and fixed in the 
broad mission model approach, while they are 
explicitly treated and of considerably greater 
importance in the real-options approach. 
Further, the way risks are modeled and 
propagated through time is substantially different 
in the two approaches. 

Lastly, the broad mission model addresses the 
TIP selection problem in the context of a single 
mission that has a very high likelihood of 
occuring because it’s the next one on the 
roadmap. As such it seems very approprate as a 
tool for focused technology developments tied to 
a specific roadmapped mission. Because NASA 
has mission roadmaps for many thematic 
programs and enterprises, many such broad 
mission models are needed for NASA as a 
whole. The limited context of the broad mission 
model approach leads me to conclude that it is 
more tactical in nature than the real-options 
approach, which takes a more strategic view of 
the TIP selection problem. 
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APPENDIX A 

Models 1 and 2 user inputs and outputs follow: 

In actual practice, whenever the real-options approach 
requires the ability to quantify changes in the amount or rate 
of science measurements/data, a broad mission model is often 
helpful. The real-options approach also requires a credible 
way of translating that into dollars. 
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Model 1 
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Model 2 

~ ~ ~ _ _  

Cost Inputs Value Units Comments 
C 0.3$M 

vo lOOm/sol 
MC Tacq -$25.0$M/~01 
CO Tacq $lOO.O$M 

Budget 160$M 

Interarrival Time 3.328365~01s 
Arrival Rate 0.300447781/~01 

I A I 

~ ~ 

cost  outputs Value Units 
C(v) $74.82 

C(Tacq) $85.18 
Total Expenditure $160.00 
Fraction Spent on v 46.8% 

Lagrangian multiplier, pi 1.99759E-O3"rocks"lsol-$M 
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