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* Goal and justification
* Experimental setup
« Evidence of signal coherence at carrier level

* ldentify error sources:
— ray bending due to tropospheric gradients
— roughness

* Inversion results: carrier phase altimetry at open sea with
GPSR techniques

e Conclusions
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Goal and Justification
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GPSR C/A group delay altimetry has limited precision and
coarse space resolution.

Improvement of precision by means of carrier phase (C.P.)
observations appears difficult at open sea, with surface
roughness of the order of several carrier wavelength:
diffuse regime, non-coherence at carrier level.

A possible way to avoid roughness’ multipath is to
constraint to observations at very grazing elevation angle,
with apparent roughness diminished by 2*sin(el)

At grazing angles, however, slight uncertainty in the slant
delay yields to huge error in the vertical (altimetric)
components, by a factor 1/(2 sin(el))

IS IT WORTH TO DESCEND TO LOW ELEVATIONS TO GET
CARRIER PHASE COHERENCE? Yes, 20 deg uncertainty
for a single C.P. observation, at 1 deg elevation is 30 cm
vertical error, better than C/A single observation error at
nadir (~m)



B Goal and Justifications
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 The concept could be applied from air- and space-borne,

* but also powerful application from ground stations, for
coastal monitoring:

— indeed, the current monitoring system has poor coverage in
the coastal areas

— GPSR is a cheap technology and could be deployed wherever
along the coast.
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Experimental Setup

e

 Data gathered from a
GPSR ground station
located at ~85 m above the .
sea surface, Palos Verdes,

CA, Sept. 2002
 GPSR equipment

including:

12/5/00

RHCP antenna pointing to

the horizon

LHCP antenna pointing to

the horizon

RHCP antenna zenith-

looking

standard and dedicated

receivers
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- Evidence of coherence at carrier level @
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* The equipment collects binary data stream at 20.456 Mbps.

* After correlation with the PRN C/A code, and assuming a
single specular reflection, the correlation function or
waveform can be modeled as:

Ty —T

A(r) = D[ AgA(ri—10)+AretFolrr T (; —ry - [T~ Tdy)

C

* r_randr_d are not changing at the same rate (elevation
dependent, variations in the altimetric range...), the
interferometric phase is not constant: interferometric
frequency. » AMPLITUDE BEATING
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=N, Evidence of coherence at carrier level
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Assuming that the relative delay between the reflected and the
direct link can be modeled as:

phi= 2 Hr sin(el)/lambda + Err [cycles]
* Then, the interferometric frequency should behave as
f=d phi/dt = 2 Hr/lambda [cos(el) d el/dt + sin(el) d Hr/dt] + d Err/dt
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 Something is affecting the interferometric phase, besides
the geometrical relative delay. What?

F  Guess 2: Roughness adding some
more non-accounted reflections,
transition to diffuse regime.

 Guess 1: At low elevation, the
ray path may be strongly
affected by the tropospheric itieal deley e o difm scuttortng
gradients, bending the * ' ' ' "
trajectory: n

20}

15¢ :

* The simple 2hsin(el) model may
not be valid any more. ot |

/ Eq.35a [Effounaily etfal.,2002]
.| \ J

0 2 - n - -

« Simulations for ray-tracing have 0 2 ‘ 6 ) 10

elevation (deg)

been performed to investigate its «  Work on simulations to find out about

impact on the interferometric the transition between the diffuse to

phase and thus altimetric the coherent regime and its effect on

products I the relative delay and interferometric
phase.
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Bending troposhere

e

A

« Simultions based on an
exponential refractivity profile:
Xo*exp(-h/H).

* The parameters used are
X0=250e-6 and H=10 km.
Variabilities of 20% in X0 give
differences in the relative delay
of the order of 5-20 cm
(elevation dependent).

* Hr set at 85 m. A variation of 5
m in the altitude results in
differences of ~5 cm in the
relative delay.

« 2000 layers of 10 m each have
been used, except for the
lowest part, below receiver
altitude layers of thickness
Hr/100.
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» Kirchhoff integral (not stationary phase approximation)
ie’*Fo L L i L - S 7 P
= 47rRO S[R’U —_ ﬂ * ne dS V= kznc — ksct pP= kznc + kSC’t

* Where the surface has been generated with the 2D
anisotropic spectrum in [Elfouhaily et al., 1997], for
developed seas.

o Surface 2000 m along the transmitter-receiver direction and
100 m across it.

* Integration in 10 cm X 10 cm grid spacing.
+ Validation:

— surface z=0 should recover 2h sin(el) from the interferometric
phase. DONE

— use of longer surfaces to check stable solutions. ON THE WAY

* Generation of a large population of different surfaces of
equal roughness to separate particular features from
statistical ones. ON THE WAY

 Shadowing. ON THE WAY
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surface height (m)
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=, Roughness: preliminary results
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* Example at 3 deg:

— SWH of 2.6 m would have an extra delay of
(~0.5 m vertical) while elevation changing 0.

R —

&

R

— SWH of 0.6 m would have deviations of the order of
~10deg=0.5cm (10cm vertical), both positive and negative.

‘Need to find out whether
these are features due to
particular surface
roughness (ripple related
to scanning of SWH) or
there is a net effect
(multipath-like).

‘Extend simulations

to other ranges of

elevations.

‘Use of different
surfaces of equal
statistical roughness
properties.
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e Inversion @

« Bit data stream processed to obtain the complex waveform,
which contains both direct and reflected signal.

 Assuming specular reflection, we model the waveform as
the sum of two “triangle functions”,

Ty ""rd

A(7;) = e[ AgA(ri—T0)+Are ol T\ (1;— 7~ -

)

* Fit to parameters Ad,Ar,interferometric phase

* We can infer the altimetric range from the interferometric
phase except for the phase ambiguity. Need to model the
errors:

Phi = K + 2 H/lambda * sin(ele) + Err.
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S0 Inversion

» First, coarse altimetric range estimation by analysis of the
amplitude’s beats:

— when we including d Err/dt as from fit on tropospheric effect

interferometric frequency (Hz)
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—

 STEP 1: coarse estimation of Hr and troposphere
by frequency analysis (effect of the roughness
yet to be known, may also change the
curvature/slope).

 STEP 2: generate tropospheric corrections (and
roughness?)

« STEP 3: inversion by carrier interferometric
phase

« STEP 4: cycle ambiguity resolution by coarse
estimate.
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Inversion: precision

P

* Inversion of 30 seconds of data by tracking of the carrier
interferometric phase (elevation ~2 deg), sample every 20 ms:
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S CONCLUSIONS &
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. It is possible to do altimetry with GPSR carrier

measurements at open sea using low grazing angles of
observation.

* The precision we have obtained is of the order of 16 cm
RMS, sigma ~< 1cm, in 100 m horizontal scanning.

* Bending effect of the tropospheric refractivity profile may
add biases and trends of the order of cycles (elevation
dependent). Up to 1.5 m in slant delay.

» Biases and trends due to the roughness are being
investigated.

* A method to solve for the cycle ambiquity has been

identified, using the frequency of the amplitude beats. This
improves the accuracy.

* Final accuracy will depend on the capability to infer/model
the tropospheric and roughness effects. In any case within
1 cycle.
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