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Abstract 

Sofiware defect detectors input structural metrics of 
code and output a prediction of how faulty a code mod- 
ule might be. Previous studies have shown that such 
metrics many be confused by the high correlation be- 
tween metrics. To resolve this, feature subset selection 
(FSS) techniques such as principal components analy- 
sis can be used to reduce the dimensionality of metric 
sets in hopes of creating smaller and more accurate de- 
tectors. This study benchmarks several FSS techniques 
and reports several studies where a large set metrics 
were be reduced to a handful with little loss of detection 
accuracy. This result raises the possibility that sofrware 
defect detection may be much simpler than previously 
believed. 

KEYWORDS: empirical studies and metrics; prin- 
cipal components analysis. fault models; metrics: prod- 
uct metrics; defect detectors; artificial intelligence: 
learning; feature subset selection. 

1 Introduction 

Over the past several years, many sophisticated 
structural measurements of software systems have been 
used to identify fault-prone components and predict 
their fault content. Examples of this work include the 
classification methods proposed by Khoshgoftaar and 
Allen [14] and by Ghokale and Lyu [6]; Schneidewind's 
work on Boolean Discriminant Functions [35], Khosh- 
goftaar's application of zero-inflated Poisson regression 
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to predicting software fault content [13], and Schnei- 
dewind's investigation of logistic regression as a dis- 
criminant of software quality [36]. 

An evident trend found within the above work is the 
increasing sophistication and complexity of the analysis 
techniques. Increasing the sophistication of our defect 
detection is not necessarily the best approach. This 
paper will argue that such increasing complexity is un- 
necessary. It will be shown that, at least for the data 
sets studied here, that very unsophisticated and very 
simple methods can generate good defect detectors. 

Many researchers have explored methods to reduce 
modelling complexity. In the reliability engineering lit- 
erature, principal components analysis (PCA) [3] has 
been widely applied to resolve problems with structural 
code measurements; e.g. [29,30]. PCA eliminates the 
problem of highly correlated measures by identifying 
the distinct orthogonal sources of variation and m a p  
ping the raw measurements onto a set of uncorrelated 
features that represent essentially the same information 
contained in the original measurements. For example, 
the data shown in two dimensions of Figure 1 (left- 
hand-side) could be approximated in a single trans- 
formed dimension, (right-hand-side). 

PCA has its drawbacks. Fault models developed 
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Figure 1. Transformation of axis. 

from PCA results are expressed in terms that are not 
directly visible to users of the model. Such models re- 
late fault content or fault-proneness to the “domain 
scores” resulting from the PCA. These domain scores 
are weighted sums of the structural measurements stan- 
dardized with respect to a chosen baseline. The struc- 
ture of these models may be very simple. For example, 
we have used PCA and a decision tree learner to find 
the following defect detector: 

if domain1 5 0.180 
then NoDefects 
else if domain1 > 0.180 

then 
else 

if domain1 5 0.371 then NoDefects 
if domain1 > 0.371 then Defects 

Here, “domuinl” is one of the domains found by PCA. 
This tree seems very simple, yet is very hard to explain 
to business clients users since “domainl” is calculated 
using the following, somewhat intimidating, weighted 
sum: 

domain, = 0.241 * loc + 0.236 * v(g) 
+0.222 * ev(g) + 0.236 t iv(g) + 0.241 * n 

+0.216 
+0.241* lOCode + 0.179 IOComment 
+0.221 
+0.163 * uniqop + 0.234 t uniqopnd 
+0.241 * totalop + 0.241 * totalopnd 
+0.236 * branchCount 

+0.238 * u - 0.086 * 1 + 0.199 * d 
i + 0.225 * e + 0.236 * b + 0.221 * t 

lOBlank + 0.158 t 1OCodeAndComment 

(Here, w(g), ev(g) ,  iv(g) are the standard McCabe 
structural metrics [19] while the rest are either Hal- 
stead metrics [lo] or simple variants on lines of code 
count.) 

This problem with explaining domain scores encour- 
aged us to look for alternatives to PCA. Our reading of 
the data mining literature suggested that PCA belongs 

Figure 2. A large decision tree produced by 
the C4.5 decision learner [34] using all 22 
metrics in the JMl data set analyzed in this 
article. 

to a class of feature subset selection ( F S S )  techniques 
which aim to remove superfluous features [7,8,17]. The 
goal of FSS is to drastically reduce the dimensional- 
ity of the data, thus simplifying any subsequent pro- 
cessing. The dimensionality reduction of FSS means 
that any subsequent processing can ignore irrelevant, 
redundant and noisy features and focus on only rele- 
vant, highly predictive ones to improve its performance. 
Lastly, detectors learnt from reduced dimensionality 
are more compact, easily understandable representa- 
tion of the underlying concept. 

To the best of our knowledge, it has not been pre- 
viously noted in the reliability literature that PCA is 
one member of a large set of FSS techniques. This 
study benchmarks PCA against those FSS techniques, 
in terms of accuracy of the learnt defect detectors. We 
will show that in the special case of generating defect 
detectors, very simple FSS methods can out-perform 
PCA both in terms of the number of features rejected 
and the accuracy of the detectors learnt from the re- 
maining features. 

Unlike other studies (e.g. [27]), which contained a 
mere fifty observations, the experimental data used for 
this paper is large (hundreds to thousands of records) 
and is drawn from three different software projects. 
That is our conclusions are based on a broader experi- 
ence base than previous work. 

Another important feature of this study is that it 
is a repeatable experiment. Two of the three data sets 
used here publicly available’ (and the third may be 
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2 Related Results 

Figure 3. Small decision tree produced by 
C4.5 from the JMI data set using just the three 
metrics selected by the TARZless FSS method 
(described later in this paper). 

available before the date of ISSRE 2003). These ex- 
periments also use freely distributed tools available on- 
line, such as the WEKA machine learning toolkit and 
the TAR2 treatment learner [22-2413. Repeatability is 
an important methodologically principle since it allows 
other researchers to independently assess our results. 

The most important feature of our study was the 
dramatic reduction in number of features. In all the 
case studies shown below, over 75% of the available 
features could be ignored, without compromising the 
detector accuracy. For example our case studies show 
that the complex defect detector decision tree of Fig- 
ure 2 can be reduce to simpler tree of Figure 3, with 
little or no loss in defect detection accuracy. Inter- 
estingly, these reductions are obtained using methods 
much simpler than anything used before in the software 
reliability literature. This result has made us reevalu- 
ate our own previous results [21,27] that used PCA and 
other techniques to simplify fault detectors. 

This is not to say that the prior research on PCA 
was useless. On the contrary, claims that method X 
is simpler, but just as effective, as method Y is mean- 
ingless without knowledge of method Y. The only way 
this paper can claim that something is a better FSS 
than (e.g.) PCA is to have access to the prior results 
on PCA. Hence, we say that prior research on PCA 
was an essential precursor to this work. 
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The thesis of this paper is that many features are 
ignorable. That is, most of the available metrics can 
be omitted from defect detectors without affecting the 
accuracy of those detectors. There is some evidence for 
this thesis, scattered throughout the literature. This 
section reviews that evidence. 

A defect detector in this domain is a test that some 
measured software structural feature has passed some 
threshold. Different metric ranges may also be com- 
bined to form a composite defect detector in order to 
compose trees or other classifier structures. 

Decision tree learning has been frequently applied to 
the task of generating summaries of defect logs. Often, 
these summaries use only a small subset of the available 
features. For example, Figure 4 shows one study where, 
of the 42 features offered in the data set, only six were 
deemed significant by the learner. 

Figure 4. Predicting fault-prone modules [14]. 
Learned from data collected from a telecom- 
munications system with > 10 million lines of 
code containing a few thousand modules. 

For another example, Figure 6 shows 18 metrics 
given to a particular learner. Figure 5 shows what that 
learner generated. The key feature of Figure 5 is what 
is not shown in the learnt decision tree: of the 18 fea- 
tures available to this learner, only the four underlined 
metrics appear in the tree. 

For yet another example, we can look at the in- 
dividual domains learnt by PCAs for a mission soft- 
ware technology development effort at  JPL [5]. Fig- 
ure 7 shows that, with respect to the index of cumula- 
tive faults, not all features are equally associated with 
faults. Figure 7 plots the cumulative domain values 
for each of the system builds, together with the cumu- 
lative number of faults for each build. It is quite ap- 
parent from this figure that Domain 1, associated with 
control, is most closely associated with the cumulative 
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Acrvss whole module: 
total operators FC plus MC 
total operators 

Averages per KSLOC: 

IO statements 
IO parameters 

Averages per KSLOC: origin 
assignment statements operands 
cyclomatic complexity operators 

decision statements source lines (SL) 
function calls (FC) 
module calls (MC) format statements 

executable statements comments (C) 

SL minus C 

Figure 6. Metrics available to the learner that 
generated Figure 5. “Cyclomatic complex- 
ity” is a measure of internal program intri- 
cacy 1191. 

Figure 5. Predicting modules with high cost 
modules and many faults. Data from 
16 NASA ground support software for un- 
manned spacecraft control 1371. These sys- 
tems were of size 3,000 to 112,000 lines of 
FORTRAN and contained 4,700 modules. 

fault count. Indeed, the correlation coefficient between 
Domain 1 normalized cumulative domain values and 
the cumulative fault values is 0.94. The correlation be- 
tween Domain 2 and cumulative faults is -0.20. Finally, 
correlation between Domain 3 and cumulative faults is 
0.71. 

The above examples can only be found after read- 
ing widely in the literature. The rest of this article 
checks if the phenomenon that many features are ig- 
norable is easily repeatable. A range of data sets will 

z ~ % ~ ~ ~ a s ~ - w  
m m m 2 2  

Figure 7. Three domain scores and a cumula- 
tive total for one JPL system. 

be explored using a range of feature subset selection 
(FSS) techniques. With the exception of PCA, most of 
these FSS techn.iques come from the data mining lit- 
erature. Hence, before we explain FSS, we must offer 
some background notes on data mining. 

3 Data Mining 

Data mining is a summarization technique that re- 
duces large sets of examples to a small understandable 
pattern using a range of techniques taken from statis- 
tics and artificial intelligence. It is commonly referred 
to as searching for pearls in the sand. The following are 
a brief descriptions of common data mining concepts 
and algorithms. 

Cross Validation: A common mistake that new 
data miners make is over-training. Over-training h a p  

pens when a data miner to get too specific in its learn- 
ing. If that happens then your results, while extremely 
applicable to current data, are unlikely to apply to data 
seen in the future. 

One way of avoiding this pitfall is by assessing the 
learnt treatments against data not used during train- 
ing. One method for doing so is N-way cross validation. 
In this process, a. training set is divided into N buck- 
ets. For each bucket in turn, a select is learned on the 
other N - 1 buckets, then tested on the bucket that 
was put aside. A learner is deemed stable if it works in 
the majority of all N turns. 

Decision Tree Learning: Figure 2, Figure 3, Fig- 
ure 4 and Figure 5 were generated via decision tree 
learners. One way to learn such trees is to split the 
whole example set into subsets based on some met- 
ric/thresehold comparison. The process then repeats 
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recursively on the subsets. Each splitter value becomes 
the root of a sub-tree. Splitting stops when either a 
subset gets so small that further splitting is superflu- 
ous, or a subset is contains examples with only one 
type (e.g. all the remaining examples are about defec- 
tive modules). 

A good split decreases the percentage of different 
types of modules in a subset. Such a good split en- 
sures that smaller subtrees will be generated since less 
further splitting is required to sort out the subsets. 
Various schemes have been described in the literature 
for finding good splits. For example, the C4.5 [34] and 
54.8 [38] decision tree algorithms uses an information 
theoretic measure (entropy) to find its splits while the 
CART [2] decision tree learner uses another measure 
called the GINA index. 

Bayesian Learning: An alternative to decision 
tree learning is Naive Bayesian learning [38]. In this 
approach, a prior probability of an hypothesis H is up- 
dated whenever new evidence E comes to hand. Baye’s 
rule tells us how: 

Such learners are ‘‘naive” in that they assume no cor- 
relation between attributes. However, this seemingly 
“naive” assumption has proven to be remarkably ro- 
bust and useful in many domains. 

For example of Bayesian learning, consider the log 
of golf-playing behavior shown in Figure 8. In that 
log, the frequency of playing some, or lots of golf is 
P(none) = &, P ( s m e )  = & and P(1ots) = 6 re- 

(Le. E = notwindy) then the probabilities change 
to P(not  windylnone)= $, P(not  windylsome)= 8,  
P(not windyllots)= i. If we have evidence that today 
is not windy, we can update our prior beliefs about golf- 
playing behavior. First, we compute the likelihoods 
that we will play none,some, or lots of golE 

spectively. In the special case where it is not windy 14 

2 5  
5 14 
3 3  
3 14 

lilcelihood(none1not windy) = - * - = 0.143 

likelihood(some1not windy) = - * - = 0.214 

likelihood(lots1not windy) = * A = 0.214 

These likelihoods are then normalized in the standard 
way to get probabilities: 

outlook temp(OF) humidity windy? closs 
sunny 85 86 false none 
sunny 80 90 true none 

95 false none sunny 72 
man 65 70 true none 
min 71 96 true none 
man 70 96 false some 

false some rain 68 80 
man 75 80 jaise some 

sunny 69 70 false lots 
sunny 75 70 t w e  lots 

overcast 83 88 false lots 
t w e  lots overcast 64 65 

overcast 72 90 true lots 
overcast 81 75 false lots 

SELECT class F R D M  original 
WHERE outlook = ’overcast’ 

SELECT class FROM original 
WEFIE humidity >= 90 

lots 
lots 
lots 
lots 

none 
none 
none 
some 
lots 

Figure 8. Attributes that select for golf playing 
behavior. 

P(lots1not windy) = 0.214 = 0.375 
0.143 + 0.214 + 0.214 

? 

That is, on non-windy days, it is least probable that 
we will play no golf. 

Treatment Learning: A new data mining tech- 
nique is the TAR2 treatment learning technique devel- 
oped by Menzies and Yu [12,20,22-24,24,25]. Treat- 
ment learning searches for a strong select statement 
that most changes the ratio of classes. To understand 
the concept of a strong select statement, consider the 
log of golf playing behavior seen in Figure 8. In that 
log, we only play lots of golf in = 43% of the 
cases. To improve our game, we might search for con- 
ditions that increases our golfing frequency. Two such 
searches are shown in the bottom of Figure 8. In the 
case of outlook=overcast, we play lots of golf all the 
time. In the case of humidity 2 90, we only play lots 
of golf in 20% of the cases. The net effect of these two 
select statements is shown in Figure 9. 

The WHERE statements within a select statement can 
contain conjunctions of arbitrary size. Exploring all 
such conjunctions manually is a tedious task. TAR2 
is an automatic tool for finding the strongest select 
statements; Le., the statement that most selects for 

0.143 

0.214 

preferred behavior while most discouraging undesirable 
behavior. TAR2 calls this strongest select statement 
the “treatment” since it is a recommended action for 
improving the current situation. The algorithm is au- 

P(none1not windy) = 0.143 + 0.214 + 0.214 = 0.250 

P(some1not windy) = 0.143 + 0.214 + 0.214 = o-375 
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baseline outlook = overcast humidity 2 90 

61 61 

0 0 4  3 1 1  

LEGEND:= n o n e w  some= lots 

Figure 9. Changes to golf playing behavior 
from the baseline. 

tomatic and, as used in this study, searched the en- 
tire range of possible conditions. TAR2’s configuration 
file lets an analyst search for the best select statement 
using conjunctions of size 1,2,3,4, etc. Since TAR2’s 
search is elaborate, an analyst can automatically find 
the best and worst possible situation within a data set. 
For example, the select statements seen in Figure 9 
were learnt by TAR2 and show the best and worst pos- 
sible situation for playing lots of golf. 
1R. Simpler than any of the above techniques is the 

1R machine learner (111. It creates a set of rules from 
a single attribute. First 1R selects an attribute then 
branches within the attribute to create a set of divisions 
based on class value. For each division it assigns the 
most frequent class and then computes the error rate. 
Finally, 1R simply chooses the attribute with the total 
least error rate. 

ROCKY: Simpler even than 1R is ROCKY [26]. 
Given a set of numeric metrics 

attributel, attributez, ... attribute, 

ROCKY exhaustively explores all singleton rules of the 
form 

attribute 2 threshold 

Threshold is found as follows. Every numeric at- 
tribute is assumed to come from a gaussian distribu- 
tion. Thresholds are then selected corresponding to 
equal areas under that distribution. For example, in 
one of the data sets we examine, the Mccabe cyclo- 
matic complexity w(g) had a mean of p = 4.9 and a 
standard deviation of CJ = 11. If this Gaussian is con- 
verted to a unit Gaussian (by subtracting the mean and 
dividing by the standard deviation), then standard Z- 
tables could be used to calculate a w(g) threshold value 
of 7.65 could be found as follows: 

area = 0.6 (just for example) 
4 7 )  - P Z-l(area) = - 

U 

Z-’(area) NN 0.25 
:. v(g).threshoki(area) NN 7.65 

ROCKY generates one detector 

attributei 2 attributei[threshold(area)] 

for the range 

area E {0.05,0.1,0.15,. . .0.9,0.95} 

A key point that will be important below is that 
ROCKY and 1R can only ever find detectors based on 
a single attribute. 

4 Feature Subset Selection 

Feature subset selection finds what subset of the 
available features is most informative. PCA is the FSS 
method best known to the reliability engineering com- 
munity. However, as we shall see, numerous other FSS 
methods have been evolved in the data mining commu- 
nity. 

A repeated empirical observation is that ignoring 
features can improve classifier accuracy. How can ig- 
noring information be useful? Kohavi & John [17] re- 
view studies with Naive Bayes classifiers. The accuracy 
of such classifiers decreases very slowly as irrelevant 
features are added to an instance set. However, the 
accuracy of the same classifiers can degrade sharply as 
the number of correlated features increase. Note that 
this observation is similar to the original motivations 
for using PCA: i.e. learning is simpler when highly 
correlated features don’t conflate the learning process. 

Another explanation for the success of FSS is offered 
by Witten & Frank [38]. They note that effective gen- 
eralization requires numerous examples. Decision tree 
learners recursively split instances by ranking features 
according to how much they decrease the diversity of 
the classes in the split sets. As learning progresses, 
fewer and fewer instances are available to learn the next 
sub-tree. If the instances contain too many features of 
similar rank, then many splits are quickly generated. 
Hence, instances become sparser in the sub-trees, and 
effective generalization becomes harder. 

Yet another explanation for the success of FSS 
comes from Gunnalan, Menzies, et.al. [7] who argue 
that solvable problems have an average case property 
called small backbones. Small backbone problems con- 
tain a small number of variables that control all other 
variables in the system. Learning the essential features 
of small backbone problems means finding the variables 
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that are either in the small backbone or highly corre- 
lated to the backbone variables. 

PCA: Principal Component Analysis: PCA 
first began to be used in modelling software reliability 
and fault content in the late 1980s and early 199Os, 
when Munson and Khoshgoftaar first developed the 
concept of relative complexity (29,301, which is de- 
scribed as a weighted sum of the domain scores re- 
sulting from the application of PCA to raw structural 
measurements. Unlike other complexity metrics, rel- 
ative complexity simultaneously combines all feature 
dimensions of all structural measures. In an early pa- 
per, they identified clear relationships between com- 
plexity metric domains and software quality [29]. In a 
later paper, they examined relationships between the 
relative complexity and software reliability [30]. This 
study concluded that: 

0 The relative complexity measure is appropriate for 
the comparison and classification of software mod- 
ules, and 

0 It is feasible to include relative complexity as a 
parameter in software reliability models. 

In particular, they noted that relative complexity 
could be used to represent the complexity of a partic- 
ular software module for a particular build, which laid 
the foundation for measuring the evolution of software 
system. 

In 1996, Munson and Werries presented a method- 
ology for measuring software evolution that extended 
the notion of software complexity across sequential 
builds [31]. In this paper, they addressed the issue 
of establishing a baseline against which all change to a 
software system will be measured. To properly account 
for the amount of change that occurs between subse- 
quent builds of a system, it is necessary to measure each 
build with respect to a baseline that remains constant 
across all builds. This is accomplished by choosing one 
particular build as the baseline, and then standardizing 
the measurements from all other builds with respect to 
the means and standard deviations of the baseline mea- 
surements. They also developed a mechanism wherein 
the precise manner in which builds differ from each 
other may be measured. This is accomplished by com- 
puting the difference in relative complexity between 
subsequent versions of a module within the system. 
The measurement mechanism also takes into account 
the situation in which a module is present in one of the 
builds but not the other. 

Recent investigations have focused on identifying re- 
lationships between the measured structural evolution 
of a software system and the rate at which faults are 
inserted into it during development (Le., the number 

of faults inserted per unit of structural change). In 
a small study [27], Nikora and Munson analyzed the 
flight software and software failure reports for the com- 
mand and data handling subsystem of a NASA plan- 
etary exploration spacecraft, and found strong indica- 
tions that measurements of a system’s structural evo- 
lution could serve as predictors of the fault insertion 
rate. However, this study had two limitations: The 
study was relatively small - fewer than 50 observations 
were used in the regression analysis relating the number 
of faults inserted to the amount of structural change. 
The definition of faults that was used was not quantita- 
tive. The ad-hoc taxonomy, first described in [32], was 
an attempt to provide an unambiguous set of rules for 
identifying and counting faults. The rules were based 
on the types of changes made to source code in re- 
sponse to failures reported in the system. Although 
the rules provided a way of classifying the faults by 
type, and attempted to address faults at the level of 
individual modules, they were not sufficient to enable 
repeatable and consistent fault counts by different ob- 
servers to be made. The rules in and of themselves were 
unreliable. To overcome these limitations, the investi- 
gators developed a quantitative definition of software 
faults, based on the grammar of the language of the 
software system [28]. They also initiated a collabora- 
tion with the Mission Data System, a mission software 
technology development effort at the Jet Propulsion 
Laboratory [5]. They were able to collect significantly 
more information than for the previous study; over the 
time interval during which they study was conducted, 
there were over 1500 builds of the MDS. The total num- 
ber of distinct versions of all modules was greater than 
65,000, and over 1400 problem reports were included in 
the analysis. This study agreed with the earlier study’s 
conclusions that there appear to be strong relationships 
between measurements of a software system’s struc- 
tural evolution and the number of faults inserted into 
that system, and extended the earlier work by identi- 
fying types of structural change more likely to result 
in the introduction of faults and types less likely to do 

WRP: Wrapper Subset Evaluation: PCA is a 
common FSS method used by statisticians. WRAP- 
PER is a common FSS methods used by data min- 
ers. In this method, a target learner is augmented with 
a pre-processor that used a heuristic search to grow 
subsets of the available features. At each step in the 
growth, the target learner is called to find the accuracy 
of the model learned from the current subset. Subset 
growth is stopped when the addition of new features 
did not improve the accuracy. 

Figure 10 shows some WRAPPER results from ex- 

so. 
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number of attributes 
before: 10 13 15 180 22 8 25 36 6 6 

after: 2 2 2 11 2 1 3 12 1 1 2 
reduction: 80% 84% 87% 94% 90% 87% 88% 67% 83% 83% 67% 

Aaccuracy: 0% 6% 5% 4% 2% 1% 0.5% 0% -25% 6% 7% 

Figure I O .  Feature subset selection using a 
WRAPPER of a decision tree leaner. The 
AAccuracy figure is the difference in the ac- 
curacies of the theories found by decision 
tree learner using the before and after at- 
tributes. From [17]. 

periments by Kohavi and John [16]. In their experi- 
ments, 83% (on average) of the measures in a domain 
could be ignored with only a minimal loss of accuracy. 

The advantage of the this approach is that, if 
some target learner is already implemented, then the 
WRAPPER is simple to implement. The disadvantage 
of the wrapper method is that each step in the heuris- 
tic search requires another call to the target learner; 
i.e. it may be very slow. 

For the results shown below, we will use a WRAP- 
PER of two target learners: a decision tree learner 
(C4.5) and a Naive Bayes classifier. 

IG: Information Gain Attribute Ranking: 
This is a simple and fast method for feature ranking [4]. 
This method measures the split criteria of the class be- 
fore and after observing a feature. The differences in 
the split criteria gives a measure of the information 
gained because of that attribute [34]. A final compari- 
son of this measure is used in feature selection. 

RLF: Relief: Relief is an instance based learning 
scheme [15,18]. It works by randomly sampling one 
instance within the data. It then locates the nearest 
neighbors for that instance from not only the same class 
but the opposite class as well. The values of the near- 
est neighbor features are then compared to that of the 
sampled instance and the feature scores are maintained 
and updated based on this. This process is specified for 
some user-specified M number of instances. Relief can 
handle noisy data and other data anomalies by averag- 
ing the values for K nearest neighbors of the same and 
opposite class for each instance [18]. For data sets with 
multiple classes, the nearest neighbors for each class 
that is different from the current sampled instance are 
selected and the contributions are determined by using 
the class probabilities of the class in the dataset. 

CFS:Correlation-based Feature Selection: 
CFS uses subsets of features (91. This technique 
relies on a heuristic merit calculation that assigns 
high scores to subsets with features that are highly 

union of all 
features 

original 
data set - 
change 

theclass 1 
preference 

ordering u Repeat 
several times 

Figure 11. TarZless algorithm. 

correlated with the class and poorly correlated with 
each other. Merit can find the redundant features 
since they will be highly correlated with the other 
features. It can also identify ignorable features since 
they will be poor predictors of any class. To do this 
CFS informs a heuristic search for key features via a 
correlation matrix. 

CBS: Consistency-based Subset Evaluation: 
CBS is really a set of methods that use class consistency 
as an evaluation metric. The specific CBS studied by 
Hall and Holmes method finds the subset of features 
whose values divide the data into subsets with high 
class consistency [ 11. 

TAR2less: Figure 11 shows the TAR2less FSS de- 
veloped by Gunnalan, Menzies, et.al. [7]. TAR2less 
runs TAR2 many times, each time targeting a different 
class; e.g. defects, no defects: 

Initialize the SELECTED features to nil. 
0 For each class in turn, declare it to be TAR2’s ”best” 

class. Then enter the following loop: 
- Set treatment size N to 1 
- Find the ”best” treatment of size N via TAR2. 
- If the score of the best treatment is no better 

than that of the best treatment of size N-1, then 
* Add the features seen in the best treatment 

to SELECTED. 
- Else, N++ and loop. 

Collect the average accuracy seen in a 10-way cross 
validation of the target learner using 

- just the features seen in SELECTED 
- all features 

Note that each single run of TAR2 finds features 
that most selected for one class. Over all the runs, 
TAR2less finds the union of all the features that most 
selected for every class. 

1R and ROCKY: Most FSS methods input M fea- 
tures and output some subset N ,  N < M .  An extreme 
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data set # modules % with defects 
KC2 523 20% 
AN1 1719 58% 
JM1 10885 19% 

Figure 12. Data sets used in this study. Here,a 
“module” is the equivalent of a C function. 

form of feature subset selection is to use learners that 
can only output theories containing N = 1 features. 
Two such learners are the 1R and ROCKY systems 
described above. 

Note that this method is far less general than the 
other methods described above since it will fail if N > 1 
features must be selected. 

5 Experiments 

Data Sets: The remainder of this paper is dedi- 
cated to a case study on three NASA projects, which 
will be referred to as “KC2”,“AN1”, and “JM1”. The 
projects are NASA C++ programs. All modules ana- 
lyzed were built by NASA developers excluding several 
thousands modules that are COTS4 software. The Mc- 
Cabe and Halstead structural metria were extracted 
from these systems and mapped to the defect logs kept 
for each project. The defect rate and the number of 
modules for each data set is shown in Figure 12. 

Note that AN1 is an artificially generated data set. 
That system has not finished its testing phase so its 
defect logs are incomplete. For this data set, we hence 
used all the log entries relating to defects and a nearly 
equal number of entries with no defects (selected at 
random). This sampling policy would be inappropriate 
if we were building a customized defect detector for the 
AN1 project. However, we judge that this sampling 
policy is adequate for the purposes of testing different 
FSS strategies. 

Methods: FSS was conducted using the PCA, 
CBS, IG, RLF, WRAPPER, and 1R implementations 
supplied with the WEKA machine learning toolkit5. 
We used our own implementations of ROCKY and 
TAR26. TAR2less was applied manually using TAR2. 

Each FSS method generated candidate features 
which were then seEected and assessed. Usually, the se- 
lected features were assessed by running them through 
a 10-way cross validation over the C4.5 and Naive 

4COTS is an acronym for Commercial Off The Shelf 
‘http://ww. cs .vaikato. ac .nz/-ml/veka/ 
6Available from http://menzies .us/rx .html and http:// 

menzies.us/pace.html 

Learner Attributes KC2 JM1 AN1 
Original (C4.5) 21 82.11% 79.34% 65.90% 

Original (Bayes) 21 83.65% 80.41% 58.27% 
1R 1 82.95% 79.55% 65.02% 

1 --- 85.28% 81.10% 66.14% ROCKY 

Figure 13. 1R and ROCKY runs. Baseline ac- 
curacies generated from all features via C4.5 
and Naive Bayes shown on lines one and 
two. Bold entries denotes an increase over 
all baselines. 

Bayes classifiers supplied within the WEKA. Assess- 
ing FSS via these two learners is quite standard in the 
FSS literature (e.g. [17]) since these are widely used 
and understood learning systems. Also, these two clas- 
sifiers are very different kinds of learners so results that 
repeat in both C4.5 and Naive Bayes are guaranteed 
not to be the result of quirks in (e.g.) decision tree 
learning. 

Sometimes, however, other methods were required 
to assess the selected features. For example, if we were 
“wrapping” learner “X” then we assessed the WRAP- 
PER’S output only on learner ”X”. Also, in the case of 
ROCKY and lR, those learners have their own cross- 
val facilities to assess the accuracies of their learnt the- 
ories. 

The generation methods varied. In the usual case, 
the WEKA environment offered options to conduct 
FSS via a 10-way cross validation. We disabled this o p  
tion for WRAPPER since that was impractically slow, 
especially for the 10,000 records in JM1. 10-way cross 
validation was also used within TAR2less when finding 
the best treatment of size N. 

Results: Figure 13 shows the classification on 10- 
way generated by ROCKY and 1R. Figure 14, Fig- 
ure 15 and Figure 16 show the average classification 
accuracies seen in 10-way cross validation runs of Naive 
Bayes and WRAPPER using just the features selected 
by PCA, CBS, IG, FLLF, WRAPPER, and TAR2less. 

The first line of Figure 14, Figure 15, and Fig- 
ure 16 shows the results of running all available features 
through Naive Bayes and C4.5. Underlined entries 
mark the largest accuracy generated by any method. 
Italicized entries show where features found by FSS 
generated detectors with a higher accuracy than the 
baseline. Figure 17 is a summary table showing how 
often our FSS methods out-performed all baselines. 

6 Discussion 

Is throwing away information useful for defect detec- 
tion? Surprisingly, it would seem so. Figure 17 shows 
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c4.5 Naive Bayes 
Attributes accuracy tree  Size accuracy 

Orignal 15 65.90% 131 58.27% 
Tar2leas 4 66.82% 119 58.61 % 

CFS 5 65.02% 17 6042% 
CBS 9 66.07% 81 57.57% . . . . . , 

IG 4 64.55% 3 60.65% 
RLF 4 67.11% 41 60.77% 
PCA 7 65.77% 13 61.87% 

2 (bayes) 62.51 % 
mean 66.02% mean 60.08% 

Wrapper 5 (c4.5) 66.88% 37 

Figure 14. ANI FSS and learner accuracy 
runs. Baseline accuracies shown on line one. 
Underlined entries mark the largest accuracy 
generated by any method. Italicized entries 
mark an increase ouer the baseline. WRAP- 
PER’S selected features were only assessed on the 
“wrapped” learner- either C4.5 or Naive Bayes 
(hence the blank cells on the WRAPPER line). 

c4.5 Naive Bayes 
Attributes accuracy tree Size accuracy 

Orignal 21 79.34% 677 80.41% 
Tar2less 4 81.06% 11 80.70% . 

CBS 19 79.48% 671 80.25% 
IG 4 81.25% 15 80.43% 

RLF 4 80.98% 25 79.62% 
PCA 8 80.09% 17 79.67% 

2 (bayes) 80.90% 
mean 81.04% mean 80.31% 

CFS 7 80.51% 63 ZiXpE 

Wrapper 5 (C4.5) 85.57% 15 

Figure 15. JMI FSS and learner accuracy 
runs. Baseline accuracies shown on line one. 
Italicized and blank entries have the same 
meaning as in Figure 14. 

that in 35/48 = 73% of our experiments, using any FSS 
method improved the accuracy over the baseline. Also, 
in all our experiments, if all the FSS methods described 
here are used, then detectors were found with a higher 
accuracy than the baseline, while using far fewer fea- 
tures. If we look at the best detector (the underlined 
entries), then we see that the best detectors used be- 
tween l to 5 features selected from a space of 15 to 
21 features. Hence, this study endorses FSS for defect 
detector generation. 

What is a good FSS method for defect detection? 
This is unclear but the very simple FSS methods 
(ROCKY and 1R) ran very fast and resulted in highly 
accurate theories. Further, ROCKY out-performed the 
other FSS methods in the case of KC2 and JM1 but 
not AN1. The CPU-intensive WRAPPER method is 
slow to run but, of the more complex FSS methods, al- 

CFS 2 85.25% 9 84.10% 
89.72% CBS 6 

IG 4 84.29% 3 84.10% 
RLF 4 81.61% 5 82.18% 
PCA 2 82.57% 5 84.87% 

4 (bayes) 85.19% 
mean 83.45% mean 83.86% 

83.33% 23 

Wrapper 1 (C4.5) 85.57% 3 

Figure 16. KC2 FSS and learner accuracy 
runs. Baseline accuracies shown on line one. 
Italicized and blank entries have the same 
meaning as in Figure 14. 

11/16 

Figure 17. How often FSS generates theories 
of higher accuracy than using all available 
features. 

ways generated the most accurate theory (using either 
C4.5 or Naive Bayes). 

Comparatively speaking, how does PCA compare to 
other FSS methods? In this study, PCA has not scored 
well. In none of our experiments were the highest ac- 
curacy detectors learnt via FSS. Hall & Holmes have 
assessed a similar set of FSS methods as this study, 
but on a broader set of data (none of which related 
to software defect detection). Their results are hardly 
supportive of PCA. They conclude that if the slow run 
times of WRAPPER can be tolerated, then it usually 
generates the most accurate theories. Otherwise, in 
their opinion, CFS and RLF are best [8]. Our results 
do not contradict their conclusions- we obtained high 
accuracies with CFS, RLF and WRAPPER, and never 
with CBS, IG, or PCA. 

How simple is defect detection? Apparently, very 
simple. The “clean-up” offered by FSS was very small. 
In all cases the accuracy found using all features was 
less than 7% of the best accuracy found after FSS. 
This suggests that the correlations between variables 
in these data sets do not greatly confound defect de- 
tector generation. 

Is accuracy the best way to judge the effectiveness 
of a defect detector? Perhaps not. A striking feature of 
Figure 14, Figure 15, and Figure 16 is the very small 
variance in the accuracy figures. In other work [26], 
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KC2 
JM1 
AN1 

we have assessed hundreds of learnt theories and found 
that accuracy can remain stable while other important 
features can vary wildly. For example, two detectors 
with the same accuracy can have very different prob- 
abilities of false alarms. Other data mining research 
suggests that accuracy alone is not a good indicator of 
learner performance in many domains [33]. This may 
be attributed to greatly skewed class distributions or 
domain related anomalies. We are currently repeating 
our study, but this time assessing detectors via: 

0 The cost of collecting the data for the detectors 
(collecting cyclomatic complexity using Mccabes 
can be very expensive due to licensing issues); 

0 The probability of false alarms, given that the de- 
tector has been triggered; 

0 The probability of true detection alarms, given 
that the detector has been triggered; 

0 The probability that a defect has been missed, 
given that the detector has not been triggered; 

0 The stability of the detector under N-way cross 
validat ion; 

0 The stability of the detector when applied to dif- 
ferent data sets; 

Our current thinking is that finding a “best” detec- 
tor judged on all the above criteria will require some 
kind of N-dimensional optimization toolkit. 

What is the best detector? We did not find that 
Mccabe’s standard detector of v(g) > 10 was the most 
accurate. However, we cannot offer an external valid al- 
ternative. The defect detectors did not stabilize across 
the different data sets. For example, the most accu- 
rate defect detectors found by ROCKY are shown in 
Figure 18 (we report ROCKY’S output here since that 
output is small enough to read and ROCKY’S best ac- 
curacies were always very close to the best overall accu- 
racies). Note that variations in the learnt detectors: 

0 The Mccabe ev(g) value was the most accurate in 
KC2 

0 The Halstead unique operands value was the fea- 
ture that yielded the most accurate detectors in 
JM1 and ANI. 

0 The threshold value for the two detectors that use 
the Halstead metrics were wildly different: 60.48 
in JM1 and 8.14 in ANI. 

Clearly, the distributions of variables seen in JM1 and 

ev(g) >= 4.99 85.28% accurate 
81.10% accurate 
66.08% accurate 

unique operands >= 60.48 
unique operands >= 8.14 

AN1 are very different. If distributions always vary so 
wildly between defect data sets, then we it may be folly 
to imagine that a single defect detector rule such as 
v(g) > 10 will suit all software development. Instead, 
companies should tune their defect detectors according 
to their own historical logs describing their own people 
building their own kind of application. 

7 Conclusion 

It is important to note the limits of this study. Cur- 
rently, we have only explored feature subset selection 
for defect detectors using three data sets. Three data 
sets is insufficient to declare a general principle. Hence, 
we encourage other researchers to test our methods of 
their data. 

Also, we caution researchers against restricting their 
analysis of structural measurements and failure data 
to the simple techniques described in this paper. Al- 
though software defect detection may be a simple task, 
and simple fault models may be deployed as part of 
production software development efforts, the research 
underlying such models must still apply the full range 
of measurement and analysis techniques to develop the 
models in the first place. This ensures that a richer set 
of relationships between structural measures and fault 
content will be developed, and allows the development 
of meaningful benchmarks for the simpler models. 

That caution notwithstanding, our conclusion must 
be as follows. If in the usual case we see that accurate 
defect detectors can be found after trivially simple al- 
gorithms have rejected most of the structural features, 
then software defect detection is a very simple task in- 
deed. 
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