
How Simple is Software Defect Detection?

Kareem Ammar, Tim Menzies
Lane Department of Computer Science,

West Virginia University
PO Box 6109, Morgantown,

WV, 26506-6109, USA
ka"arQcsee.uvu.edu,tim~enzies.us

Abstract

Sofiware defect detectors input structural metrics of
code and output a prediction of how faulty a code mod-
ule might be. Previous studies have shown that such
metrics many be confused by the high correlation be-
tween metrics. To resolve this, feature subset selection
(FSS) techniques such as principal components analy-
sis can be used to reduce the dimensionality of metric
sets in hopes of creating smaller and more accurate de-
tectors. This study benchmarks several FSS techniques
and reports several studies where a large set metrics
were be reduced to a handful with little loss of detection
accuracy. This result raises the possibility that sofrware
defect detection may be much simpler than previously
believed.

KEYWORDS: empirical studies and metrics; prin-
cipal components analysis. fault models; metrics: prod-
uct metrics; defect detectors; artificial intelligence:
learning; feature subset selection.

1 Introduction

Over the past several years, many sophisticated
structural measurements of software systems have been
used to identify fault-prone components and predict
their fault content. Examples of this work include the
classification methods proposed by Khoshgoftaar and
Allen [14] and by Ghokale and Lyu [6]; Schneidewind's
work on Boolean Discriminant Functions [35], Khosh-
goftaar's application of zero-inflated Poisson regression

'Submitted to the 14th. IEEE International Symposium on
Software Reliability Engineering ISSRE 2003, Denver, Colorado,
Nov 17-20, 2003 issre2003.c~. colostate.edu/. April 18, 2003.
Wp ref: vp/03/issre/simpledefects. Available on-line at http:
//menzies.us/pdf/03simpled.pdf.

Allen Nikora
Jet Propulsion Laboratory

California Institute of Technology
4800 Oak Grove Dr
Pasadena, CA 91109

allen.P.NikoraQjpl.nasa.gov

to predicting software fault content [13], and Schnei-
dewind's investigation of logistic regression as a dis-
criminant of software quality [36].

An evident trend found within the above work is the
increasing sophistication and complexity of the analysis
techniques. Increasing the sophistication of our defect
detection is not necessarily the best approach. This
paper will argue that such increasing complexity is un-
necessary. It will be shown that, at least for the data
sets studied here, that very unsophisticated and very
simple methods can generate good defect detectors.

Many researchers have explored methods to reduce
modelling complexity. In the reliability engineering lit-
erature, principal components analysis (PCA) [3] has
been widely applied to resolve problems with structural
code measurements; e.g. [29,30]. PCA eliminates the
problem of highly correlated measures by identifying
the distinct orthogonal sources of variation and m a p
ping the raw measurements onto a set of uncorrelated
features that represent essentially the same information
contained in the original measurements. For example,
the data shown in two dimensions of Figure 1 (left-
hand-side) could be approximated in a single trans-
formed dimension, (right-hand-side).

PCA has its drawbacks. Fault models developed

OThis work was sponsored by the NASA Office of Safety and
Mission Assurance under the Software Assurance Research Pro-
gram led by the NASA IV&V Facility and conducted at the
West Virginia University (partially supported by NASA contract
NCC2-0979/NCC5-685) and at the Jet Propulsion Laboratory,
California Institute of Technology (under a contract with the Na-
tional Aeronautics and Space Administration). The JPL work
was funded by NASAs Office of Safety and Mission Assurance,
Center Initiative UPN 323-08. That activity is managed locally
at JPL through the Assurance and Technology Program Office.
Reference herein to any specific commercial product, process,
or service by trade name, trademark, manufacturer, or other-
wise, does not constitute or imply its endorsement by the United
States Government or the Jet Propulsion Laboratory, California
Institute of Technology.

http://colostate.edu
http://allen.P.NikoraQjpl.nasa.gov

Figure 1. Transformation of axis.

from PCA results are expressed in terms that are not
directly visible to users of the model. Such models re-
late fault content or fault-proneness to the “domain
scores” resulting from the PCA. These domain scores
are weighted sums of the structural measurements stan-
dardized with respect to a chosen baseline. The struc-
ture of these models may be very simple. For example,
we have used PCA and a decision tree learner to find
the following defect detector:

if domain1 5 0.180
then NoDefects
else if domain1 > 0.180

then
else

if domain1 5 0.371 then NoDefects
if domain1 > 0.371 then Defects

Here, “domuinl” is one of the domains found by PCA.
This tree seems very simple, yet is very hard to explain
to business clients users since “domainl” is calculated
using the following, somewhat intimidating, weighted
sum:

domain, = 0.241 * loc + 0.236 * v(g)
+0.222 * ev(g) + 0.236 t iv(g) + 0.241 * n

+0.216
+0.241* lOCode + 0.179 IOComment
+0.221
+0.163 * uniqop + 0.234 t uniqopnd
+0.241 * totalop + 0.241 * totalopnd
+0.236 * branchCount

+0.238 * u - 0.086 * 1 + 0.199 * d
i + 0.225 * e + 0.236 * b + 0.221 * t

lOBlank + 0.158 t 1OCodeAndComment

(Here, w(g), ev(g) , iv(g) are the standard McCabe
structural metrics [19] while the rest are either Hal-
stead metrics [lo] or simple variants on lines of code
count.)

This problem with explaining domain scores encour-
aged us to look for alternatives to PCA. Our reading of
the data mining literature suggested that PCA belongs

Figure 2. A large decision tree produced by
the C4.5 decision learner [34] using all 22
metrics in the JMl data set analyzed in this
article.

to a class of feature subset selection (F S S) techniques
which aim to remove superfluous features [7,8,17]. The
goal of FSS is to drastically reduce the dimensional-
ity of the data, thus simplifying any subsequent pro-
cessing. The dimensionality reduction of FSS means
that any subsequent processing can ignore irrelevant,
redundant and noisy features and focus on only rele-
vant, highly predictive ones to improve its performance.
Lastly, detectors learnt from reduced dimensionality
are more compact, easily understandable representa-
tion of the underlying concept.

To the best of our knowledge, it has not been pre-
viously noted in the reliability literature that PCA is
one member of a large set of FSS techniques. This
study benchmarks PCA against those FSS techniques,
in terms of accuracy of the learnt defect detectors. We
will show that in the special case of generating defect
detectors, very simple FSS methods can out-perform
PCA both in terms of the number of features rejected
and the accuracy of the detectors learnt from the re-
maining features.

Unlike other studies (e.g. [27]), which contained a
mere fifty observations, the experimental data used for
this paper is large (hundreds to thousands of records)
and is drawn from three different software projects.
That is our conclusions are based on a broader experi-
ence base than previous work.

Another important feature of this study is that it
is a repeatable experiment. Two of the three data sets
used here publicly available’ (and the third may be

‘http: //mdp. ivv.nasa.gov, or http: / /merdes .us/data.

2

http://ivv.nasa.gov

2 Related Results

Figure 3. Small decision tree produced by
C4.5 from the JMI data set using just the three
metrics selected by the TARZless FSS method
(described later in this paper).

available before the date of ISSRE 2003). These ex-
periments also use freely distributed tools available on-
line, such as the WEKA machine learning toolkit and
the TAR2 treatment learner [22-2413. Repeatability is
an important methodologically principle since it allows
other researchers to independently assess our results.

The most important feature of our study was the
dramatic reduction in number of features. In all the
case studies shown below, over 75% of the available
features could be ignored, without compromising the
detector accuracy. For example our case studies show
that the complex defect detector decision tree of Fig-
ure 2 can be reduce to simpler tree of Figure 3, with
little or no loss in defect detection accuracy. Inter-
estingly, these reductions are obtained using methods
much simpler than anything used before in the software
reliability literature. This result has made us reevalu-
ate our own previous results [21,27] that used PCA and
other techniques to simplify fault detectors.

This is not to say that the prior research on PCA
was useless. On the contrary, claims that method X
is simpler, but just as effective, as method Y is mean-
ingless without knowledge of method Y. The only way
this paper can claim that something is a better FSS
than (e.g.) PCA is to have access to the prior results
on PCA. Hence, we say that prior research on PCA
was an essential precursor to this work.

html
2http://wv. cs .uaikato. ac .nz/3nM"la/
3http://menzies.us/rx.html

The thesis of this paper is that many features are
ignorable. That is, most of the available metrics can
be omitted from defect detectors without affecting the
accuracy of those detectors. There is some evidence for
this thesis, scattered throughout the literature. This
section reviews that evidence.

A defect detector in this domain is a test that some
measured software structural feature has passed some
threshold. Different metric ranges may also be com-
bined to form a composite defect detector in order to
compose trees or other classifier structures.

Decision tree learning has been frequently applied to
the task of generating summaries of defect logs. Often,
these summaries use only a small subset of the available
features. For example, Figure 4 shows one study where,
of the 42 features offered in the data set, only six were
deemed significant by the learner.

Figure 4. Predicting fault-prone modules [14].
Learned from data collected from a telecom-
munications system with > 10 million lines of
code containing a few thousand modules.

For another example, Figure 6 shows 18 metrics
given to a particular learner. Figure 5 shows what that
learner generated. The key feature of Figure 5 is what
is not shown in the learnt decision tree: of the 18 fea-
tures available to this learner, only the four underlined
metrics appear in the tree.

For yet another example, we can look at the in-
dividual domains learnt by PCAs for a mission soft-
ware technology development effort at JPL [5]. Fig-
ure 7 shows that, with respect to the index of cumula-
tive faults, not all features are equally associated with
faults. Figure 7 plots the cumulative domain values
for each of the system builds, together with the cumu-
lative number of faults for each build. It is quite ap-
parent from this figure that Domain 1, associated with
control, is most closely associated with the cumulative

3

Acrvss whole module:
total operators FC plus MC
total operators

Averages per KSLOC:

IO statements
IO parameters

Averages per KSLOC: origin
assignment statements operands
cyclomatic complexity operators

decision statements source lines (SL)
function calls (FC)
module calls (MC) format statements

executable statements comments (C)

SL minus C

Figure 6. Metrics available to the learner that
generated Figure 5. “Cyclomatic complex-
ity” is a measure of internal program intri-
cacy 1191.

Figure 5. Predicting modules with high cost
modules and many faults. Data from
16 NASA ground support software for un-
manned spacecraft control 1371. These sys-
tems were of size 3,000 to 112,000 lines of
FORTRAN and contained 4,700 modules.

fault count. Indeed, the correlation coefficient between
Domain 1 normalized cumulative domain values and
the cumulative fault values is 0.94. The correlation be-
tween Domain 2 and cumulative faults is -0.20. Finally,
correlation between Domain 3 and cumulative faults is
0.71.

The above examples can only be found after read-
ing widely in the literature. The rest of this article
checks if the phenomenon that many features are ig-
norable is easily repeatable. A range of data sets will

z ~ % ~ ~ ~ a s ~ - w
m m m 2 2

Figure 7. Three domain scores and a cumula-
tive total for one JPL system.

be explored using a range of feature subset selection
(FSS) techniques. With the exception of PCA, most of
these FSS techn.iques come from the data mining lit-
erature. Hence, before we explain FSS, we must offer
some background notes on data mining.

3 Data Mining

Data mining is a summarization technique that re-
duces large sets of examples to a small understandable
pattern using a range of techniques taken from statis-
tics and artificial intelligence. It is commonly referred
to as searching for pearls in the sand. The following are
a brief descriptions of common data mining concepts
and algorithms.

Cross Validation: A common mistake that new
data miners make is over-training. Over-training h a p

pens when a data miner to get too specific in its learn-
ing. If that happens then your results, while extremely
applicable to current data, are unlikely to apply to data
seen in the future.

One way of avoiding this pitfall is by assessing the
learnt treatments against data not used during train-
ing. One method for doing so is N-way cross validation.
In this process, a. training set is divided into N buck-
ets. For each bucket in turn, a select is learned on the
other N - 1 buckets, then tested on the bucket that
was put aside. A learner is deemed stable if it works in
the majority of all N turns.

Decision Tree Learning: Figure 2, Figure 3, Fig-
ure 4 and Figure 5 were generated via decision tree
learners. One way to learn such trees is to split the
whole example set into subsets based on some met-
ric/thresehold comparison. The process then repeats

4

recursively on the subsets. Each splitter value becomes
the root of a sub-tree. Splitting stops when either a
subset gets so small that further splitting is superflu-
ous, or a subset is contains examples with only one
type (e.g. all the remaining examples are about defec-
tive modules).

A good split decreases the percentage of different
types of modules in a subset. Such a good split en-
sures that smaller subtrees will be generated since less
further splitting is required to sort out the subsets.
Various schemes have been described in the literature
for finding good splits. For example, the C4.5 [34] and
54.8 [38] decision tree algorithms uses an information
theoretic measure (entropy) to find its splits while the
CART [2] decision tree learner uses another measure
called the GINA index.

Bayesian Learning: An alternative to decision
tree learning is Naive Bayesian learning [38]. In this
approach, a prior probability of an hypothesis H is up-
dated whenever new evidence E comes to hand. Baye’s
rule tells us how:

Such learners are ‘‘naive” in that they assume no cor-
relation between attributes. However, this seemingly
“naive” assumption has proven to be remarkably ro-
bust and useful in many domains.

For example of Bayesian learning, consider the log
of golf-playing behavior shown in Figure 8. In that
log, the frequency of playing some, or lots of golf is
P(none) = &, P (s m e) = & and P(1ots) = 6 re-

(Le. E = notwindy) then the probabilities change
to P(not windylnone)= $, P(not windylsome)= 8,
P(not windyllots)= i. If we have evidence that today
is not windy, we can update our prior beliefs about golf-
playing behavior. First, we compute the likelihoods
that we will play none,some, or lots of golE

spectively. In the special case where it is not windy 14

2 5
5 14
3 3
3 14

lilcelihood(none1not windy) = - * - = 0.143

likelihood(some1not windy) = - * - = 0.214

likelihood(lots1not windy) = * A = 0.214

These likelihoods are then normalized in the standard
way to get probabilities:

outlook temp(OF) humidity windy? closs
sunny 85 86 false none
sunny 80 90 true none

95 false none sunny 72
man 65 70 true none
min 71 96 true none
man 70 96 false some

false some rain 68 80
man 75 80 jaise some

sunny 69 70 false lots
sunny 75 70 t w e lots

overcast 83 88 false lots
t w e lots overcast 64 65

overcast 72 90 true lots
overcast 81 75 false lots

SELECT class F R D M original
WHERE outlook = ’overcast’

SELECT class FROM original
WEFIE humidity >= 90

lots
lots
lots
lots

none
none
none
some
lots

Figure 8. Attributes that select for golf playing
behavior.

P(lots1not windy) = 0.214 = 0.375
0.143 + 0.214 + 0.214

?

That is, on non-windy days, it is least probable that
we will play no golf.

Treatment Learning: A new data mining tech-
nique is the TAR2 treatment learning technique devel-
oped by Menzies and Yu [12,20,22-24,24,25]. Treat-
ment learning searches for a strong select statement
that most changes the ratio of classes. To understand
the concept of a strong select statement, consider the
log of golf playing behavior seen in Figure 8. In that
log, we only play lots of golf in = 43% of the
cases. To improve our game, we might search for con-
ditions that increases our golfing frequency. Two such
searches are shown in the bottom of Figure 8. In the
case of outlook=overcast, we play lots of golf all the
time. In the case of humidity 2 90, we only play lots
of golf in 20% of the cases. The net effect of these two
select statements is shown in Figure 9.

The WHERE statements within a select statement can
contain conjunctions of arbitrary size. Exploring all
such conjunctions manually is a tedious task. TAR2
is an automatic tool for finding the strongest select
statements; Le., the statement that most selects for

0.143

0.214

preferred behavior while most discouraging undesirable
behavior. TAR2 calls this strongest select statement
the “treatment” since it is a recommended action for
improving the current situation. The algorithm is au-

P(none1not windy) = 0.143 + 0.214 + 0.214 = 0.250

P(some1not windy) = 0.143 + 0.214 + 0.214 = o-375

5

baseline outlook = overcast humidity 2 90

61 61

0 0 4 3 1 1

LEGEND:= n o n e w some= lots

Figure 9. Changes to golf playing behavior
from the baseline.

tomatic and, as used in this study, searched the en-
tire range of possible conditions. TAR2’s configuration
file lets an analyst search for the best select statement
using conjunctions of size 1,2,3,4, etc. Since TAR2’s
search is elaborate, an analyst can automatically find
the best and worst possible situation within a data set.
For example, the select statements seen in Figure 9
were learnt by TAR2 and show the best and worst pos-
sible situation for playing lots of golf.
1R. Simpler than any of the above techniques is the

1R machine learner (111. It creates a set of rules from
a single attribute. First 1R selects an attribute then
branches within the attribute to create a set of divisions
based on class value. For each division it assigns the
most frequent class and then computes the error rate.
Finally, 1R simply chooses the attribute with the total
least error rate.

ROCKY: Simpler even than 1R is ROCKY [26].
Given a set of numeric metrics

attributel, attributez, ... attribute,

ROCKY exhaustively explores all singleton rules of the
form

attribute 2 threshold

Threshold is found as follows. Every numeric at-
tribute is assumed to come from a gaussian distribu-
tion. Thresholds are then selected corresponding to
equal areas under that distribution. For example, in
one of the data sets we examine, the Mccabe cyclo-
matic complexity w(g) had a mean of p = 4.9 and a
standard deviation of CJ = 11. If this Gaussian is con-
verted to a unit Gaussian (by subtracting the mean and
dividing by the standard deviation), then standard Z-
tables could be used to calculate a w(g) threshold value
of 7.65 could be found as follows:

area = 0.6 (just for example)
4 7) - P Z-l(area) = -

U

Z-’(area) NN 0.25
:. v(g).threshoki(area) NN 7.65

ROCKY generates one detector

attributei 2 attributei[threshold(area)]

for the range

area E {0.05,0.1,0.15,. . .0.9,0.95}

A key point that will be important below is that
ROCKY and 1R can only ever find detectors based on
a single attribute.

4 Feature Subset Selection

Feature subset selection finds what subset of the
available features is most informative. PCA is the FSS
method best known to the reliability engineering com-
munity. However, as we shall see, numerous other FSS
methods have been evolved in the data mining commu-
nity.

A repeated empirical observation is that ignoring
features can improve classifier accuracy. How can ig-
noring information be useful? Kohavi & John [17] re-
view studies with Naive Bayes classifiers. The accuracy
of such classifiers decreases very slowly as irrelevant
features are added to an instance set. However, the
accuracy of the same classifiers can degrade sharply as
the number of correlated features increase. Note that
this observation is similar to the original motivations
for using PCA: i.e. learning is simpler when highly
correlated features don’t conflate the learning process.

Another explanation for the success of FSS is offered
by Witten & Frank [38]. They note that effective gen-
eralization requires numerous examples. Decision tree
learners recursively split instances by ranking features
according to how much they decrease the diversity of
the classes in the split sets. As learning progresses,
fewer and fewer instances are available to learn the next
sub-tree. If the instances contain too many features of
similar rank, then many splits are quickly generated.
Hence, instances become sparser in the sub-trees, and
effective generalization becomes harder.

Yet another explanation for the success of FSS
comes from Gunnalan, Menzies, et.al. [7] who argue
that solvable problems have an average case property
called small backbones. Small backbone problems con-
tain a small number of variables that control all other
variables in the system. Learning the essential features
of small backbone problems means finding the variables

6

that are either in the small backbone or highly corre-
lated to the backbone variables.

PCA: Principal Component Analysis: PCA
first began to be used in modelling software reliability
and fault content in the late 1980s and early 199Os,
when Munson and Khoshgoftaar first developed the
concept of relative complexity (29,301, which is de-
scribed as a weighted sum of the domain scores re-
sulting from the application of PCA to raw structural
measurements. Unlike other complexity metrics, rel-
ative complexity simultaneously combines all feature
dimensions of all structural measures. In an early pa-
per, they identified clear relationships between com-
plexity metric domains and software quality [29]. In a
later paper, they examined relationships between the
relative complexity and software reliability [30]. This
study concluded that:

0 The relative complexity measure is appropriate for
the comparison and classification of software mod-
ules, and

0 It is feasible to include relative complexity as a
parameter in software reliability models.

In particular, they noted that relative complexity
could be used to represent the complexity of a partic-
ular software module for a particular build, which laid
the foundation for measuring the evolution of software
system.

In 1996, Munson and Werries presented a method-
ology for measuring software evolution that extended
the notion of software complexity across sequential
builds [31]. In this paper, they addressed the issue
of establishing a baseline against which all change to a
software system will be measured. To properly account
for the amount of change that occurs between subse-
quent builds of a system, it is necessary to measure each
build with respect to a baseline that remains constant
across all builds. This is accomplished by choosing one
particular build as the baseline, and then standardizing
the measurements from all other builds with respect to
the means and standard deviations of the baseline mea-
surements. They also developed a mechanism wherein
the precise manner in which builds differ from each
other may be measured. This is accomplished by com-
puting the difference in relative complexity between
subsequent versions of a module within the system.
The measurement mechanism also takes into account
the situation in which a module is present in one of the
builds but not the other.

Recent investigations have focused on identifying re-
lationships between the measured structural evolution
of a software system and the rate at which faults are
inserted into it during development (Le., the number

of faults inserted per unit of structural change). In
a small study [27], Nikora and Munson analyzed the
flight software and software failure reports for the com-
mand and data handling subsystem of a NASA plan-
etary exploration spacecraft, and found strong indica-
tions that measurements of a system’s structural evo-
lution could serve as predictors of the fault insertion
rate. However, this study had two limitations: The
study was relatively small - fewer than 50 observations
were used in the regression analysis relating the number
of faults inserted to the amount of structural change.
The definition of faults that was used was not quantita-
tive. The ad-hoc taxonomy, first described in [32], was
an attempt to provide an unambiguous set of rules for
identifying and counting faults. The rules were based
on the types of changes made to source code in re-
sponse to failures reported in the system. Although
the rules provided a way of classifying the faults by
type, and attempted to address faults at the level of
individual modules, they were not sufficient to enable
repeatable and consistent fault counts by different ob-
servers to be made. The rules in and of themselves were
unreliable. To overcome these limitations, the investi-
gators developed a quantitative definition of software
faults, based on the grammar of the language of the
software system [28]. They also initiated a collabora-
tion with the Mission Data System, a mission software
technology development effort at the Jet Propulsion
Laboratory [5]. They were able to collect significantly
more information than for the previous study; over the
time interval during which they study was conducted,
there were over 1500 builds of the MDS. The total num-
ber of distinct versions of all modules was greater than
65,000, and over 1400 problem reports were included in
the analysis. This study agreed with the earlier study’s
conclusions that there appear to be strong relationships
between measurements of a software system’s struc-
tural evolution and the number of faults inserted into
that system, and extended the earlier work by identi-
fying types of structural change more likely to result
in the introduction of faults and types less likely to do

WRP: Wrapper Subset Evaluation: PCA is a
common FSS method used by statisticians. WRAP-
PER is a common FSS methods used by data min-
ers. In this method, a target learner is augmented with
a pre-processor that used a heuristic search to grow
subsets of the available features. At each step in the
growth, the target learner is called to find the accuracy
of the model learned from the current subset. Subset
growth is stopped when the addition of new features
did not improve the accuracy.

Figure 10 shows some WRAPPER results from ex-

so.

7

number of attributes
before: 10 13 15 180 22 8 25 36 6 6

after: 2 2 2 11 2 1 3 12 1 1 2
reduction: 80% 84% 87% 94% 90% 87% 88% 67% 83% 83% 67%

Aaccuracy: 0% 6% 5% 4% 2% 1% 0.5% 0% -25% 6% 7%

Figure I O . Feature subset selection using a
WRAPPER of a decision tree leaner. The
AAccuracy figure is the difference in the ac-
curacies of the theories found by decision
tree learner using the before and after at-
tributes. From [17].

periments by Kohavi and John [16]. In their experi-
ments, 83% (on average) of the measures in a domain
could be ignored with only a minimal loss of accuracy.

The advantage of the this approach is that, if
some target learner is already implemented, then the
WRAPPER is simple to implement. The disadvantage
of the wrapper method is that each step in the heuris-
tic search requires another call to the target learner;
i.e. it may be very slow.

For the results shown below, we will use a WRAP-
PER of two target learners: a decision tree learner
(C4.5) and a Naive Bayes classifier.

IG: Information Gain Attribute Ranking:
This is a simple and fast method for feature ranking [4].
This method measures the split criteria of the class be-
fore and after observing a feature. The differences in
the split criteria gives a measure of the information
gained because of that attribute [34]. A final compari-
son of this measure is used in feature selection.

RLF: Relief: Relief is an instance based learning
scheme [15,18]. It works by randomly sampling one
instance within the data. It then locates the nearest
neighbors for that instance from not only the same class
but the opposite class as well. The values of the near-
est neighbor features are then compared to that of the
sampled instance and the feature scores are maintained
and updated based on this. This process is specified for
some user-specified M number of instances. Relief can
handle noisy data and other data anomalies by averag-
ing the values for K nearest neighbors of the same and
opposite class for each instance [18]. For data sets with
multiple classes, the nearest neighbors for each class
that is different from the current sampled instance are
selected and the contributions are determined by using
the class probabilities of the class in the dataset.

CFS:Correlation-based Feature Selection:
CFS uses subsets of features (91. This technique
relies on a heuristic merit calculation that assigns
high scores to subsets with features that are highly

union of all
features

original
data set -
change

theclass 1
preference

ordering u Repeat
several times

Figure 11. TarZless algorithm.

correlated with the class and poorly correlated with
each other. Merit can find the redundant features
since they will be highly correlated with the other
features. It can also identify ignorable features since
they will be poor predictors of any class. To do this
CFS informs a heuristic search for key features via a
correlation matrix.

CBS: Consistency-based Subset Evaluation:
CBS is really a set of methods that use class consistency
as an evaluation metric. The specific CBS studied by
Hall and Holmes method finds the subset of features
whose values divide the data into subsets with high
class consistency [11.

TAR2less: Figure 11 shows the TAR2less FSS de-
veloped by Gunnalan, Menzies, et.al. [7]. TAR2less
runs TAR2 many times, each time targeting a different
class; e.g. defects, no defects:

Initialize the SELECTED features to nil.
0 For each class in turn, declare it to be TAR2’s ”best”

class. Then enter the following loop:
- Set treatment size N to 1
- Find the ”best” treatment of size N via TAR2.
- If the score of the best treatment is no better

than that of the best treatment of size N-1, then
* Add the features seen in the best treatment

to SELECTED.
- Else, N++ and loop.

Collect the average accuracy seen in a 10-way cross
validation of the target learner using

- just the features seen in SELECTED
- all features

Note that each single run of TAR2 finds features
that most selected for one class. Over all the runs,
TAR2less finds the union of all the features that most
selected for every class.

1R and ROCKY: Most FSS methods input M fea-
tures and output some subset N , N < M . An extreme

8

data set # modules % with defects
KC2 523 20%
AN1 1719 58%
JM1 10885 19%

Figure 12. Data sets used in this study. Here,a
“module” is the equivalent of a C function.

form of feature subset selection is to use learners that
can only output theories containing N = 1 features.
Two such learners are the 1R and ROCKY systems
described above.

Note that this method is far less general than the
other methods described above since it will fail if N > 1
features must be selected.

5 Experiments

Data Sets: The remainder of this paper is dedi-
cated to a case study on three NASA projects, which
will be referred to as “KC2”,“AN1”, and “JM1”. The
projects are NASA C++ programs. All modules ana-
lyzed were built by NASA developers excluding several
thousands modules that are COTS4 software. The Mc-
Cabe and Halstead structural metria were extracted
from these systems and mapped to the defect logs kept
for each project. The defect rate and the number of
modules for each data set is shown in Figure 12.

Note that AN1 is an artificially generated data set.
That system has not finished its testing phase so its
defect logs are incomplete. For this data set, we hence
used all the log entries relating to defects and a nearly
equal number of entries with no defects (selected at
random). This sampling policy would be inappropriate
if we were building a customized defect detector for the
AN1 project. However, we judge that this sampling
policy is adequate for the purposes of testing different
FSS strategies.

Methods: FSS was conducted using the PCA,
CBS, IG, RLF, WRAPPER, and 1R implementations
supplied with the WEKA machine learning toolkit5.
We used our own implementations of ROCKY and
TAR26. TAR2less was applied manually using TAR2.

Each FSS method generated candidate features
which were then seEected and assessed. Usually, the se-
lected features were assessed by running them through
a 10-way cross validation over the C4.5 and Naive

4COTS is an acronym for Commercial Off The Shelf
‘http://ww. cs .vaikato. ac .nz/-ml/veka/
6Available from http://menzies .us/rx .html and http://

menzies.us/pace.html

Learner Attributes KC2 JM1 AN1
Original (C4.5) 21 82.11% 79.34% 65.90%

Original (Bayes) 21 83.65% 80.41% 58.27%
1R 1 82.95% 79.55% 65.02%

1 --- 85.28% 81.10% 66.14% ROCKY

Figure 13. 1R and ROCKY runs. Baseline ac-
curacies generated from all features via C4.5
and Naive Bayes shown on lines one and
two. Bold entries denotes an increase over
all baselines.

Bayes classifiers supplied within the WEKA. Assess-
ing FSS via these two learners is quite standard in the
FSS literature (e.g. [17]) since these are widely used
and understood learning systems. Also, these two clas-
sifiers are very different kinds of learners so results that
repeat in both C4.5 and Naive Bayes are guaranteed
not to be the result of quirks in (e.g.) decision tree
learning.

Sometimes, however, other methods were required
to assess the selected features. For example, if we were
“wrapping” learner “X” then we assessed the WRAP-
PER’S output only on learner ”X”. Also, in the case of
ROCKY and lR, those learners have their own cross-
val facilities to assess the accuracies of their learnt the-
ories.

The generation methods varied. In the usual case,
the WEKA environment offered options to conduct
FSS via a 10-way cross validation. We disabled this o p
tion for WRAPPER since that was impractically slow,
especially for the 10,000 records in JM1. 10-way cross
validation was also used within TAR2less when finding
the best treatment of size N.

Results: Figure 13 shows the classification on 10-
way generated by ROCKY and 1R. Figure 14, Fig-
ure 15 and Figure 16 show the average classification
accuracies seen in 10-way cross validation runs of Naive
Bayes and WRAPPER using just the features selected
by PCA, CBS, IG, FLLF, WRAPPER, and TAR2less.

The first line of Figure 14, Figure 15, and Fig-
ure 16 shows the results of running all available features
through Naive Bayes and C4.5. Underlined entries
mark the largest accuracy generated by any method.
Italicized entries show where features found by FSS
generated detectors with a higher accuracy than the
baseline. Figure 17 is a summary table showing how
often our FSS methods out-performed all baselines.

6 Discussion

Is throwing away information useful for defect detec-
tion? Surprisingly, it would seem so. Figure 17 shows

9

http://ww
http://menzies

c4.5 Naive Bayes
Attributes accuracy tree Size accuracy

Orignal 15 65.90% 131 58.27%
Tar2leas 4 66.82% 119 58.61 %

CFS 5 65.02% 17 6042%
CBS 9 66.07% 81 57.57% ,

IG 4 64.55% 3 60.65%
RLF 4 67.11% 41 60.77%
PCA 7 65.77% 13 61.87%

2 (bayes) 62.51 %
mean 66.02% mean 60.08%

Wrapper 5 (c4.5) 66.88% 37

Figure 14. ANI FSS and learner accuracy
runs. Baseline accuracies shown on line one.
Underlined entries mark the largest accuracy
generated by any method. Italicized entries
mark an increase ouer the baseline. WRAP-
PER’S selected features were only assessed on the
“wrapped” learner- either C4.5 or Naive Bayes
(hence the blank cells on the WRAPPER line).

c4.5 Naive Bayes
Attributes accuracy tree Size accuracy

Orignal 21 79.34% 677 80.41%
Tar2less 4 81.06% 11 80.70% .

CBS 19 79.48% 671 80.25%
IG 4 81.25% 15 80.43%

RLF 4 80.98% 25 79.62%
PCA 8 80.09% 17 79.67%

2 (bayes) 80.90%
mean 81.04% mean 80.31%

CFS 7 80.51% 63 ZiXpE

Wrapper 5 (C4.5) 85.57% 15

Figure 15. JMI FSS and learner accuracy
runs. Baseline accuracies shown on line one.
Italicized and blank entries have the same
meaning as in Figure 14.

that in 35/48 = 73% of our experiments, using any FSS
method improved the accuracy over the baseline. Also,
in all our experiments, if all the FSS methods described
here are used, then detectors were found with a higher
accuracy than the baseline, while using far fewer fea-
tures. If we look at the best detector (the underlined
entries), then we see that the best detectors used be-
tween l to 5 features selected from a space of 15 to
21 features. Hence, this study endorses FSS for defect
detector generation.

What is a good FSS method for defect detection?
This is unclear but the very simple FSS methods
(ROCKY and 1R) ran very fast and resulted in highly
accurate theories. Further, ROCKY out-performed the
other FSS methods in the case of KC2 and JM1 but
not AN1. The CPU-intensive WRAPPER method is
slow to run but, of the more complex FSS methods, al-

CFS 2 85.25% 9 84.10%
89.72% CBS 6

IG 4 84.29% 3 84.10%
RLF 4 81.61% 5 82.18%
PCA 2 82.57% 5 84.87%

4 (bayes) 85.19%
mean 83.45% mean 83.86%

83.33% 23

Wrapper 1 (C4.5) 85.57% 3

Figure 16. KC2 FSS and learner accuracy
runs. Baseline accuracies shown on line one.
Italicized and blank entries have the same
meaning as in Figure 14.

11/16

Figure 17. How often FSS generates theories
of higher accuracy than using all available
features.

ways generated the most accurate theory (using either
C4.5 or Naive Bayes).

Comparatively speaking, how does PCA compare to
other FSS methods? In this study, PCA has not scored
well. In none of our experiments were the highest ac-
curacy detectors learnt via FSS. Hall & Holmes have
assessed a similar set of FSS methods as this study,
but on a broader set of data (none of which related
to software defect detection). Their results are hardly
supportive of PCA. They conclude that if the slow run
times of WRAPPER can be tolerated, then it usually
generates the most accurate theories. Otherwise, in
their opinion, CFS and RLF are best [8]. Our results
do not contradict their conclusions- we obtained high
accuracies with CFS, RLF and WRAPPER, and never
with CBS, IG, or PCA.

How simple is defect detection? Apparently, very
simple. The “clean-up” offered by FSS was very small.
In all cases the accuracy found using all features was
less than 7% of the best accuracy found after FSS.
This suggests that the correlations between variables
in these data sets do not greatly confound defect de-
tector generation.

Is accuracy the best way to judge the effectiveness
of a defect detector? Perhaps not. A striking feature of
Figure 14, Figure 15, and Figure 16 is the very small
variance in the accuracy figures. In other work [26],

10

KC2
JM1
AN1

we have assessed hundreds of learnt theories and found
that accuracy can remain stable while other important
features can vary wildly. For example, two detectors
with the same accuracy can have very different prob-
abilities of false alarms. Other data mining research
suggests that accuracy alone is not a good indicator of
learner performance in many domains [33]. This may
be attributed to greatly skewed class distributions or
domain related anomalies. We are currently repeating
our study, but this time assessing detectors via:

0 The cost of collecting the data for the detectors
(collecting cyclomatic complexity using Mccabes
can be very expensive due to licensing issues);

0 The probability of false alarms, given that the de-
tector has been triggered;

0 The probability of true detection alarms, given
that the detector has been triggered;

0 The probability that a defect has been missed,
given that the detector has not been triggered;

0 The stability of the detector under N-way cross
validat ion;

0 The stability of the detector when applied to dif-
ferent data sets;

Our current thinking is that finding a “best” detec-
tor judged on all the above criteria will require some
kind of N-dimensional optimization toolkit.

What is the best detector? We did not find that
Mccabe’s standard detector of v(g) > 10 was the most
accurate. However, we cannot offer an external valid al-
ternative. The defect detectors did not stabilize across
the different data sets. For example, the most accu-
rate defect detectors found by ROCKY are shown in
Figure 18 (we report ROCKY’S output here since that
output is small enough to read and ROCKY’S best ac-
curacies were always very close to the best overall accu-
racies). Note that variations in the learnt detectors:

0 The Mccabe ev(g) value was the most accurate in
KC2

0 The Halstead unique operands value was the fea-
ture that yielded the most accurate detectors in
JM1 and ANI.

0 The threshold value for the two detectors that use
the Halstead metrics were wildly different: 60.48
in JM1 and 8.14 in ANI.

Clearly, the distributions of variables seen in JM1 and

ev(g) >= 4.99 85.28% accurate
81.10% accurate
66.08% accurate

unique operands >= 60.48
unique operands >= 8.14

AN1 are very different. If distributions always vary so
wildly between defect data sets, then we it may be folly
to imagine that a single defect detector rule such as
v(g) > 10 will suit all software development. Instead,
companies should tune their defect detectors according
to their own historical logs describing their own people
building their own kind of application.

7 Conclusion

It is important to note the limits of this study. Cur-
rently, we have only explored feature subset selection
for defect detectors using three data sets. Three data
sets is insufficient to declare a general principle. Hence,
we encourage other researchers to test our methods of
their data.

Also, we caution researchers against restricting their
analysis of structural measurements and failure data
to the simple techniques described in this paper. Al-
though software defect detection may be a simple task,
and simple fault models may be deployed as part of
production software development efforts, the research
underlying such models must still apply the full range
of measurement and analysis techniques to develop the
models in the first place. This ensures that a richer set
of relationships between structural measures and fault
content will be developed, and allows the development
of meaningful benchmarks for the simpler models.

That caution notwithstanding, our conclusion must
be as follows. If in the usual case we see that accurate
defect detectors can be found after trivially simple al-
gorithms have rejected most of the structural features,
then software defect detection is a very simple task in-
deed.

References

[l] H. Almuallim and T. Dietterich. Learning with many irrel-
evant features. In The Ninth National Conference on Arti-
ficial Intelligence, pages pp. 547-552. AAAI Press, 1991.

(21 L. Breiman, J. H. Fkiedman, R. A. Olshen, and C. J .
Stone. Classification and regression trees. Technical report,
Wadsworth International, Monterey, CA, 1984.

[3] W. Dillon and M. Goldstein. Multivariate Analysis: Meth-
ods and Applications. Wiley-Interscience, 1984.

[4] S. Dumais, J. Platt, D. Heckerman, and M. Sahami. Induc-
tive learning algorithms and representations for text catego-
rization. In The International Conference on Information
and Knowledge Management, pages pp. 148-155, 1998.

[5) D. Dvorak, R. Rasmussen, G. Reeves, and A. Sacks. Soft-
ware architecture themes in JPL’s mission data system. In
AIAA Space Technology Conference and Exposition, Albu-
querque, NM., 1999.

[6] S. S. Gokhale and M. R. Lyu. Regression tree modeling
for the prediction of software quality. In Proceedings of the

11

. ’

Thad ISSAT International Conference on Reliability and
Quality in Design, Anaheim, CA, pages 31-36, March 1997.

[7] R. Gunnalan, T . Menzies, K. Appukutty, S. A, and Y. Hu.
Feature subset selection with tar2leas. In Submitted to
ICML’O3, 2003. Available from http: //menzies .us/pdf/
OJtar2less.pdf.

[8] M. Hall and G. Holmes. Benchmarking attribute selection
techniques for discrete class data mining. IEEE Zhwac-
tions On Knowledge And Data Engineering (to appear),
2003.

[9] M. A. Hall. Correlation-based feature selection for machine
learning. PhD thesis, Department of Computer Science,
University of Waikato, Hamilton, New Zealand, 1998.

[IO] M. Halstead. Elements of Software Science. Elsevier, 1977.
1111 R. Holte. Very simple classification rules perform well on

most commonly used datasets. Machine Leaning, 11:63,
1993.

[12] Y. Hu. Treatment learning, 2002. Masters thesis, Unviersity
of British Columbia, Department of Electrical and Com-
puter Engineering. In preperation.

[I31 T. Khoshgoftaar. An application of zero-inflated Poisson
regression for software fault prediction. In Proceedings of
the 12th International Symposium on Software Reliability
Engineering, Hong Kong, pages 66-73, Nov 2001.

[14] T. M. Khoshgoftaar and E. B. Allen. Model Software Qual-
ity with Classification Trees. In H. Pham, editor, Recent
Advances in Reliability and Quality Engineering. World Sci-
entific, 1999.

[15] K. Kira and L. Rendell. A practical approach to feature se-
lection. In The Ninth International Conference on Machine
Learning, pages pp. 249-256. Morgan Kaufmann, 1992.

[16] R. Kohavi and G. John. Wrappers for feature subset selec-
tion. Artificial Intelligence, pages 273-324, 1997.

[I71 R. Kohavi and G. H. John. Wrappers for feature subset
selection. Artificial Intelligence, 97(1-2):273-324, 1997.

[18] I. Kononenko. Estimating attributes: Analysis and exten-
sions of relief. In The Seventh European Conference on Ma-
chine Learning, pages pp. 171-182. Springer-Verlag, 1994.

[I91 T. McCabe. A complexity measure. IEEE Zhnsactions on
Software Engineering, 2(4):308-320, Dec. 1976.

[20] T. Menzies, E. Chiang, M. Feather, Y. Hu, and J. Kiper.
Condensing uncertainty via incremental treatment learning.
In Annals of Software Engineering, 2002. Available from
http://menzies.us/pdf/02itar2.pdf.

[21] T. Menzies and J. S. DiStefeno. Metria that matter. In 27th
NASA SEL workshop on Software Engineering (submitted),
2002.

[22] T. Menzies and Y. Hu. Reusing models for requirements
engineering. In First International Workshop on Model-
based Requirements Engineering, 2001. Available from
http://menziss.us/pdf/Olreueere.pdf.

(231 T. Menzies and Y. Hu. Agents in a wild world. In C. Rouff,
editor, Formal Approaches to Agent-Based Systems, book
chapter, 2002. Available from http: //menzies .us/pdf/
0lagents.pdf.

[24] T. Menaies and Y. Hu. Just enough learning (of association
rules). In WVU CSEE tech report, 2002. Available from
http://menziea.us/pdf/02tar2.pdf.

[25] T. Menzies, D. W o , S. on Setamanit, Y. Hu, and
S. Tootoonian. Model-based tests of truisms. In Proceedings
of IEEE ASE 2002, 2002.

1261 T. Menzies, J. D. Stefano, K. Ammar, K. McGill, P. Callis,
R. Chapman, and D. J. When can we test less? In Submitted
t o IEEE Metrics’03,2003. Available from ht tp: //menzies.

[27] J. Munson and A. Nikora. Estimating rates of fault insertion
and test effectiveness in software systems. In Proceedings of
the Fourth ISSAT International Conference on Reliability
and Quality in Design., pages pp. 263-269, August 12-14
1998.

(281 J . Munson and A. Nikora. Toward a quantifiable definition
of software faults. In Proceedings of the 13th IEEE Inter-
national Symposium on Software Reliability Engineering.
IEEE Press, 2002.

[29] J. C. Munson and T. M. Khoshgoftaar. Regression modeling
of software quality. Information and Software Technology,

[30] J. C. Munson and T. M. Khoshgoftaar. The use of soft-
ware complexity metrics in software reliability modeling. In
Proceedings of the International Symposium on Software
Reliability Engineering, Austin, TX, May 1991.

(311 J. C. Munson and D. S. Werries. Measuring software evolu-
tion. In Proceedings of the 1996 IEEE International Soft-
ware Metrics Symposium, pages pp. 41-51. IEEE Computer
Society Press, May 1996.

[32] A. Nikora and J. Munson. Finding fault with faults: A case
study. In proceedings of the Annual Oregon Workshop on
Software Metrics, Coeur d’Alene, ID, May 11-13 1997.

[33] F. Provost, T. Fawcett, and R. Kohavi. The case against
accuracy estimation for comparing induction algorithms.
In Proc. 15th International Conf. on Machine Leam-
ing, pages 445-453. Morgan Kaufmann, San Francisco,
CA, 1998. Available from htpp://citeseer.nj .nec.com/
provostQ8case.html.

[34] R. Quinlan. C4.5: Programs for Machine Learning. Morgan
Kaufman, 1992. ISBN: 1558602380.

[35] N. F. Schneidewind. Software metrics model for integrat-
ing quality control and prediction. In Proceedings of the 8th
International Symposium on Software Reliability Engineer-
ing, Albuquerque, New Mexico, pages 402-415, November
1997.

[36] N. F. Schneidewind. Investigation of logistic regression as a
discriminant of software quality. In Proceedings of the 7th
International Software Metrics Symposium, London, pages
328-337, April 2001.

[37] J. Tian and M. Zelkowitz. Complexity measure evaluation
and selection. IEEE f insact ion on Software Engineering,
21(8):641-649, Aug. 1995.

(381 I. H. Witten and E. Frank. Data Mining: Practical Machine
Learning Tools and Techniques with Java Implementations,
Morgan Kaufmann, 1999.

us/pdf/03metrics.pdf.

32(2):105-114, 1990.

12

http://menzies.us/pdf/02itar2.pdf
http://menziss.us/pdf/Olreueere.pdf
http://menziea.us/pdf/02tar2.pdf
http://nec.com

