
The Effects of Fault Counting Methods on Fault Model Quality

Allen P. Nikora
Jet Propulsion Laboratory,

California Institute of Technology
Pasadena, CA 91 109-8099

Allen.P.Nikora@:id.nasa.gov

ABSTRACT
Over the past several years, we have been developing

methods of predicting the fault content of software systems
based on measured characteristics of their structural evolu-
tion. In previous work, we have shown there is a signifcant
linear relationship between code chum, a set of synthesized
metrics, and the rate at which faults are inserted into the
system in terms of number of faults per unit change in code
churn. A limiting factor in this and other investigations of a
similar nature has been the absence of a quantitative, con-
sistent, and repeatable definition of what constitutes a fault.
The rules for fault definition were not sufzciently rigorous
to provide completely unambiguous and repeatable fault
counts.

Within the framework of a space mission software
development effort at the Jet Propulsion Laboratory (JPL)
we have developed a standard for the precise enumeration
of faults. This new standard permits software faults to be
measured directly from configuration control documents.
To this end we have developed a set of tools to perform fault
measurement on the JPL effort and have used those meas-
urements in developing fault models. Our results indicate
that reasonable predictors of the number of faults inserted
into a software system can be developed from measures of
the system ’s structural evolution.

To compare fault-counting methods on the quality of
the fault models constructedj-om those counts, we analyzed
the relationship between measurements of the JPL effort’s
structural evolution and three sets of fault counts. One set
of fault counts was obtained using the definition we had
previously developed; the other two counts were obtained
by using other definitions o f fu l t s that have been proposed.
The new fault definition provides higher quality fault models
than those obtained using the other definitions of fault.

KEYWORDS: defect content estimation techniques,
fault prediction, software measurement.

1. Introduction
Over the past several years, we have been investigating

John C. Munson
Computer Science Department

University of Idaho

jmunson@,cs.uidaho.edu
MOSCOW, ID 83844-1010

relationships between measurements of a software system’s
structural evolution and the rate at which faults are inserted
into that system [Muns98, Niko981. Measuring the structural
evolution of a software system has proven to be a well-
defined task that can easily be automated. Unfortunately, it
has not been as easy to measure the number of faults inserted
into the system - there has been no particular definition of
just precisely what a software fault is. In the face of this dif-
ficulty it is hard to develop meaningful associative models
between faults and code attributes. In developing a model,
we would like to know how to count faults in an accurate and
repeatable manner just we would expect to enumerate state-
ments, lines of code, and so forth. In measuring the evolu-
tion of a system to talk about rates of fault introduction and
removal, we measure in units proportional to the way that the
system changes over time. Changes to the system are visible
at the module level (by module we mean procedures, func-
tions, and methods), so we measure at that level of granular-
ity. Since the measurements of system structure are collected
at the module level, we also strive to collect information
about faults at the same granularity.

A fault, by definition, is a structural imperfection in a
software system that may lead to the system’s eventually
failing. It is a physical characteristic of the system of which
the type and extent may be measured using the same ideas
used to measure the properties of more traditional physical
systems. People making errors in their tasks introduce faults
into a system. In order to count faults, there must be a well-
defined method of identification that is repeatable, consistent,
and identifies faults at the same level of granularity as our
static source code measurements.

We have recently proposed a quantitative definition for
software faults that allows automated identification and
counting of those faults at the module level [MunsO2]. Using
this definition, we have identified strong relationships be-
tween measured structural change to a software system and
the number of faults inserted into that system. The results
obtained in collaboration with a space mission software tech-
nology development effort at JPL [Dvo99] indicate that our
technique of counting faults can be used to develop fault

mailto:Allen.P.Nikora@:id.nasa.gov
mailto:jmunson@,cs.uidaho.edu

models with good predictive power. However, there are
other ways of counting software faults besides the technique
we proposed. In this paper, we describe two other fault-
counting techniques and compare the models resulting from
the application of those methods to the models obtained
from the application of our proposed definition.

2. Related Work
Over the past several years, a great deal of work has

been done in the area of using measurements of software
systems to identify fault-prone components and predict their
fault content. Examples of this work include the classifica-
tion methods proposed by Khoshgoftaar and Allen
[JShosOla] and by Ghokale and Lyu [Ghok97], Schneide-
wind’s work on Boolean Discriminant Functions [Schn97],
Khoshgoftaar’s application of zero-inflated Poisson regres-
sion to predicting software fault content [KhosOl], and
Schneidewind’s investigation of logistic regression as a dis-
criminant of software quality [SchnOl]. Each of these ef-
forts has provided useful insights into the problem of identi-
fying fault-prone software components prior to test. How-
ever, these studies used different definitions at varying lev-
els of precision of what constitutes a fault. For example, the
definition of the “Fault” response variable used for the
study reported in [KhosOla] is “the number of faults discov-
ered in a source file”. Here the definition used to identify
and count faults is not made explicit. The definition used in
[Schn97] and [SchnOl] is the number of Discrepancy Re-
ports (DRs) written against modules, where the DRs record
(observed) deviations from requirements. Since DRs are
readily visible artifacts of the problem reporting system, this
definition is repeatable for the system that was studied, and
is related to a system’s quality. Other studies may have
different definitions for faults.

Neither do current standards seem to provide quantita-
tive definitions for faults. The following definition of what
constitutes a fault is typical of that provided by current stan-
dards: “A manifestation of an error in software. A fault, if
encountered, may cause a failure” [IEEE88, IEEE831. This
establishes a fault as a structural defect in a software system
that underlies the failure of that system to operate as ex-
pected, but does not help in determining the type of failure
that was observed, or establish how individual faults may be
identified or measured. Some standards address the issue of
the type of failure observed by describing schemes for clas-
sifying anomalies recorded during software development
and operation. For instance, [IEEE93] provides details of
an anomaly classification process, as well as criteria for
classifying the type of anomaly observed, at what point in
the development process the anomaly was observed, and the
action taken in response to the anomaly. One particular
table in this standard, Table 3c, allows classification of the
type of behavior exhibited by the anomaly (e.g., “precision
loss”) or the type of defect that led to the anomaly (e.g.,
“referenced wrong data variable”). This type of scheme is

helpful in determining the underlying causes of faults and
failures, so that the development process may be modified to
1) identify the types of faults on which fault detection and
removal resources should be focused for the current devel-
opment effort, and 2) minimize the introduction of the most
common types of faults in hture development tasks. How-
ever, classification standards do not provide enough informa-
tion to help count the number of faults in the system. Return-
ing to Table 3c of [IEEE93], we see that some of the anom-
aly types can readily be traced to a single fault (e.g., “Opera-
tor in equation incorrect”). However, the response to an “I/O
Timing” anomaly may involve changes to many lines of
source code spread across multiple source code files. In this
case, the standard does not provide enough information to
allow counting the number of faults at the module level.

During a small study on a JPL flight system several years
ago [Niko98], we recognized the importance of developing a
standard, quantitative definition for faults - since there were
multiple researchers working on this task, we needed to have
a common understanding of what constitutes a fault. The
fault definitions available at that time were either ambiguous
or not quantitative, or relied on development practices that
did not necessarily apply to the effort being studied. In an
attempt to define an unambiguous set of rules for identifying
and counting faults, we developed an empirical taxonomy
based on the types of editing changes we observed in re-
sponse to reported failures in the system [Niko97]. We
found strong indications that a system’s measured structural
evolution could predict the fault insertion rate. However, this
study had two limitations:

The study was relatively small - less than 50 observations
were used in the regression analysis relating the number
of faults inserted to the amount of structural change.
More importantly, the defmition of faults that was used
was not quantitative. Although the rules provided a way
of classifying the faults by type, and attempted to address
faults at the level of individual modules, they were not
sufficient to enable repeatable and consistent fault counts
by different observers to be made. The rules in and of
themselves were unreliable.
Three years ago, we started a collaboration with a space

mission software technology development effort at JPL
[Dvo99] to address the limitations of the earlier study. Our
main concern was developing a quantitative definition of
faults, so that we could automate what had been a time-
consuming manual activity in the earlier study, the identifi-
cation and counting of repaired faults at the module level.
Our hope was that this would provide us with unambiguous,
consistent, and repeatable fault counts, as well as a substan-
tially larger number of observations than the earlier study.

To develop fault predictors for evolving systems, two
types of measurements must be made:

The structural evolution of a system as it changes over a
series of builds.

The number of faults discovered during the system’s
development.

Measuring a system’s structural evolution for the collaborat-
ing software system was a straightforward activity - we
developed and deployed the Darwin network appliance
[CylaO3] for automatically make these measurements. Since
we had access to the effort’s source code repository, Darwin
was able to take structural measurements of each version of
each module (Le., function or method) in the system and use
those measurements to produce quantitative reports of the
system’s evolutionary history according to the techniques
described in Sections 7 and 8. We were also able to develop
a quantitative definition for s o h a r e faults [MunsO2]. Us-
ing this definition, we were able to unambiguously and re-
peatably identify and count faults, and develop models for
predicting faults at the level of individual modules.

3. Problem Statement
The general objective of our current work is to develop

practical methods of predicting fault content based on struc-
tural characteristics that can be used by production software
development efforts to help them better manage the quality
of the systems they create. We chose to search for relation-
ships between the rate at which faults are inserted into
source code and the measured structural evolution of the
source code. If we are able to estimate the rate at which
faults are inserted into a system and the structural evolution
of that system is being monitored, then we should be able to
estimate the system’s fault content at any time during its
development. This process, however, is predicated on our
ability to define very precisely the definition of a software
fault and to be able to these faults with a high degree of pre-
cision.

Although other types of artifacts in the software devel-
opment process could have been analyzed, working with
source code has two advantages:

Measuring structural attributes of source code can be
easily automated.
Since the source code is controlled by a configuration
management system, different versions of the system can
be easily and unambiguously identified. In particular, a
baseline against which all other versions are to be meas-
ured can be easily established.
The specific objective of this research paper is to com-

pare the quality of the fault predictors created using the fault
counting technique developed in an earlier phase of our
work with fault predictors developed using other proposed
methods of counting faults.

4. A Description of the Mission Data System
We worked in collaboration with the Mission Data Sys-

tem (MDS), a mission software technology development
effort in progress at JPL, to collect and analyze the data re-
ported herein. We were able to measure the structural evo-
lution of the MDS during the development of a specific re-

lease. For every failure reported against the MDS, we were
also able to identify the changes made to each module in re-
sponse to that failure, and thereby count the number of faults
that had been repaired. These measurements were inputs to
regression analyses to identify relationships between the
measured structural evolution and the number of faults dis-
covered.

Until recently, planetary exploration missions were
spaced years apart, with little attention to software reuse,
given the rapid pace of computer technology and computer
science. Also, since radiation-hardened flight computers
remain years behind their commercial counterparts in speed
and memory, flight software has typically been highly
customized and tuned for each mission. In order to use
software engineering resources more effectively and to
sustain a quickened pace of missions, JPL initiated the MDS
project in April 1998 to define and develop an advanced
multi-mission architecture for an end-to-end information
system for deep-space missions. MDS is aimed at several
institutional objectives: earlier collaboration of mission,
system and software design; simpler, lower cost design, test,
and operation; customer-controlled complexity; and
evolvability to in situ exploration and other autonomous
applications.

Some important ways in which MDS differs from earlier
systems are as follows:

When appropriate, capabilities can be migrated from
ground-based systems to flight systems to simplify
operations.
MDS is founded upon a state-based architecture, where
state is a representation of the momentary condition of an
evolving system.
Domain knowledge is expressed explicitly in models
rather than implicitly in program logic.
Missions are to be operated via specifications of the
desired state rather than sequences of actions[Dvo99].
For our study, the structural evolution of the MDS was

measured over a period from October 20, 2000, through
April 26, 2002. The first date corresponds to the date on
which the first source files for the most recent increment
were checked into the CM library. The system contains over
15000 distinct modules; over the time interval analyzed
studied, there were over 1500 builds of the MDS. The total
number of distinct versions of all modules was greater than
65,000. Over 1400 problem reports were included in the
analysis; these problem reports provided the information
from which the number of repaired faults was computed.

5. Structural Metrics Used in this Study
We would like very much to understand the distribution

of faults in the code that we are building. To this end, it
would be very useful to just measure them as we are develop-
ing the software. Nature, unfortunately, is both fickle and
coy. She will not disclose these faults to us. We cannot

measure then until we have fixed them. We have learned
over time, however, that the distribution of faults in an
evolving software systems is distinctly related to software
attributes that we can measure. We can then use our histori-
cal data to build models that will permit us to understand 1)
where faults are likely to be in the code that we have devel-
oped, 2) where the faults are located in the changes that we
have just made, and 3) determine the rate at which faults are
being introduced into changes that are being made to the
underlying s o h a r e system.

We have obtained measurement data from the Darwin
system on the target software system. These data were ob-
tained by checking out each build of the system from the
configuration control system, then applying the measure-
ment tools incorporated in the Darwin Network Appliance.

We used principal components analysis (PCA) [Di184] to
identify the distinct sources of variation. We stopped extract-
ing components when the eigenvalues associated with a
component assumed values of less than 1. The results of this
analysis are shown in Table 2.

We found three distinct sources of variation in the twelve
original raw metrics. We have labeled these as Domain 1,2,
and 3 in this table. Domain 1 is most closely associated with
the control flow attributes that relate to the complexity of the
control flow graph structure of the measured program mod-
ules as is shown by the relatively high values p0.85) of the
Nodes and Edges metrics in this table. Domain 2 is most
closely associated with the variety of data processed by a
module and the operations performed; Domain 3 is associ-
ated with the number' of distinct paths through the module.
The raw metrics that are most closely associated with each
the underlying orthogonal domains have been shown in bold-
face type in this table.

5.1. StaticMetrics .
The specific metrics used in this study are listed in Table

1. These metrics were obtained for both the C and the C++
code modules in the MDS system. The precise definition of
each of these metrics and the standard used to measure them
can be found in Munson [MunsOZa].

is

The eigenvalues, in the last row of Table 2 show the rela-
tive proportion of variation accounted for by each of these
new orthogonal domains. For this particular problem space,
the sum of the eigenvalues for the twelve original metrics is
12.0. Thus, the relative prOpOl%iOn of variation accounted for
by Domain 1 will be 4.79112 = 0.40 or 40% of the variation
in the original 12 metrics. All three domains together ac-
count for approximately 85% of the total variation observed
in the original 12 metrics.

For measurement purposes, it is necessary to standardize
all original or raw metrics so that they are on the same rela-
tive scale. For the th module m/on t h e P build of the sys-

distinct sources Of tem there will be a data vector .: =<x;,x/2,...,x;2 > of 12 raw
complexity metrics for that module. We standardize each of
the raw metrics by subtracting the
over all modules in thef ' build and dividing by its standard
deviation 6: such that z:1= (xi - F:)/CY/ represents the stan-

This metric set represents the essential characteristics of
both the size of a program module and its control flow char-
acteristics. ~ 1 1 measurements were taken at the module
level. For C program elements, a module is a function. For
C++ a module is a function or an object.

5.2. Derived Metrics
As has been clearly established from our previous work,

these metrics are highly correlated [MunsgO, Ha11001. There
are
variation. We would like to be able to identify the distinct
orthogonal sources of variation and map these twelve raw
metrics onto a set of uncorrelated metrics that represent es-
sentially the same information contained in the original
twelve metrics.

There are not

y; of the metric

dardized value of the first raw metric for the th module on
t h e P build.

A by-product of the original PCA of the 12 metric primi-
tives is a transformation matrix, T, that will map the z-
scores of the raw metrics into the reduced space represented
by the three principal components. Let Z represent the ma-
trix of z-scores shown in the table above for the original
problem. We can obtain new domain metrics, D, using the
transformation matrix T as follows: D = ZT where Z is a n
by 12 matrix of z-scores, T is a 12 by 3 matrix of transfor-
mation coefficients, and D is a n by 3 matrix of domain
scores where n is the number of modules being measured in
a particular build. The matrix, T, for this solution given in
columns 2 through 4 of Table 3. The means and standard
deviations that are used to compute the z-scores are also
shown in columns 5 and 6 of this table.

For each module, there are now three new metrics, each
representing one the three orthogonal principal components.
For our subsequent investigations into modeling the rela-
tionship between code evolution and software faults, these
domain scores have the very valuable property that they are
uncorrelated. Each of the new metrics represents a distinct
source of variation. This will completely eliminate the
problem of multicollinearity from the linear regression
models that we wish to develop.

6. Measuring Software Faults
Perhaps one of the most important considerations in the

measurement of software faults is the ability to scale the
fault. Not all faults are equal. Sometimes a simple operator
is at fault. The developer used a "+" instead of a "-". Some-
times two or three statements must be modified, added, or
deleted to remedy a single fault. We ought to be able iden-
tify and enumerate faults mechanically. That is, it should be
possible to develop a tool that could count the faults for us.
Further, some program changes to fix faults are substantially
larger than are others. We would like our fault count to
reflect that fact. If we have accidentally mistyped a rela-
tional operator like y' instead of 5' , this is very different
from having messed up an entire predicate clause from an if
statement. The actual changes made to a code module are
tracked for us in configuration control systems such as RCS
or CVS [Cede931 as code deltas. We must learn to classify
the code deltas that we make as to the origin of the fix. In
other words, each change to each module should reflect a
specific code fault fix, a design problem, or a specification
problem. If we manifestly change any code module, signifi-
cantly change it, and fail to record each fault as we repaired
it, we will pay the price in losing the ability to resolve faults
for measurement purposes.

6.1. Token-Based Fault Counts
For the definition of fault developed in [MunsO2], we

based our recognition and enumeration of software faults on
the grammar of the language of the software system. Spe-

cifically, faults are to be found in statements, executable and
non-executable. In very simple terms, these structures will
cause our executable statement count, Exec, to change. If any
of the tokens change that comprise the statement then each of
the change tokens will represent a contribution to a fault
count. The granularity of measurement for faults will be in
terms of tokens that have changed. Thus if one had typed the
following statement in C:

a = b + c * d;
but had meant to type

a = b + c / d ;
then there is but one incorrect token. In this example, there
are eight tokens in each statement. There is one token that
has changed. There is one fault. This circumstance is very
different when wholesale changes are made to the statement.
Suppose that this statement

a = b + c * d ;
was changed to

a = b + (c * x) + sin(z);
We are going to assume, for the moment, that the second
statement is a correct implementation of the design and that
the fmt was not. This is clearly a not coding error. (Gener-
ally when changes of this magnitude occur they are design
problems.) In this case there are 8 tokens in the first state-
ment and 15 tokens in the second statement. This is a fairly
substantial change in the code. Our fault recording method-
ology should reflect the degree of the change.

The important consideration with this fault measurement
strategy is that there must be some indication as to the
amount of code that has changed in resolving a problem in
the code. We have regularly witnessed changes to tens or
even hundreds of lines of code recorded as a single "bug" or
fault. However, the number of tokens that have changed to
ameliorate the original problem constitutes a measurable in-
dex of the degree of the change. To simplify and disambigu-
ate further discussion, consider the following definitions.

Definition: A fault is an invalid token or bag of tokens in
the source code that may cause a failure when the com-
piled code that implements the source code token is exe-
cuted.
Definition: A failure is the departure of a program from
its specified functionalities.
Definition: A defect is an apparent anomaly in the pro-
gram source code.
Each line of text in each version of the program can be

seen as a bag of tokens. That is, there may be multiple to-
kens of the same kind on each line of the text. When a soft-
ware developer changes a line of code in response to the de-
tection of a fault, either through normal inspection, code re-
view processes, or as a result of a failure event in a program
module, the tokens on that line will change. New tokens may
be added. Invalid tokens may be removed. The sequence of
tokens may be changed. Enumeration of faults under this
definition is simple, straightforward. Most important of all,

this process can be automated. Measurement of faults can
be performed very precisely, which will eliminate the errors
of observation introduced by existing ad hoc fault reporting
schemes [Muns02, Muns02aI.

An example would be useful to show this fault meas-
urement process. Consider the following line of C code.

(1) a = b + c ;
There are five tokens on this line of code. They are B1 =
{<e, <=>, , <+>, <c>} where B1 is the bag represent-
ing this token sequence. Now let us suppose that the design,
in fact, required that the difference between b and c be com-
puted:

There will again be five tokens in the new line of code.
This will be the bag B2 = {<a>, <=>, , <->, <c>}. The
bag difference is B 1 - B2 = { <+>, <-> } . The cardinality of
B1 and B2 is the same. There are two tokens in the differ-
ence. Clearly, one token has changed from one version of
the module to another. There is one fault.

Now let us suppose that the new problem introduced by
the code in statement (2) is that the order of the operations is
incorrect. It should read:

The bag for this new line of code will be B3 = {<a>, <=>,
<c>, <->, }. The bag difference between (2) and (3) is
B2 - B3 = {}. The cardinality of B2 and B3 is the same.
This is a clear indication that the tokens are the same but the
sequence has been changed. There is one fault representing
the incorrect sequencing of tokens in the source code.

Continuing the example above, let us suppose that we
are converging on the correct solution however our calcula-
tions are off by 1. The new line of code will look like this.

This will yield a new bag B4 = {<a>, <=>, <1>, <+>, <c>,
<->, }. The bag difference between (3) and (4) is B3 -
B4 = {<1>, <+>}. The cardinality of B3 is five and the car-
dinality of B4 is seven. Clearly there are two new tokens.
By definition, there are two new faults.

A change may span multiple lines of code. All of the
tokens in all of the changed lines so spanned will be in-
cluded in one bag. This will allow us to determine just how
many tokens have changed in the one sequence.

The source code control system should be used as a ve-
hicle for managing and monitoring the changes to code at-
tributable to faults, and to design modifications and en-
hancements. Changes to code modules should be discrete.
That is, multiple failures should not be fixed by one version
of the code module. Each version of a module should repre-
sent exactly one enhancement or one failure repair.

6.2. Number of Editor Commands
Another way of counting the number of faults is to sim-

ply count the number of “sed” commands required to im-
plement the changes made in response to a reported failure.
This has the advantage of being simpler than the technique

(2) a = b - c ;

(3) a = c -b ;

(4) a = l + c - b ;

described above, yet still provides an unambiguous and re-
peatable count that is related to the number of faults repaired.

20c20,32
< -
>
> template-
> int lLDc Md8::Fw:Cac:Loki::NuiTw >::addDependencyToConecto~wnst
Mds::Fw::lnklnitFunctwBase& r ~onnec(w ‘0
> (=. ret”

> lemplateaa%sU>
> int ILD<U>::addDependa~TooIToConnector(eonst Mds.:F~:ln~::lnitFuncto~ase8
connector)
’ (
> retum l n t e r f a c s L i s t D e p e n d e n c y < U ~ : ~ ~ ~ n c y T ~ ~ n ~ o ~ w n n e c l o r) ;

>

>
2 2 ~ 3 4
< wid lnterlacaListDependency<TList>::addDependan~To~nn~~wn~
Mds::Fw:lnn::lnnFuncto~~8 connector)

> int l n t e r f a m L i s t D e p e n d e n ~ ~ ~ P : : a d d D e p e n d t
Mds::F~:ln%::lnilFun~~aa& connector)
25a38
> retum
29,31c42,43
c connector);

> connector)

-

<

c -
> +
35,39d46

template~clclsssu~
e Mid ILD<U>::add~pendencyT~onector(const Mds::Fw::lnit::lnitFunctorBase&
mnecIor)

(l n t e r f a c e L I s 1 D e p e n d ~ U ~ : : a d d D e p e n d e n c) ;
<)

Figure 1 - Differential Comparison of Faulty, Repaired
Module

To count faults in this manner, it is first necessary to iden-
tify each version of each source file to which changes have
been made in response to a given reported failure. If a de-
velopment effort’s problem reporting system tracks the
source file revisions associated with each failure report, this
becomes a straightforward task. A differential comparison
(“diff’) is then performed between the version known to be
faulty and the version implementing the repairs - an example
is shown in Figure 1 (the embedded “sed” commands are
indicated in larger boldface type). The number of embedded
“sed” commands is then counted and recorded as the number
of repaired faults. If we know the starting line of each mod-
ule within the source files being compared, we are able to
assign the correct fault count to individual modules. In our
study, the Darwin appliance provides the starting line of each
module within a source file along with the structural meas-
urements for that module. For the example shown in Figure
1, the number of faults repaired within the source file is
counted as 5 , which we then allocate to each of the three
modules in this particular source file.

6.3. Number of Modules Changed
An even simpler way of counting faults is to count the

number of modules that have changed in response to a re-

ported failure. Consider the problem report shown in Figure
2 below. At the bottom of the problem report is a list of the
files that were changed in response to the problem report -
for each source file that was changed, the filename and ver-
sion number of the modified file are given (e.g., the first
source file implementing repairs is version 20 of
"MDS-Rep/verification/TestMaster/defaults.dot"). By ana-
lyzing the modules within each file, we can identify those
modules that have changed. One fault is counted for each
module that has changed. If the differential comparison
shown in Figure 1 were for a source file containing only one
module, then only one fault would be counted, even though
multiple changes have been made.

Figure 2 - Failure Report Identifying Changed Source
File Versions

7. The Measurement Baseline
Software systems grow and mature just as do biological

organisms. We would not think to measure a child at birth
and think that we know all there is to know about that child.
Measurement is an on-going process. We must, therefore,
come to understand that our software systems change rap-
idly over time. Whenever they are changed, them must be
re-measured. To understand what a software system is to-
day, we must have current measurement data on the system
together with data on its evolution. We know that faults are

removed over time. Modules that have not changed very
much are likely to have had most of their faults removed.
Modules that have changed a lot are very likely to have had
new faults introduced into them. Hence, understanding
change activity is vital to our understanding where the prob-
lems in the system might be.

The first step in the measuring the evolutionary develop-
ment of a software system is to establish a baseline reference
point in the build process. When a number of successive
system builds are to be measured, we choose one of the sys-
tems as a baseline system. All others will be measured in
relation to the chosen system. Sometimes it will be useful to
select the initial system build for this baseline. If we select
this system, then the measurements on all other systems will
be taken in relation to the initial system configuration.

From the first build of each such system to the last build
the differences may be so great as to obscure the fact that it is
still the same system. We would like to be able to quantify
the differences in the system from its first build, through all
builds to the current one. Then and only then will it be pos-
sible to know how these systems have changed.

A complete software system generally consists of a large
number of program modules. Each of these modules is a
potential candidate for modification as the system evolves
during development and maintenance. As each program
module is changed, the total system must be reconfigured to
incorporate the changed module. We will refer to this recon-
figuration as a build. For the effect of any change to be felt it
must physically be incorporated in a build.

As program modules change from one build to another,
the attributes of the modified program modules change. This
means that there are measurable changes in modules from
one build to the next. Each build is numerically and meas-
urably different from its predecessor with respect to a par-
ticular set of metrics. Thus, there is no such thing as measur-
ing a software system but once. Whenever changes are made
to a system, those system elements that have changed must
be re-measured.

We must be careful to standardize the metric scores in a
way that will not erase the effect of trends in the data. For
example, let us assume that we were taking measurements on
LOC and that the system we were measuring grew in this
measure over successive builds. If we were to standardize
each build of the system by its own mean LOC and its own
standard deviation, the mean of this system would always be
zero. Thus, we will standardize the raw metrics using a base-
line system such that the standardized metric vector for
the i" module m/ on the j" build would be

where 3; is a vector containing the means of the raw metrics
for the baseline system and tj: is a vector of standard devia-
tions of these raw metrics. Thus, for each system, we may

build an mx k data matrix, ZJ, that contains the standard-
ized metric values relative to the baseline system on build B.

When we have identified a target build, B, to be the
baseline build we will then compute the three constituent
elements of the baseline. These elements are the trans-
formation matrix for the baseline build, the vector of metrics

B means for the baseline build Si:, and a vector 6i of stan-
dard deviations for this build. For the purposes of this
study, the July 1, 2001 build was chosen as the baseline
build. Table 3 shows the actual baseline that will be used to
compute the derived metrics used in this study.

8. Measuring Change Activity
In order to describe the complexity of a system at each

build, it will be necessary to know the version of each of the
modules was in the program that failed. Each of the pro-
gram modules is a separate entity. It will evolve at its own
rate. Consider a software system composed of n modules as
follows: m19m2.m3t"',m*. Each build of the system will unify
a set of these modules. Not all of the builds will contain
precisely the same modules. Clearly there will be different
versions of some of the modules in successive system
builds. This process is described in detail in [Muns02a].

We can represent the build configuration in a nomencla-
ture that will permit us to describe the measurement process
more precisely by recording module version numbers as
vector elements in the following manner:
vi = c v ~ , v : , v ~ , - . . v ~ >. This build index vector will allow us
to preserve the precise structure of each for posterity. Thus,

in the vectorv" would represent the version number of
the i" module that went to n" build of the system. The
cardinality of the set of elements in the vector v" is deter-
mined by the number of program modules that have been
created up to and including the nth build. In this case the
cardinality of the complete set of modules is represented by

the index value m. This is also the number of modules in the
set of all modules that have ever entered any build.

The prime objective of this discussion is to demonstrate
the measurement process for measuring successive stages of
an evolving software system. Thus, we will be able to assess
the precise effect of the change fiom the build represented by
vi to vi+' . These data will serve to structure the regression
test activity between builds. Those modules that have the
greatest change in complexity from one build to the next
should receive the majority of test effort in the regression test
activity.

When evaluating the precise nature of any changes that
occur to the system between any two builds i, and j , we are
interested in three sets of modules. The first set, Mf.' , is the
set of modules present in both builds of the system. These
modules may have changed since the earlier version but were
not removed. The second set, M y , is the set of modules
that were in the early build, i, and were removed prior to the
later build, j . The fmal set, M y , is the set of modules that
have been added to the system since the earlier build.

As an example, let build i consist of the following set of
modules.

Between build i and j module m, was removed giving. Thus,
M i ={"19m,,m,,m,9m51

M i = M i uMr

= im19 m2, m3r m 4 , m s b { I- (m,>
= (m, , m2, m4, m, 1

Then between builds j and k two new modules, m7 and m, are
added and module m2 is deleted giving

Mk = M i U M P - M i A
0

= iml 9 m 2 , m49 m5)v iml, % k i m 2 1
= i m p "4 3 m,, m7 > m, 1

With a suitable baseline in place, it is possible to measure
software evolution across a full spectrum of software metrics.
We can do this first by comparing average metric values for
the different builds. Secondly, we can measure the increase
or decrease in system complexity as measured by the changes
in the domain metrics, or we can measure the total amount of
change the system has undergone across all of the builds to
date.

The change in domain score in a single module between
two builds may be measured as the absolute value of the
difference in domain scores on these two builds. We will call
this code chum measure domain churn. In the case of code
churn, what is important is the absolute measure of the nature
that code has been modified. From the standpoint of fault
introduction, removing substantial amounts of code is proba-
bly as catastrophic as adding a large amount.

Let d? represent the ilh domain score of the urh module
on build j baselined by build B. The new measure of domain

chum, , for module m, is simply x ~ h =Id;/ -dn.h . That
is, the domain chum may be established by computing the
baselined domain scores for any two builds and then find
the absolute difference between these values. This repre-
sents the relative amount of change activity that there has
been on each of the three domains between any two builds.

Now we wish to characterize, or measure, the complete
change to the system over all of the builds from build 0 to
build L. Many modules, however, may have come and gone
over the course of the evolution of the system. We are only
interested in the history of the survivors; those modules that
are now in the final build L.

It is now possible to compute the total domain change
activity for the aggregate system across all of the system
builds. The total domain change activity of the system for
module m, on domain i is the sum of the domain chum for

1.1

Regression
Residual

Total

this module from the point of its first introduction to the
final build L is given by

I

Squares Square
2419 3 806.547 53 p<0.05

10073 668 15.0%
12493 671

The value of the domain chum Xk for each module is, of
course, dependent on the referent baseline build B.

Let us also observe that if module ma were not present
on builds j and j + l , then x p = 0. Also, if module m, had
been introduced on build j + l then x k j + l = Id:/+’/.

9. Relationships Between the Different Soft-
ware Fault Counts and Change Activity

As a software system evolves through a number of se-
quential builds, faults will be identified and the code will be
changed in an attempt to eliminate the identified faults. The
introduction of new code however, is a fault prone process
just as the initial code generation was. Faults are introduced
during this evolutionary process.

Source code may change for two distinct reasons. First,
some changes to code during its evolution represent en-
hancements, design modifications, or changes in the code in
response to evolving requirements. Second, the code may
be changed as part of the fault repair process. Both of these
types of incremental code enhancements may also result in
the introduction of faults. Thus, as a system progresses
through a series of builds, the domain scores of each pro-
gram module that has been altered must also change. The
conjecture we have been exploring is that the rate of change
in these domains should serve as a good index of the rate of
fault introduction.

To this end, we computed domain scores all of the builds
of the MDS system. These domain scores were baselined
relative to the July 7,2001 build of the system, a build more
or less intermediate in the sequence of builds. In general, it
is not a good practice to use an initial build as a baseline
build, since the initial build is generally quite incomplete.

The next step in this investigation was to compute the
fault count for each program module. The driving force be-
hind this measurement process was the Intemal Anomaly
Report (IAR). All changes to the software were tracked un-
der the CCC Harvest version control system (now incorpo-
rated into Computer Associates’ CM systems - see [CA02]).
Each change to a program module was made either as an
enhancement or in response to a particular IAR. If a module
code delta was attributed to an IAR, then the faults attributed
to that change were calculated using the three different tech-
niques described in Section 6.

Once the three different fault counts had been established
for each incremental module version, each type of fault count
was accumulated so that by the final build a cumulative fault
count of that type was available for each module in the final
build. The fault counts for modules not in the final build, of
course, vanished with the module domain churn values when
the modules disappeared from the evolving builds.

We now have, for each module in the final version of the
system, three different measures of the number of faults that
have been found in that module to date. We also have cumu-
lative domain churn values for each of the three orthogonal
domains. To investigate the relationship between the fault
content of models and the domain metrics, we now elimi-
nated those modules whose fault count was zero. There are
two very good reasons for eliminating these modules. First, a
zero fault count for a module on the last build does not imply
that there are no faults in this module. It could very well
mean that the faults have yet to be discovered. Second, ap-
proximately 90% of the modules in the final build have zero
fault values. They would clearly dominate any regression
model that was developed using them.

With the data from the remaining modules, we developed
three multiple linear regression models, one for each type of
fault count, with the cumulative fault count as the dependent
variable and the domain chum values as independent vari-
ables. The regression ANOVAs for these analyses are shown
in Table 4, Table 5, and Table 6. It is clear that for each type of
fault count, there is a significant relationship between domain
chum and a module’s fault burden. That is, there is a distinct
association with module change activity as measured by each
of the three distinct criterion measures and the module do-
main chum metrics as a measure of code evolution.

S

Table 5 - Regression ANOVA - “Sed” Command Counts
I Source I Sumof I df I Mean I F I Sie. 1

Table 6 - Regression ANOVA - Module Change Counts
I Source I Sumof 1 df I Mean I F I Sig. 1

Domain 1 Churn
Domain 2 Churn
Domain 3 Churn

The regression models corresponding to the different
types of fault counts are shown in Table 7, Table 8, and Table
9. For the models corresponding to the fault counts pro-
duced by computing token differences or counting the num-
ber of “sed” commands, Domain 1 is significant. For the
model produced with token difference fault counts, Domain
1 dominates, and Domains 2 and 3 do not contribute to our
understanding of the fault introduction process. The regres-
sion coefficients for these terms are not significant (pH.05).
For the model produced with fault counts produced by
counting “sed” commands, Domain 2 does contribute to our
understanding of the fault insertion mechanism, and indeed
dominates the model. Finally, for the model produced with
fault counts computed from the number of modules
changed, Domains 2 and 3 are the important factors in this
model. Domain 1 does not play a significant role.

T ts

Table 8 - Repression Model 2 - ‘Sed” Command Counts

0.009 1.041 pz.05
0.143 8.920 p <.05

-0.043 4.483 p<.O5

Table 9 - Regression Model 3 - Module Change Counts
Model I Coefficients I t I Sig.

(Constant) I 1.20d35.9951 p<.05

For the model developed using fault counts based on a
count of the number of “sed” commands implementing the
required changes, Domains 1 and 2 were significant. The
metrics most closely associated with Domain 2 are the counts
of the unique operators and unique operands; we can infer
that for this model, the fault burden is most closely associ-
ated with change activity in those modules having the great-
est change made to 1) the data items they process, and 2)
their control structure.

For the model developed using fault counts based on a
count of the number of modules that changed in response to a
reported failure, Domains 2 and 3 were significant. Accord-
ing to Table 2, the metric most closely associated with Do-
main 3 is the number of paths through the module. For this
model, then, the fault burden is most closely associated with
change activity in those modules having the greatest change
made to 1) the data items they process, and 2) the number of
paths through the module.

Table 10 -Model Quality
I Model I R IAdiustedI Std. Error of I

107.1
Model 2

The three regression models, however, are not at all simi-
lar when we examine their predictive quality as measured by
the Rz statistic. This statistic is the ratio of sums of squares
due to regression to the sums of squares total. Finally, we
want to know something about the relative quality of the re-
gression model that we have developed. These data are
shown in Table 10. We can see from this table that for the
model obtained from fault counts based on token differences
(Model l), the adjusted Rz is approximately 0.61. This
means, roughly, that we can account for approximately 60%
of the variation in the cumulative fault count with the cumu-
lative domain churn for Domain 1. This is a very respectable
value for the limited metric set that the Darwin tool currently
uses. For Models 2 and 3, we see that we can only account
for a considerably smaller (less than 20%) percentage of the
variation in the cumulative fault count with the cumulative
churn in Domains 1,2, and 3.

Within the framework of this investigation, it is evident
that we can develop higher quality fault predictors using fault
counts based on token differences than either of the other
types of fault counts described in Section 6. Furthermore,
the highest quality fault predictor seems to be the simplest.
In the module change model shown in Table 9, the dominant
factor was measurable changes in the control structure of a
module. Among the set of 12 metrics used in this investiga-
tion, those metrics most closely associated with the observed
variation in software faults were the control metrics shown in
the first principal component (Domain 1) of Table 2.

10. Discussion and Future Work
We have seen that the method by which faults are

counted can have a significant effect on the fault predictors
developed using those counts. Of the predictors developed
as part of this study, the one having the highest quality was
based on the fault counting technique we developed in an
earlier phase of this work. We have also seen that by using
an appropriate fault counting technique, predictors with a
relatively high degree of accuracy can be developed. For
the predictor developed from fault counts based on token
differences, about 60% of the variation in the cumulative
fault count was explained by our set of measurements, al-
though the number of measurements used in the study was
rather limited. This is a sufficiently large value for devel-
opment efforts to start using these measurements as a man-
agement tool. Software managers should be able to use
these measurements to:

Identify modules having the highest fault burden.
0 Determine how many more faults a given module has

had inserted into it than another module.
A driving force behind our research has been the quest

for a scientific means of defining the notion of a fault and
quantifying the measurement of these faults. Faults come in
different sizes. Some are really small. Some represent
really egregious hacks to the code. These differences in size
will clearly have an impact on the fault repair process.

As a measure of the success of our endeavors, it is now
possible to describe to other researchers exactly what we
considered to be a fault. It is now possible to communicate
to other researchers in software reliability exactly how we
got the measurements that we did. This is the essence of
science.

We have, then, developed a functional definition of
software faults that can be applied to source code revision
management systems for the automatic measurement of
software faults. Further, this definition allows faults to be
unambiguously measured at the level of individual modules.
Since faults are measured at the same level at which struc-
tural measurement are taken, it becomes more feasible to
construct meaningful models relating the number of faults
inserted into a software module to the amount of structural
change made to that module. This measurement process
makes it much more practical to analyze large software sys-
tems such as those developed to support NASA flight mis-
sions. In other words, faults may be quantified by a soft-
ware tool that can analyze the deltas in code modules main-
tained by the configuration control system and measure
those changes specifically attributable to failure reports.

Future work will involve investigation of these relation-
ships for additional software development efforts at JPL and
other NASA centers. Although fault counts based on token
differences resulted in the highest quality fault predictor for
this study, there is insufficient data at this point to general-
ize this conclusion. Detailed analysis of additional software

development efforts is required before more general conclu-
sions can be reached. We have started collaborative efforts
with additional projects at JPL to perform this investigation;
we have also started working with the Software Assurance
Technology Center at the Goddard Space Flight Center to
investigate development efforts at other NASA centers.

We are also interested involve enlarging the set of meas-
urements taken by Darwin and determining the effect of the
enlarged set on the accuracy of the fault predictors. For in-
stance, Darwin does not currently take any measurements
specifically related to objects (e.g., number of methods, depth
of an object in the class hierarchy). Future versions of Dar-
win might well implement the object-oriented measures pro-
posed by Chidamber and Kemerer [Chid94]. Our criterion
for including these new metrics into the Darwin system, of
course, is that they are able to 1) identify new sources of
variation in the metric space and 2) that the explain addi-
tional variation in our fault criterion measure.

The Darwin network appliance is still in its period of in-
fancy. It presently incorporates a relatively simple metric
analysis tool that is capable of explaining at least 60% of the
variation in our software fault measure. The main issues that
had to be solved first in the measurement process were infra-
structure problems. We are now able, however, to track all
aspects of software source evolution. Mechanisms are in
place to measure software faults very precisely as described
in [MunsO2]. Mechanisms are also in place to automate the
complete measurement of a rapidly evolving software sys-
tem. As a preliminary report and investigation, the Darwin
measurement system has clearly established itself as a viable
tool for the understanding of the etiology of software faults
and their relationship to software attribute that can be meas-
ured.

There may be uncontrolled sources of noise, which we
intend to address in future work. For example, developers
might be making enhancements to the system at the same
time they are responding to a reported failure. In this case,
the enhancements would be counted as repairs made in re-
sponse to the failure. Addressing this issue will involve se-
lecting an appropriate subset of the reported failures and in-
terviewing developers about the changes made in response to
those failures. We will be careful to select representative
failures from all system components to control for the noise
inserted by each development team. We will also select re-
ported failures from different times during the development
effort, to determine whether the number of enhancements
reported as fault repair changes over time.

Acknowledgments
The work described in this paper was carried out at the Jet

Propulsion Laboratory, California Institute of Technology.
This work is sponsored by the National Aeronautics and
Space Administration’s IV&V Facility. The authors wish to
thank the MDS project for the cooperation that made this
study possible.

References
[CA02]

[Cede931

[Chid941

[Cyla03]

[Di184]

[Dvo99]

[Ghok97]

[HaIlOO]

[IEEE83]

[IEEE88]

[IEEE93]

[KhOSO 1]

Computer Associates, “AlIFusion Harvest Change
Manager Features, Descriptions & Benefits”, Feb.
11,2002, available at:
htt~://www3.ca.com/FiledFactSheet/af harvest cm
fdb.odf
Per Cederqvist, “Version Management with CVS for
CVS l.ll.IpI”, available at:
httv:Nwww.cvshome.org/docs/manual/.
S. Chidamber, C. Kemerer, “A Metrics Suite for
Object Oriented Design”, IEEE Transactions on
Software Engineering, vol. 20, no. 6, June, 1994, pp.
476-493.
“The Darwin Software Engineering Measurement
Appliance”, Cylant, httu://www.cvlant.com/
W. Dillon, M. Goldstein, Multivariate Analvsis:
Methods and Aodications, Wiley-Interscience,
1984, ISBN 0471083178
D. Dvorak, R. Rasmussen, G. Reeves, A. Sacks,
“Software Architecture Themes In JPL’s Mission
Data System”, AIAA Space Technology Conference
and Exposition, September 28-30, 1999, Albuquer-
que, NM.
S. S. Gokhale, M. R. Lyu, “Regression Tree Model-
ing for the Prediction of Software Quality”, proceed-
ings of the Third ISSAT International Conference on
Reliability and Quality in Design, pp 31-36, Ana-
heim, CA, March 12-14, 1997
G. A. Hall and J. C. Munson, “Software evolution:
code delta and code chum”, Joumal of Systems and
Software 54 (2) (2000) pp. 11 1-1 18
“IEEE Smdard Glossary of Software Engineering
Terminology”, IEEE Std 729-1983, Institute of Elec-
trical and Electronics Engineers, 1983.
“IEEE Standard Dictionary of Measures to Produce
Reliable Software”, IEEE Std 982.1-1988, Institute
of Electrical and Electronics Engineers, 1989.
“IEEE Standard Classification for Software Anoma-
lies”, IEEE Std 1044-1993, Institute of Electrical
and Electronics Engineers, 1994.
T. Khoshgoftaar, “An Application of Zero-Inflated
Poisson Regression for Software Fault Prediction”,
proceedings of the 12th Intemational Symposium on
Software Reliability Engineering, pp 66-73, Hong
Kong, Nov, 2001.

[UOSO I a]

[MunBO]

[Muns98]

[MunsOZ]

[MunsOZa]

[Niko97]

[Niko98]

[NikoOl]

[Schn97]

[SChnOl]

T. M. Khoshgoftaar, E. B. Allen, “Modeling Soft-
ware Quality with Classification Trees”, in H. Pham
(ed), Recent Advances in Reliability and Quality
Engineering, Chapter 15, pp 247-270, World Scien-
tific Publishing, Singapore, 2001.
J. C. Munson and T. M. Khoshgoftaar, “Regression
Modeling of Software Quality,’’ Information and
Software Technology, Vol. 32 No. 2 March 1990,

J. Munson and A. Nikora, “Estimating Rates Of
Fault Insertion And Test Effectiveness In Software
Systems” Proceedings of the Fourth ISSAT Interna-
tional Conference on Reliability and Quality in
Design, August 12-14, 1998 pp. 263-269.
J. Munson, A. Nikora, ”Toward a Quantifiable
Definition of Software Faults”, Proceedings of the
13th IEEE Intemational Symposium on Software
Reliability Engineering, IEEE Press.
J. Munson, Software Eneineerine Measurement,
CRC Press, 2002, ISBN 08493 15034.
A. Nikora, J. Munson, “Finding Fault with Faults: A
Case Study”, with J. Munson, proceedings of the
Annual Oregon Workshop on Software Metrics,
Coeur d’Alene, ID, May 11-13, 1997.
A. P. Nikora, J. C. Munson, “Determining Fault
Insertion Rates For Evolving Software Systems”,
proceedings of the 1998 IEEE Intemational Sympo-
sium of Software Reliability Engineering, Pader-
bom, Germany, November 1998, IEEE Press.
A. Nikora, J. Munson, “A Practical Software Fault
Measurement and Estimation Framework”, Indus-
trial Presentations proceedings of the 12th Intema-
tional Symposium on Sohare Reliability Engineer-
ing, Hong Kong, Nov 27-30,2001.
N. F. Schneidewind, “Software Metrics Model for
Integrating Quality Control and Prediction“, pro-
ceedings of the 8th Intemational Symposium on
Software Reliability Engineering, pp 402-415, Al-
buquerque, NM, Nov, 1997.
N. F. Schneidewind, “Investigation of Logistic Re-
gression as a Discriminant of Software Quality’l,
proceedings of the 7th Intemational Software Met-
r i c ~ Symposium, pp 328-337, London, April, 2001.

pp. 105-114.

http://httu://www.cvlant.com

