
Developing Fault Models for Space Mission Software

Allen P. Nikora
Jet Propulsion Laboratory,

California Institute of Technology
Pasadena, CA 91 109-8099

Allen. P. Nikoraapl. nasa.gov

Abstract

Over the past several years, we have focused on de-
veloping fault models for space mission sofiware. In
general, these models use measurable attributes of a
sofiware system and its development process to estimate
the number of faults inserted into the system during its
development; their outputs can be used to better estimate
the resources to be allocated to fault identification and
removal for all system components. Working with the
Mission Data System at JPL, we have identified relation-
ships between the amount of structural change made to a
software system its development and the number of faults
inserted into it. To develop fault models, practical
mechanisms for measuring a software system s structural
change and the number of faults inserted into it must be
implemented. We discuss the required attributes of these
mechanisms and their impzementation at JPL.

1. Introduction

Over the past several years, a great deal of work has
been done in the area of using measurements of software
systems to identify fault-prone components and predict
their fault content. This would allow software developers
to more accurately identify fault-prone components of the
system, estimate the number of faults inserted into a
software system at various points during its development,
and estimate the resources that would need to be applied
to the fault identification and removal efforts for specific
system components. Examples of this work include the
classification methods proposed by Khoshgoftaar and
Allen [l] and by Ghokale and Lyu [2], Schneidewind’s
work on Boolean Discriminant Functions [3],
Khoshgoftaar’s application of zero-inflated Poisson re-
gression to predicting software fault content [4], and
Schneidewind’s investigation of logistic regression as a
discriminant of software quality [5]. Each of these efforts
has provided useful insights into the problem of identify-

John C. Munson
Computer Science Department

University of Idaho

jmunson@cs. uidaho. edu
MOSCOW, ID 83844-1 01 0

ing fault-prone software components and estimating
software components’ fault burden prior to test.

However, all of these efforts analyzed a snapshot of
the subject system, rather than examining its evolution
during development. This may have limited the validity
of those efforts’ conclusions to the point in the develop-
ment life cycle when the measurements were made. If,
however, the entire evolution of a software system were
to be analyzed, the conclusions should be applicable to
any point in the development cycle of the artifact being
studied. With this goal in mind, we conducted a small
study on of the CASSINI flight software several years
ago [6, 71. During this study, we discovered that the
number of faults inserted into that system during its de-
velopment was directly proportional to the measured
amount of structural change. However, there were two
limitations to this study:

The study was relatively small - fewer than 50 ob-
servations were used in the regression analysis re-
lating the number of faults inserted to the amount
of structural change.
The definition of faults that was used was not
quantitative. The ad-hoc taxonomy, first described
in [8], was an attempt to provide an unambiguous
set of rules for identifying and counting faults. The
rules were based on the types of changes made to
source code in response to failures reported in the
system. Although the rules provided a way of
classifying the faults by type, and attempted to ad-
dress faults at the level of individual functions or
methods (modules), they were not sufficient to en-
able repeatable and consistent fault counts by dif-
ferent observers to be made. The rules in and of
themselves were unreliable.

We started working in collaboration with the Mission
Data System (MDS) at JPL [9] in the fall of 2000 with
the goals of:

Overcoming the limitations of the CASSINI study,
and

http://nasa.gov

0 Developing practical software measurement tech-
niques that could be infused into space mission
software development efforts at JPL and other
NASA centers to improve developers’ ability to
control software quality.

The amount of data available from the MDS over-
came the first limitation of the earlier study of CASSINI.
We measured the structural evolution of the MDS and the
number of faults repaired over a period beginning on
October 20, 2000, and ending on April 26, 2002. Over
that time, we counted over 15000 distinct modules and
more than 1500 builds of the MDS. The total number of
distinct versions of all modules was greater than 65,000.
Over 1400 problem reports were included in the analysis;
these problem reports provided the information from
which the number of repaired faults was computed. By
developing a quantitative definition of software faults
[lo], we were able to overcome the second limitation of
the earlier study.

Our analysis of the measurements taken of these
MDS artifacts confirmed the results of the earlier study
by showing statistically significant relationships between
the measured amount of structural change a software sys-
tem undergoes during its development and the number of
faults inserted into that system [12]. Briefly, the number
of faults inserted into a software component once it has
been created is directly proportional to the amount of
structural change made to that component over its life-
time - over 60% of the variation in the number of faults
repaired was explained by the measurements of the sys-
tem’s structural evolution. We were also able to extend
the results of the earlier study by differentiating between
changes that would be more likely to result in faults and
changes that would be less likely to do so [13]. We are
now starting to infuse the measurement techniques devel-
oped during this study into other JPL and NASA software
development efforts. The remainder of the paper dis-
cusses the required characteristics of the measurement
mechanisms, their current implementation at JPL, and our
plans for future work.

2. Measurement Mechanisms for Develop-
ing Fault Models

To develop fault models, mechanisms for measuring
a software system’s structural and development process
characteristics must be implemented, as must mechanisms
for measuring the number of faults inserted into the sys-
tem. Fault models are developed using the measurements
of the system’s structure and its development process as
independent variables, and the number of faults discov-
ered as the dependent variable. Our experience indicates
that these mechanisms must have the following character-
istics:

The mechanisms must provide repeatable and
accurate measurements of the system’s structural
characteristics, its development process, and the
number of faults inserted into that system. Meas-
uring the structural attributes of a software system
is a straightforward activity; numerous measure-
ment tools are available to take the required meas-
urements. Measuring the number of faults inserted
into the system is a more complicated problem, re-
quiring a precise notion of what constitutes a soft-
ware fault. The development process may be char-
acterized in several ways. For instance, the devel-
opment process may be characterized in the same
way as the COCOMO and COCOMO I1 cost mod-
els [14, 151. We could also determine the extent to
which a development process is consistent with a
given set of Key Process Areas of the Software
Engineering Institute’s Capability Maturity Model
[16, 171, or use a classification scheme similar to
that described by McCall et al. [181.
Structural attributes, development process
characteristics, and the number of faults in-
serted should be measured at the same level of
detail. If we measure structural characteristics of a
software system at the level of individual modules,
we should also measure the number of inserted
faults and development process characteristics at
that same level in order to develop fault models
that can be used to estimate the fault content of in-
dividual modules.
The perceived benefit of making these meas-
urements must outweigh the perceived costs of
the measurement activity. In practical terms, this
usually means that developers should not be re-
quired to expend any effort in obtaining the re-
quired measurements. This can be achieved by
automating the measurement process and making it
invisible to the development teams (i.e., the meas-
urement process must not have any noticeable ef-
fect on the development environment). In our ex-
perience, software developers have little or no ex-
perience with static software measurement. If they
are confronted with the measurement task, they
will simply fail to do it.

3. A Measurement System Implementation

As part of our collaboration with the MDS, we have
implemented and installed a system to obtain and manage
the structural and fault measurements required to develop
fault models [19, 201. Since the system is designed to
manage measurements of software evolution, we have
named it Darwin. Darwin is a software engineering man-
agement system for tracking the progress of evolving

software systems. It is a repository for all of the engi-
neering data surrounding software development and
software test. It is a web server that permits developers
and testers to interact with the system. It is an analytical
tool that provides the measurement capabilities for both
software development and software test. All management
aspects of the software development and testing process
are to be maintained by the Darwin system.

The Darwin software system resides in a network
appliance computer (NA) attached to the local intranet
connecting systems analysts, software developers, soft-
ware testers, software managers, and the software quality
staff. The measurement database, the metric tools, and
all of the ancillary support software for Darwin are all
serviced from this machine. To interact with the system a
user will visit a web site on the server and will then be
linked through web pages provided by the appliance to
the appropriate application. This network appliance ap-
proach greatly simplifies the problem of instituting a
measurement program in that it obviates the need to port
the software measurement infrastructure from platform to
another.

Of greatest importance to the whole development
process is the cogency of the information. A develop-
ment manager can see the status of the development
process essentially in real time. Specific reports on
change activity can assist in the process of setting mile-
stones and reviews. A test manager can evaluate the
status of a test process, again in near real time. The NA
is a visible aid to developers, managers, and testers. All
of the engineering data about the evolving software is
managed from this location.

On the static measurement side, Darwin is designed
to track changes to code and faults reported against spe-
cific code modules. To measure specific changes to the
source code system can be a very complex process in that
a typical large software system may have many develop-
ers working with the same code base at the same time. It
is possible to track changes to code at the individual ver-
sion level. Experience has shown that this kind of resolu-
tion is seldom, if at all, necessary. What is of primary
interest to developers and managers is the code that con-
stitutes a build.

At the point of a new build, a new build index vector
will be developed by a build manager. This build index
vector will determine which source code elements actu-
ally go to the build. On completion of the build index
vector, Darwin can be requested to measure the source
code for the build. Currently, the Darwin NA can supply
measurement tools for C and C++ with our Extended C
Metric Analyzer (ECMA) or for Java with our Java Met-
ric Analyzer (JMA). The measurement tools are a com-
ponent of the Darwin NA.

With the contents of the build index vector, Darwin
will systematically retrieve from the configuration control
system the appropriate source code elements, with the
updated versions of this code. Each source code module
will then be measured by the appropriate measurement
tool and the raw metrics for that module will then be in-
corporated into the database. It is important to observe
that the only modules that are measured by the system are
those that will result in executable code. All header files
and compiler directives will have been resolved before
the measurement process can begin.

Just as important as the process of measuring code is
the process of maintaining specific fault reports. Each
fault report will report on exactly one fault on one code
module. These fault reports are served from the NA as
web pages and are tracked by Darwin. For each change
to a system, there can be exactly two reasons for the
change. A fault has occurred or there has been a change
in the program specifications. All program changes rela-
tive to faults are tracked by Darwin.

The Darwin system is equipped with a set of stan-
dard SQL generated reports that reflect the more typical
database inquires that will be made by most managers.
Darwin tracks changes in source code across builds. One
way of characterizing software systems for reporting pur-
poses is in terms of changes to the structure of the code in
the attribute domains [l l , 191. We obtain the attribute
domain scores by performing a principal component
analysis (PCA) on the standardized raw measurements
[21]. We do this to identify the distinct orthogonal
sources of variation and map the raw metrics onto a set of
uncorrelated metrics that represent essentially the same
information contained in the original metrics - although
we may take a dozen different measurements of the sys-
tem, there will not necessarily be a dozen distinct sources
of variation. Software systems can also be characterized
in terms of the fault burden of the system as measured by
weighted sums of the attribute domains - the system Fault
Index, code chum and code deltas [l l , 191. This gives
us considerable insight as to where existing faults might
be and continuing processes that are potentially introduc-
ing new faults. These data are useful in and of them-
selves for prioritizing the software review processes. We
can devote our software review team energies to those
regions of the code where the greatest problems are likely
to be.

Figure 1 and Figure 2 show examples of the types of
reports available through the Darwin web interface.
Figure 1 shows a system-level plot of software evolution.
Each point on the plot represents an individual build of
the system. The ordinate represents the build date, while
the abscissa represents the cumulative amount of change
to the system. The system-level cumulative change is
computed by summing the cumulative amount of change

across all modules present in the system on a given build
date. Figure 2 shows the detail of an individual build.
By clicking on one of the points of the plot in Figure 1, a
sorted list giving the cumulative amount of change for
each module can be viewed. The left column specifies
the name of individual modules, and the right column
specifies the cumulative amount of change that the mod-
ule has undergone since it first appeared in the system.
This list is sorted in descending order - if the results re-
ported in [6], [7] and [12] are generally applicable, we
can interpret this list as showing the modules in decreas-
ing order of the number of faults inserted into them.

Daiir in Portd

Graph of Code Churn and Cocle Delta for
the project fdms-projcctl.

Q - v w L
,~ ~ " - ~ ~ - - - - __ ____ ___ - __-I I

Figure 1. System-Level Cumulative Change

I I

I
I

I
I

I I

Figure 2. Individual Build Change Details
Since Darwin is implemented as a NA, it has the de-

sired characteristics of a measurement mechanism de-
scribed in Section 2:

The mechanisms must provide repeatable and
accurate measurements of the system's structural
characteristics, its development process, and the
number of faults inserted into that system. The
metrics analyzers implemented in Darwin provide
repeatable structural measurements of a given
software component. We have devoted substantial

effort to developing unambiguous and quantifiable
definitions of the measurements to ensure that the
measurements obtained by Darwin will always be
consistent with the user's expectations [11, 191.
Structural attributes, development process
characteristics, and the number of faults in-
serted should be measured at the same level of
detail. Most commercially available tools make
structural measurements at the level of individual
modules. This is also true of the measurement
tools implemented as part of Darwin. As far as
measuring faults is concerned, some of our recent
work has resulted in the development of a method
of measuring the number of faults repaired in indi-
vidual modules [lo]. If we know which versions
of which source files implement the repairs in re-
sponse to a given problem report, we can do a dif-
ferential comparison between the repaired files and
the files containing the faults. We then analyze the
differential comparison to count the number of to-
kens that have changed between the faulty version
and the repaired version of each file. We take this
count to be the number of repaired faults. By
knowing the location of each module within the
file, we can allocate the count of faults repaired to
individual modules. The way in which CCC Har-
vest [22], the MDS configuration management sys-
tem, is configured makes it particularly straight-
forward to identifj the modules that have been re-
paired in response to any given failure report.
When a new failure report is created in the prob-
lem reporting system, a new change package is
automatically opened in CCC Harvest. The
change package represents an empty container into
which a developer will place the appropriate
source files once they have been repaired. CCC
Harvest will record the names and versions of the
source files that have been placed into the change
package. The naming convention for change
packages differentiates between those changes
made in response to reported problems and
changes made to modify the system's functional-
ity. CCC Harvest's reporting capability allows us-
ers to retrieve details about the changes that were
made for any given change package,
The perceived benefit of making these meas-
urements must outweigh the perceived costs of
the measurement activity. Since Darwin is im-
plemented as a network appliance, all of the meas-
urement and reporting mechanisms reside outside
of the development environment. Developers are
not required to exert any effort in obtaining meas-
urements other than ensuring that the NA has a
current copy of the configuration management re-

pository from which it can obtain measurements.
In ‘the case of the MDS, this is nothing more than
creating a copy of the configuration management
repository that can be transferred to the NA. De-
velopers need not be burdened even with this task;
our experience with MDS indicates that this is a
task that can be easily performed by members of a
project’s software quality staff. Since there are no
measurement or reporting mechanisms imple-
mented in the development environment, a devel-
opment organization will not experience any ad-
verse effects related to a failure of these mecha-
nisms.

4. Discussion and Future Work

To obtain the types of measurements required to de-
velop fault models for software systems, we have devel-
oped Darwin, a software engineering management sys-
tem, and deployed it in collaboration with the MDS de-
velopment effort. Currently, we are using Darwin to ob-
tain static measurements only; we have succeeded in
measuring MDS structural evolution and fault repair
counts at the module level over an 1 8-month period. We
have used this information to confirm with greater accu-
racy earlier work on relationships between measurements
of structural change and the fault insertion rate; we have
also been able to extend the earlier work by differentiat-
ing between types of change more likely to result in the
insertion of faults and those types of change less likely to
do so. Future work includes infusing Darwin’s capability
to track dynamic measurements - failure reports and test
execution profiles - into the MDS and other collaborating
JPL and NASA software development efforts. By com-
bining these dynamic measurements with the static meas-
urements of software evolution and fault repairs, it will
become possible to:

Estimate the fault-finding effectiveness of a given
set of test cases and procedures, and
Make estimates of a software system’s risk of ex-
posure to residual faults.

To date, we have made no significant use of meas-
ured development process characteristics in developing
fault models. First of all, the development process char-
acteristics we are able to measure apply to the entire sys-
tem, rather than to individual modules. This means it
would be necessary to analyze several projects in order to
say anything meaningful about the effect of the develop-
ment process on fault insertion rates. A rule of thumb
states that in developing a model, one should have four
observations for every parameter in that model. If we
were to characterize the development process as de-
scribed in [15], we would need to analyze approximately
80 different development efforts. At this point, we have

simply not accumulated the required number of observa-
tions. As part of our future work, we would like to exam-
ine in greater detail the effect of the development process
on fault insertion rates. By infusing the Darwin network
appliance into additional JPL and NASA * development
efforts, we hope to be able to obtain the required meas-
urements.

As it stands, Darwin can be deployed for a wide va-
riety of software development efforts. Since it is imple-
mented as a network appliance apart from the develop-
ment environment, measurement activities are invisible to
the development team - there is no additional effort on
their part required to perform the measurement activities,
and any unexpected behavior of the measurement system
will not adversely impact the development team. The
web-based reporting mechanism allows development
teams, testers, and managers to easily obtain the relevant
information to make informed decisions about the soft-
ware development process and the software qual-
ityttesting process.

Acknowledgments

The work described in this paper was carried out at
the Jet Propulsion Laboratory, California Institute of
Technology. This work is sponsored by the National
Aeronautics and Space Administration’s IV&V Facility.
The authors wish to thank the MDS project for the coop-
eration that made this study possible.

References

r11

121

[31

141

r51

T. M. Khoshgoftaar, E. B. Allen, “Modeling Software
Quality with Classification Trees”, in H. Pham (ed),
Recent Advances in Reliability and Quality Engineer-
ing, Chapter 15, pp 247-270, World Scientific Pub-
lishing, Singapore, 2001.
S . S. Gokhale, M. R. Lyu, “Regression Tree Model-
ing for the Prediction of Software Quality”, proceed-
ings of the Third ISSAT Intemational Conference on
Reliability and Quality in Design, pp 31-36, Ana-
heim, CA, March 12-14, 1997
N. F. Schneidewind, ”Software Metrics Model for
Integrating Quality Control and Prediction”, proceed-
ings of the 8th Intemational Symposium on Software
Reliability Engineering, pp 402-41 5, Albuquerque,
NM, Nov, 1997.
T. Khoshgoftaar, “An Application of Zero-Inflated
Poisson Regression for Software Fault Prediction”,
proceedings of the 121h Intemational Symposium on
Software Reliability Engineering, pp 66-73, Hong
Kong, Nov, 2001.
N. F. Schneidewind, “Investigation of Logistic Re-
gression as a Discriminant of Software Quality”, pro-
ceedings of the 7th Intemational Software Metrics
Symposium, pp 328-337, London, April, 2001.

[71

[81

191

J. Munson and A. Nikora, “Estimating Rates Of Fault
Insertion And Test Effectiveness In Software Sys-
tems,” Proceedings of the Fourth ISSAT Intema-
tional Conference on Reliability and Quality in De-
sign, August 12-14, 1998 pp. 263-269.
A. P. Nikora, J. C. Munson, “Determining Fault In-
sertion Rates For Evolving Software Systems”, pro-
ceedings of the 1998 IEEE International Symposium
of Software Reliability Engineering, Paderborn, Ger-
many, November 1998, IEEE Computer Society
Press.
A. Nikora, J. Munson, “Finding Fault with Faults: A
Case Study”, with J. Munson, proceedings of the
Annual Oregon Workshop on Software Metrics,
Coeur d’Alene, ID, May 11-13, 1997.
D. Dvorak, R. Rasmussen, G. Reeves, A. Sacks,
“Software Architecture Themes In JPL’s Mission
Data System”, AIAA Space Technology Conference
and Exposition, September 28-30, 1999, Albuquer-
que, NM.
J. Munson, A. Nikora, “Toward a Quantifiable Defi-
nition of Software Faults”, Proceedings of the 13Ih
IEEE International Symposium on Software Reliabil-
ity Engineering, IEEE Press.
J. Munson, Software Engineering Measurement, CRC
Press, 2003.
A. Nikora, J. Munson, “Developing Fault Predictors
for Evolving Software Systems”, submitted to the 9th
International Symposium on Software Metrics, Sep-
tember 3-5,2003, Sydney, Australia
A. Nikora, J. Munson, “Understanding the Nature of
Software Evolution”, submitted to the International
Conference on Software Maintenance, September 22-
26, 2003, Amsterdam, The Netherlands

B. W. Boehm, Software Engineering Economics,
Prentice-Hall, Inc., 1981.
B. Boehm, B. Clark, E. Horowitz, C . Westland, R.
Madachy, R. Selby, “Cost Models for Future Soft-
ware Life Cycle Processes: COCOMO 2.0,” Annals
of Software Engineering, volume 1, J.C. Baltzer
Science Publishers, Amsterdam, The Netherlands,

Mark C. Paulk, Bill Curtis, Mary Beth Chrissis,
Charles V. Weber, “Capability Maturity ModelSM for
Software, Version 1.1 ”, Technical Report CMUISEI-
93-TR-024 ESC-TR-93-177 Feb 1993.
Mark C. Paulk, Charles V. Weber, Suzanne M. Gar-
cia, Mary Beth Chrissis, Marilyn Bush, “Key Prac-
tices of the Capability Maturity ModelSM, Version
1. l”, Technical Report CMU/SEI-93-TR-025 ESC-
TR-93-178, Feb, 1993.
J. McCall, J. Cavano, ”Methodology for Software
Reliability Prediction and Assessment,” Rome Air
Development Center (W C) Technical Report
RADC-TR-87-171. volumes 1 and 2, 1987
“Specifications For the Darwin Network Appliance”,
Cylant, March, 2002
“The Darwin Software Engineering Measurement
Appliance”, Cylant, www.cvlant.com
William R. Dillon, Matthew Goldstein, Multivariate
Analvsis: Methods and Auulications, Wiley-Inter-
science, August 1984, ISBN: 0471083178
Computer Associates, “AllFusion Harvest Change
Manager Features, Descriptions & Benefits”, Feb. 1 1,
2002, available at:
httu://www3.ca.com/Files/FactSheet/af harvest cm f
U f

1995, pp. 57-94.

http://www.cvlant.com

