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Abstract 

Over the past several years, we have focused on de- 
veloping fault models for space mission sofiware. In 
general, these models use measurable attributes of a 
sofiware system and its development process to estimate 
the number of faults inserted into the system during its 
development; their outputs can be used to better estimate 
the resources to be allocated to fault identification and 
removal for all system components. Working with the 
Mission Data System at JPL, we have identified relation- 
ships between the amount of structural change made to a 
software system its development and the number of faults 
inserted into it. To develop fault models, practical 
mechanisms for measuring a software system s structural 
change and the number of faults inserted into it must be 
implemented. We discuss the required attributes of these 
mechanisms and their impzementation at JPL. 

1. Introduction 

Over the past several years, a great deal of work has 
been done in the area of using measurements of software 
systems to identify fault-prone components and predict 
their fault content. This would allow software developers 
to more accurately identify fault-prone components of the 
system, estimate the number of faults inserted into a 
software system at various points during its development, 
and estimate the resources that would need to be applied 
to the fault identification and removal efforts for specific 
system components. Examples of this work include the 
classification methods proposed by Khoshgoftaar and 
Allen [l] and by Ghokale and Lyu [2], Schneidewind’s 
work on Boolean Discriminant Functions [3], 
Khoshgoftaar’s application of zero-inflated Poisson re- 
gression to predicting software fault content [4], and 
Schneidewind’s investigation of logistic regression as a 
discriminant of software quality [5]. Each of these efforts 
has provided useful insights into the problem of identify- 
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ing fault-prone software components and estimating 
software components’ fault burden prior to test. 

However, all of these efforts analyzed a snapshot of 
the subject system, rather than examining its evolution 
during development. This may have limited the validity 
of those efforts’ conclusions to the point in the develop- 
ment life cycle when the measurements were made. If, 
however, the entire evolution of a software system were 
to be analyzed, the conclusions should be applicable to 
any point in the development cycle of the artifact being 
studied. With this goal in mind, we conducted a small 
study on of the CASSINI flight software several years 
ago [6, 71. During this study, we discovered that the 
number of faults inserted into that system during its de- 
velopment was directly proportional to the measured 
amount of structural change. However, there were two 
limitations to this study: 

The study was relatively small - fewer than 50 ob- 
servations were used in the regression analysis re- 
lating the number of faults inserted to the amount 
of structural change. 
The definition of faults that was used was not 
quantitative. The ad-hoc taxonomy, first described 
in [8], was an attempt to provide an unambiguous 
set of rules for identifying and counting faults. The 
rules were based on the types of changes made to 
source code in response to failures reported in the 
system. Although the rules provided a way of 
classifying the faults by type, and attempted to ad- 
dress faults at the level of individual functions or 
methods (modules), they were not sufficient to en- 
able repeatable and consistent fault counts by dif- 
ferent observers to be made. The rules in and of 
themselves were unreliable. 

We started working in collaboration with the Mission 
Data System (MDS) at JPL [9] in the fall of 2000 with 
the goals of: 

Overcoming the limitations of the CASSINI study, 
and 
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0 Developing practical software measurement tech- 
niques that could be infused into space mission 
software development efforts at JPL and other 
NASA centers to improve developers’ ability to 
control software quality. 

The amount of data available from the MDS over- 
came the first limitation of the earlier study of CASSINI. 
We measured the structural evolution of the MDS and the 
number of faults repaired over a period beginning on 
October 20, 2000, and ending on April 26, 2002. Over 
that time, we counted over 15000 distinct modules and 
more than 1500 builds of the MDS. The total number of 
distinct versions of all modules was greater than 65,000. 
Over 1400 problem reports were included in the analysis; 
these problem reports provided the information from 
which the number of repaired faults was computed. By 
developing a quantitative definition of software faults 
[lo], we were able to overcome the second limitation of 
the earlier study. 

Our analysis of the measurements taken of these 
MDS artifacts confirmed the results of the earlier study 
by showing statistically significant relationships between 
the measured amount of structural change a software sys- 
tem undergoes during its development and the number of 
faults inserted into that system [12]. Briefly, the number 
of faults inserted into a software component once it has 
been created is directly proportional to the amount of 
structural change made to that component over its life- 
time - over 60% of the variation in the number of faults 
repaired was explained by the measurements of the sys- 
tem’s structural evolution. We were also able to extend 
the results of the earlier study by differentiating between 
changes that would be more likely to result in faults and 
changes that would be less likely to do so [13]. We are 
now starting to infuse the measurement techniques devel- 
oped during this study into other JPL and NASA software 
development efforts. The remainder of the paper dis- 
cusses the required characteristics of the measurement 
mechanisms, their current implementation at JPL, and our 
plans for future work. 

2. Measurement Mechanisms for Develop- 
ing Fault Models 

To develop fault models, mechanisms for measuring 
a software system’s structural and development process 
characteristics must be implemented, as must mechanisms 
for measuring the number of faults inserted into the sys- 
tem. Fault models are developed using the measurements 
of the system’s structure and its development process as 
independent variables, and the number of faults discov- 
ered as the dependent variable. Our experience indicates 
that these mechanisms must have the following character- 
istics: 

The mechanisms must provide repeatable and 
accurate measurements of the system’s structural 
characteristics, its development process, and the 
number of faults inserted into that system. Meas- 
uring the structural attributes of a software system 
is a straightforward activity; numerous measure- 
ment tools are available to take the required meas- 
urements. Measuring the number of faults inserted 
into the system is a more complicated problem, re- 
quiring a precise notion of what constitutes a soft- 
ware fault. The development process may be char- 
acterized in several ways. For instance, the devel- 
opment process may be characterized in the same 
way as the COCOMO and COCOMO I1 cost mod- 
els [14, 151. We could also determine the extent to 
which a development process is consistent with a 
given set of Key Process Areas of the Software 
Engineering Institute’s Capability Maturity Model 
[16, 171, or use a classification scheme similar to 
that described by McCall et al. [ 181. 
Structural attributes, development process 
characteristics, and the number of faults in- 
serted should be measured at the same level of 
detail. If we measure structural characteristics of a 
software system at the level of individual modules, 
we should also measure the number of inserted 
faults and development process characteristics at 
that same level in order to develop fault models 
that can be used to estimate the fault content of in- 
dividual modules. 
The perceived benefit of making these meas- 
urements must outweigh the perceived costs of 
the measurement activity. In practical terms, this 
usually means that developers should not be re- 
quired to expend any effort in obtaining the re- 
quired measurements. This can be achieved by 
automating the measurement process and making it 
invisible to the development teams (i.e., the meas- 
urement process must not have any noticeable ef- 
fect on the development environment). In our ex- 
perience, software developers have little or no ex- 
perience with static software measurement. If they 
are confronted with the measurement task, they 
will simply fail to do it. 

3. A Measurement System Implementation 

As part of our collaboration with the MDS, we have 
implemented and installed a system to obtain and manage 
the structural and fault measurements required to develop 
fault models [19, 201. Since the system is designed to 
manage measurements of software evolution, we have 
named it Darwin. Darwin is a software engineering man- 
agement system for tracking the progress of evolving 



software systems. It is a repository for all of the engi- 
neering data surrounding software development and 
software test. It is a web server that permits developers 
and testers to interact with the system. It is an analytical 
tool that provides the measurement capabilities for both 
software development and software test. All management 
aspects of the software development and testing process 
are to be maintained by the Darwin system. 

The Darwin software system resides in a network 
appliance computer (NA) attached to the local intranet 
connecting systems analysts, software developers, soft- 
ware testers, software managers, and the software quality 
staff. The measurement database, the metric tools, and 
all of the ancillary support software for Darwin are all 
serviced from this machine. To interact with the system a 
user will visit a web site on the server and will then be 
linked through web pages provided by the appliance to 
the appropriate application. This network appliance ap- 
proach greatly simplifies the problem of instituting a 
measurement program in that it obviates the need to port 
the software measurement infrastructure from platform to 
another. 

Of greatest importance to the whole development 
process is the cogency of the information. A develop- 
ment manager can see the status of the development 
process essentially in real time. Specific reports on 
change activity can assist in the process of setting mile- 
stones and reviews. A test manager can evaluate the 
status of a test process, again in near real time. The NA 
is a visible aid to developers, managers, and testers. All 
of the engineering data about the evolving software is 
managed from this location. 

On the static measurement side, Darwin is designed 
to track changes to code and faults reported against spe- 
cific code modules. To measure specific changes to the 
source code system can be a very complex process in that 
a typical large software system may have many develop- 
ers working with the same code base at the same time. It 
is possible to track changes to code at the individual ver- 
sion level. Experience has shown that this kind of resolu- 
tion is seldom, if at all, necessary. What is of primary 
interest to developers and managers is the code that con- 
stitutes a build. 

At the point of a new build, a new build index vector 
will be developed by a build manager. This build index 
vector will determine which source code elements actu- 
ally go to the build. On completion of the build index 
vector, Darwin can be requested to measure the source 
code for the build. Currently, the Darwin NA can supply 
measurement tools for C and C++ with our Extended C 
Metric Analyzer (ECMA) or for Java with our Java Met- 
ric Analyzer (JMA). The measurement tools are a com- 
ponent of the Darwin NA. 

With the contents of the build index vector, Darwin 
will systematically retrieve from the configuration control 
system the appropriate source code elements, with the 
updated versions of this code. Each source code module 
will then be measured by the appropriate measurement 
tool and the raw metrics for that module will then be in- 
corporated into the database. It is important to observe 
that the only modules that are measured by the system are 
those that will result in executable code. All header files 
and compiler directives will have been resolved before 
the measurement process can begin. 

Just as important as the process of measuring code is 
the process of maintaining specific fault reports. Each 
fault report will report on exactly one fault on one code 
module. These fault reports are served from the NA as 
web pages and are tracked by Darwin. For each change 
to a system, there can be exactly two reasons for the 
change. A fault has occurred or there has been a change 
in the program specifications. All program changes rela- 
tive to faults are tracked by Darwin. 

The Darwin system is equipped with a set of stan- 
dard SQL generated reports that reflect the more typical 
database inquires that will be made by most managers. 
Darwin tracks changes in source code across builds. One 
way of characterizing software systems for reporting pur- 
poses is in terms of changes to the structure of the code in 
the attribute domains [ l l ,  191. We obtain the attribute 
domain scores by performing a principal component 
analysis (PCA) on the standardized raw measurements 
[21]. We do this to identify the distinct orthogonal 
sources of variation and map the raw metrics onto a set of 
uncorrelated metrics that represent essentially the same 
information contained in the original metrics - although 
we may take a dozen different measurements of the sys- 
tem, there will not necessarily be a dozen distinct sources 
of variation. Software systems can also be characterized 
in terms of the fault burden of the system as measured by 
weighted sums of the attribute domains - the system Fault 
Index, code chum and code deltas [ l l ,  191. This gives 
us considerable insight as to where existing faults might 
be and continuing processes that are potentially introduc- 
ing new faults. These data are useful in and of them- 
selves for prioritizing the software review processes. We 
can devote our software review team energies to those 
regions of the code where the greatest problems are likely 
to be. 

Figure 1 and Figure 2 show examples of the types of 
reports available through the Darwin web interface. 
Figure 1 shows a system-level plot of software evolution. 
Each point on the plot represents an individual build of 
the system. The ordinate represents the build date, while 
the abscissa represents the cumulative amount of change 
to the system. The system-level cumulative change is 
computed by summing the cumulative amount of change 



across all modules present in the system on a given build 
date. Figure 2 shows the detail of an individual build. 
By clicking on one of the points of the plot in Figure 1, a 
sorted list giving the cumulative amount of change for 
each module can be viewed. The left column specifies 
the name of individual modules, and the right column 
specifies the cumulative amount of change that the mod- 
ule has undergone since it first appeared in the system. 
This list is sorted in descending order - if the results re- 
ported in [6],  [7] and [12] are generally applicable, we 
can interpret this list as showing the modules in decreas- 
ing order of the number of faults inserted into them. 
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Figure 1. System-Level Cumulative Change 
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Figure 2. Individual Build Change Details 
Since Darwin is implemented as a NA, it has the de- 

sired characteristics of a measurement mechanism de- 
scribed in Section 2: 

The mechanisms must provide repeatable and 
accurate measurements of the system's structural 
characteristics, its development process, and the 
number of faults inserted into that system. The 
metrics analyzers implemented in Darwin provide 
repeatable structural measurements of a given 
software component. We have devoted substantial 

effort to developing unambiguous and quantifiable 
definitions of the measurements to ensure that the 
measurements obtained by Darwin will always be 
consistent with the user's expectations [ 11, 191. 
Structural attributes, development process 
characteristics, and the number of faults in- 
serted should be measured at the same level of 
detail. Most commercially available tools make 
structural measurements at the level of individual 
modules. This is also true of the measurement 
tools implemented as part of Darwin. As far as 
measuring faults is concerned, some of our recent 
work has resulted in the development of a method 
of measuring the number of faults repaired in indi- 
vidual modules [lo]. If we know which versions 
of which source files implement the repairs in re- 
sponse to a given problem report, we can do a dif- 
ferential comparison between the repaired files and 
the files containing the faults. We then analyze the 
differential comparison to count the number of to- 
kens that have changed between the faulty version 
and the repaired version of each file. We take this 
count to be the number of repaired faults. By 
knowing the location of each module within the 
file, we can allocate the count of faults repaired to 
individual modules. The way in which CCC Har- 
vest [22], the MDS configuration management sys- 
tem, is configured makes it particularly straight- 
forward to identifj the modules that have been re- 
paired in response to any given failure report. 
When a new failure report is created in the prob- 
lem reporting system, a new change package is 
automatically opened in CCC Harvest. The 
change package represents an empty container into 
which a developer will place the appropriate 
source files once they have been repaired. CCC 
Harvest will record the names and versions of the 
source files that have been placed into the change 
package. The naming convention for change 
packages differentiates between those changes 
made in response to reported problems and 
changes made to modify the system's functional- 
ity. CCC Harvest's reporting capability allows us- 
ers to retrieve details about the changes that were 
made for any given change package, 
The perceived benefit of making these meas- 
urements must outweigh the perceived costs of 
the measurement activity. Since Darwin is im- 
plemented as a network appliance, all of the meas- 
urement and reporting mechanisms reside outside 
of the development environment. Developers are 
not required to exert any effort in obtaining meas- 
urements other than ensuring that the NA has a 
current copy of the configuration management re- 



pository from which it can obtain measurements. 
In ‘the case of the MDS, this is nothing more than 
creating a copy of the configuration management 
repository that can be transferred to the NA. De- 
velopers need not be burdened even with this task; 
our experience with MDS indicates that this is a 
task that can be easily performed by members of a 
project’s software quality staff. Since there are no 
measurement or reporting mechanisms imple- 
mented in the development environment, a devel- 
opment organization will not experience any ad- 
verse effects related to a failure of these mecha- 
nisms. 

4. Discussion and Future Work 

To obtain the types of measurements required to de- 
velop fault models for software systems, we have devel- 
oped Darwin, a software engineering management sys- 
tem, and deployed it in collaboration with the MDS de- 
velopment effort. Currently, we are using Darwin to ob- 
tain static measurements only; we have succeeded in 
measuring MDS structural evolution and fault repair 
counts at the module level over an 1 8-month period. We 
have used this information to confirm with greater accu- 
racy earlier work on relationships between measurements 
of structural change and the fault insertion rate; we have 
also been able to extend the earlier work by differentiat- 
ing between types of change more likely to result in the 
insertion of faults and those types of change less likely to 
do so. Future work includes infusing Darwin’s capability 
to track dynamic measurements - failure reports and test 
execution profiles - into the MDS and other collaborating 
JPL and NASA software development efforts. By com- 
bining these dynamic measurements with the static meas- 
urements of software evolution and fault repairs, it will 
become possible to: 

Estimate the fault-finding effectiveness of a given 
set of test cases and procedures, and 
Make estimates of a software system’s risk of ex- 
posure to residual faults. 

To date, we have made no significant use of meas- 
ured development process characteristics in developing 
fault models. First of all, the development process char- 
acteristics we are able to measure apply to the entire sys- 
tem, rather than to individual modules. This means it 
would be necessary to analyze several projects in order to 
say anything meaningful about the effect of the develop- 
ment process on fault insertion rates. A rule of thumb 
states that in developing a model, one should have four 
observations for every parameter in that model. If we 
were to characterize the development process as de- 
scribed in [15], we would need to analyze approximately 
80 different development efforts. At this point, we have 

simply not accumulated the required number of observa- 
tions. As part of our future work, we would like to exam- 
ine in greater detail the effect of the development process 
on fault insertion rates. By infusing the Darwin network 
appliance into additional JPL and NASA * development 
efforts, we hope to be able to obtain the required meas- 
urements. 

As it stands, Darwin can be deployed for a wide va- 
riety of software development efforts. Since it is imple- 
mented as a network appliance apart from the develop- 
ment environment, measurement activities are invisible to 
the development team - there is no additional effort on 
their part required to perform the measurement activities, 
and any unexpected behavior of the measurement system 
will not adversely impact the development team. The 
web-based reporting mechanism allows development 
teams, testers, and managers to easily obtain the relevant 
information to make informed decisions about the soft- 
ware development process and the software qual- 
ityttesting process. 
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