
The swath segment selection problem: extending AI search techniques to a novel
real-world problem

Content Areas: search, scheduling, heuristics, geometric reasoning, automated reasoning

Abstract
We introduce the Swath Segment Selection prob-
lem (SSSP). The SSSP consists of a constrained
geometric covering problem and a capacitated
resource problem. It comes from the real-life
problem of scheduling on- and off-times for air-
or space-borne instruments that image a target
by flying over and collecting a “swath” of in-
formation. This information needs to be stored
on board and downlinked. We provide a formal
description of the SSSP, an NP-completeness
proof, a random problem generator, and several
solvers, including a forward-dispatch greedy
solver, an integer program solver, and a depth-
first branch and bound solver. We compare the
results of the solvers, with a mix of results.

1 Introduction
The Swath Segment Selection Problem is a real-life prob-
lem of imaging areas using aircraft or spacecraft. It con-
sists of selecting a subset of data collection opportunities
from all that are available such that the most valuable
data are collected given the limitations of bounded mem-
ory and bounded communication. We will employ a hy-
pothetical synthetic aperture radar (SAR) mission as an
example.

Our S A R mission consists of an orbiting spacecraft
with a SAR instrument, a series of downlink opportuni-
ties when data may be transferred to the ground from the
spacecraft, a collection of targets from that the scientists
wish to gather data, and a series of imaging opportuni-
ties. An example (rather short) operation would be to turn
on the S A R for 10 seconds while flying over Antarctica
and store the data on-board, then downlink the data when
the receiving antenna on the Earth is visible.

The challenging aspect of such a mission is to chose
times for gathering data and subsequently downlinking it
that maximize the amount of coverage for the scientists
without overrunning our available memory or communi-
cations capacities. This problem has two interesting as-
pects: 1) a constrained geometric relationship between
the overlapping swaths and area to be imaged and 2)

memory constraints with respect to on-board storage and
downlink capacity.

In the rest of this paper we describe and compare solu-
tions for this problem, as well as the problem generators
used. We also characterize the problem’s complexity. We
point out a few limitations of our approach, and conclude
with a description of related works.

2 Definitions
Having the basic idea of the SSSP, we now informally
define our terminology.

A target is the area of interest to be imaged or “COV-
ered.” Figure 1 shows an example target.

Figure 1 Example Target

A swath is an area that represents the coverage of the
instrument during an interval. It is usually rectangular
and quite “stretched.” Figure 2 shows two example
swaths. The delta shapes indicate the direction of travel.

Figure 2 Example Swaths

A segment is a sub-section of a swath that is also in it-
self a swath in that it is usually rectangular and is an area
that represents the coverage of the instrument during an
interval. Segments are derived from the natural interac-
tions of the lines describing the target and the lines de-
scribing the swaths. Thus, the problem is to select a col-
lection of segments. Figure 3 shows a set of segments
derived from the target and the swaths.

Figure 3 Example Segments

A downlink is an opportunity to transfer data in mem-
ory to the ground. A downlink is over an interval that is
disjoint from those of the swaths. Downlinks result in
restored memory on-board and “awarded” data. Of
course, downlinks are of limited capacity.

A shard is a sub-section of the target. We use shards to
represent pieces of the target that can be gathered and
downlinked. They are the natural result of combining the
target and the edges of the segments. The term shard is
taken from the basic appearance of these polygons as
shards of broken glass, especially in larger problem in-
stances. Figure 4 shows a set of example shards derived
from the segments and the target. We draw dotted lines
from the edges of each shard to its center for easier iden-
tification.

Figure 4 Example Shards

3 SSSP
We continue with a formal specification of the swath
segment selection problem and a characterization of its
complexity.

3.1 Formulation
The swath segment selection problem (SSSP) consists of
a set of polygons, a set of swath-segments, a set of
downlinks, and a memory capacity. From the segments,
choose a subset that respects the memory capacity and
downlink capacity that maximizes the area of the targets
downlinked.

We presume real-valued functions area(s) and area@)
that gives the area of the segment or polygon. We also
assume that the area of the polygons or segments is
proportional to the amount of memory required to store
them.

Thus, more formally, given:
0 a set of polygons P where each p E P is a simple (but

possible concave) polygon in the Euclidean plane,

0 a set of swath-segments S where each s E S is a convex
quadrilateral in the Euclidean plane, including the
edge-valued functions startEdge(s) and endEdge(s) that
return non-adjacent edges that represent the start and
end of the segment accordingly, and including the real-
valued functions startTime(s) and endTime(s) that re-
turn the starting time and ending time of the segment.

0 a set of downlinks D where each d E D has a real-
valued capacity function cap(d) that represents the
maximum amount of memory that can be communi-

’ cated during the downlink, and real-valued functions
startTime(d) and endTime(d) that represent the interval
of the downlink d .

0 a memory limit m that represents the maximum amount
memory that can be stored between downlink opera-
tions.

Note: we shall use the notation to mean the same as
the expression endTim&) c startTime(y). We use the
notation consec(x, y) to mean that x and y are consecu-
tive and are members of the same set, or, more formally,

4

gSlX€ S A Y € S
A X 4 Y
A V Z I Z E S A z # X A z # y,(z < X A z < y) v (Z + X A z + y)

We also use the notation for Di to mean the i’th element
in D ordered according to consec. We assume that no
intervals overlap.

A solution is a subset S’L S such that:

< m 0 &lrea(s>
S E S ’ I S < D ,
i.e. the sum of the areas of the selected segments that
occur before the first downlink must be accommodated
by the available memory. We call this sum the pre-
utilization or preUtil. The computation of preUtil is
linear in the number segments preceding the first
downlink.

Vd, E D I 3d, E D,consec(d,,d,)
zurea(s>

s E S’I d, 4 s < d,
+ carry(d,) < m

i.e. the sum of all the areas of the selected segments
that occur between two consecutive downlinks dl and
dz plus the amount of memory not accommodated by
previous downlinks must be accommodated by the
available memory. We define the real-valued function
carry(dc D) as such:

carry(D,) min(0,preUfil -cup(D,))

curry(Di) mi O,curry(D,-,) + Eurea(s) -cap(D,)

i.e. carry(d) returns the memory that d couldn’t ac-
commodate and therefore must keep on-board until the
next downlink. The computation of all values for curry
is linear in the total number of downlinks and seg-
ments.

The quality of a solution is the area of the geometric in-
tersection of all selected segments with the target poly-
gons.

1 .i s E S ID,-, 4 s 4 D,

Additionally, we add that the computation of the set of
shards H is polynomial in the total number of edges in
the problem. For each h E H we assume the real valued
function area(h), as well as the function segments(h) that
returns a subset of S whose members are those segments
that geometrically contain h. We make use of H during
our solution formulations.

Finally, we include the function shurds(s€ S) that re-
turns the set of shards that geometrically intersect s.

3.2 Characterization
The SSSP is NP-complete.

1. SSSP is contained in NP in that its associated deci-
sion problem can clearly be solved using a non-
deterministic algorithm that guesses s’ and then a poly-
nomial algorithm that computes the validity and quality
of the solution, and finally compares the quality of the
solution with the bound given for the decision problem.

2. SSSP contains NP because the subset sum problem
(a well-known NP-complete problem) can be reduced to
it.

The subset sum problem can be stated as such: given a
set of (possibly redundant) values V, compute a subset
GL V such that the sum of all values in G equals a con-
stant value c. Let q be sum of all values in V.

Our transformation is as follows. Consider a collection
of targets T that consists of one square for each value in
S. Each side of the square is measured as the square root
of its associated sub-set sum value, thus its area is the
same as the value. Place each of these squares in the
plane such that the linear extension of their edges never
crosses another square (e.g. diagonally). Now, for each
square, overlap it with a vertical segment of the exact
same dimensions as the square, and impose a random

temporal ordering on the vertical segments. Add a single
downlink d, to D with cap(d,)=c. Assign times to d, such
that all vertical segments are previous to it. Add a set of
horizontal segments in the same manner as the vertical
segments to S. Impose a random ordering on the times for
the horizontal segments ensuring that each succeeds d,.
Finally, add a downlink dh to D that succeeds all swaths
with cup(dh)=q -c. Note that no partial usage of a seg-
ment facilitates the solution because this imposes a nec-
essary waste of capacity, the total capacity of the system
being q. A solution to the SSSP that is of value q is also a
solution to the subset sum problem. Simply include in G
each value that is associated to a vertical segment that is
selected. Figure 5 shows an example subset sum problem
and its solution using the SSSP reduction. Note: continu-
ously varying the timing of the segments is no help, thus
even the continuous case of this problem is NP-hard.

V= {9,25, 16, 1,4)
c = 2 1

Figure 5 Subset Sum reduction example

By 1 and 2, we conclude that the SSSP is NP-complete 0.

4 Solutions
Here we describe the various solution approaches that we
have implemented for the SSSP.

4.1 Forward Dispatch
Forward Dispatch (FD) is the only automated solution of
those presented here that existed previously to this work
to the best of our knowledge. In practice, an SSSP was
formulated and solved using a forward-dispatching algo-
rithm and then tweaked by hand until a “good enough”
schedule was discovered.

The approach is simple: we add segments in temporal
order until we oversubscribe the system. If adding a seg-
ment results in an over-subscription, we back up and re-
move the offending segment from our selection, and pro-
ceed. Not surprisingly, this approach does not fare too
well vis a vis other approaches with respect to quality,
but it is the fastest approach; thus we understand its al-
lure.

4.2 Integer Programming
On the other hand, the integer programming (IP) ap-
proach gives us optimal answers, but it is the slowest

approach (even in generating interim sub-optimal an-
swers). We now describe the IP formulation in detail.

A linear program consists a vector c, a matrix A, and a
vector b. The goal is to assign values to a vector x such
that we minimize (or maximize) the objective function.
An integer program includes the extra constraint that all
values for x be integral. A mixed integer program con-
sists of both integer and continuous values for various
members of x. Our formulation is a mixed integer pro-
gram. Therefore, we wish to identify our variables (indi-
ces of x) (as well as which variables are integer), our ob-
jective function (values for c), and our constraints (the
set of inequalities of b on x).

Variables
We include a variable for each segment, shard, and
downlink.
Objective Function

i=l

Constraints
We assume all variables are greater than or equal to zero.
The segment variables are binary:
'd s E S , x (s) integer
V S E S , n (s) I l
Shard variables are at most 1:
V h E H , x (h) S l
Downlink variables may not exceed their capacity:
'd d E D , x(d) I cup(d)
A shard variable's value can only be non-zero if at least
one of its associated segments is selected:
t l h E H,-x(h)+ ~ x (s) ~ O

scsegments(h)

The sum of memory before each downlink cannot exceed
the total memory capacity: (Overflow constraints.) . . .

t ld E D, x a r e a (s) x (s) - x x (d p) 5 m
sebhsdd de Dhd, <d

The sum of memory after each downlink cannot be sub-
zero: (Underflow constraints.)
tld E D,-x(d) +
This results in a very large formulation, but most of the
variables are continuous, leaving only the segment selec-
tion variables as binary.

A common technique used in solving integer programs
is to relax the problem and assume all variables are con-
tinuous, resulting in a polynomial time solvable relaxa-
tion. This is interesting in that it implies the existence of
a solution for a more capable system-specifically, a
system that can deal with arbitrarily divided segments.
Thus, if a highly capable spacecraft existed that could
"cut-up" the images and register them perfectly, saving
only what it needed, then this problem becomes polyno-

mial. Unfortunately, no such spacecraft exists. But, we
can formulate our relaxation in a more efficient frame-
work than a linear program.

4.3 Network Flow Relaxation
This provides a solution that is faster than the linear pro-
gramming relaxation while providing the same informa-
tion. We use this as an admissible heuristic in conjunc-
tion with a branch and bound algorithm described later.
The goal is to generate a flow network that represents the
flow of information through the problem. The rest of this
subsection describes its construction.

Our network flow graph G=(V,E) is a directed, edge
labeled graph with the real valued edge label function
cap(eEE) that returns the capacity of the edge, a source
vertex srcE V, and a sink vertex snkE V, snk#src. The so-
lution is a function flflow(eE E) that indicates the amount
of flow across any edge and a real value f that represents
the total flow through the network from the source to the
sink. Our formulation is as follows:

Vertices
Add vertices src and snk to V.
'd h E H, add a vertex v(h) to V.
'd d E D, add a vertex v(d) to V.
'd d E D , add a vertex v(d),, to V
Edges
'd h E H , add an edge e=(src, v(h)) to E, cup(e)=areu(h).
'd d E D , add an edge e=(v(d), snk) to E, cup(e)=cup(d).
'd d E D , add an edge e=(v(d)mem, v (d) , snk) to E,

'd d , E D , 3 d2 E D, consec(d1, d2) , add an edge

'd h E H , ' d s ~ segments(h)l3dE D, d
V h e H ,

Vs E segments(h) I

add an edge e=(v(h), ~(d) , , ,) to E, cap(e)=areu(h), i.e.
for every segment associated with a shard, identify the
nearest subsequent downlink d and add an edge from the
shard vertex to the memory vertex associated with d .

24 23

cup(e)=m.

e=(v(dd, v(d2)mem) to E, cup(e)=m.

3d E D,s - id A-dd'E D,d' f d A S < d ' h d'-i d ,

is
Figure 6 Labeled Shards

Figure 6 shows all 26 shards from our previous example.
Figure 7 shows the equivalent flow network given 2
downlinks, one after the first swath and one after the sec-
ond swath.

Figure 7 Flow Network example

4.4
We assume knowledge on the part of the reader of depth
first branch and bound (DFBnB), the role of the g value,
the h value, and the node ordering heuristic.

Given the network flow relaxation, we are tempted to
simply use this as our h estimator for a branch and bound
search, but this would be a mistake. As soon as a segment
is selected during search, the flow network needs to be
adjusted to reflect the lost capacity due to the segment
selection. Often, waste is associated with this allocation.
We have implemented an incremental flow network ca-
pacity update that allows us to change the capacities upon
segment selection and de-selection. The time complexity
of the update is proportional to the total number of
downlinks and the total number of shards associated with
the segment being updated.

Given this, we now have a good heuristic estimator, or
h function, that we can apply to a traditional branch and
bound search. We employ the following node ordering
heuristic:

Depth first Branch and Bound

area(h)
Vhe shards (s)Ids’s S’.hc shards (s’) pn’ority(sE S A SE S‘ =

area(s)

i.e. the priority value of a segment s is the area of the
unclaimed shards geometrically contained by it divided
by its area. Ties are broken randomly.

Performance
We report “first solution” time and quality results for
Forward Dispatch, Depth First Branch and Bound
(greedy, in this case), and Integer Programming for many
sizes of random problems. But first, we describe our
problem generator.

Problem Generation
The problem generator creates swaths, downlinks, and
polygons.

We generate polygons by selecting points normally
distributed around a single point, and then solve its asso-
ciated Euclidean traveling salesman problem using the
insert-furthest heuristic and then removing edge cross-
ings.

Swath and downlink generation interact because we do
not generate problems which have simultaneous swath
and downlink intervals. Thus we first generate a set of
candidate times for each, and then fold them together by
postponing either the swaths or the downlinks (chosen
randomly) at each temporal intersection in a forward dis-
patching manner.

We chose a duration, width, length, orientation, and
position for each swath from normal distributions. We
chose a capacity for each downlink in a like manner.

Finally, we chose the memory capacity from a normal
distribution.

Results
Easily computable metrics that appear to reflect on the
scale of the problems and the quality of solutions are the
number of shards in each problem and the initial network
flow approximation, thus we report these for the sizes of
problems here. The actual instances are available on our
web site, <to be filled in after review>. We report results
for 100 instances per size, with a time cutoff of 1 hour.

Time In Seconds for Best Solution

Figure 8 Comparative Time Performance

We see in general that the forward dispatch algorithm
dominates in terms of generating a fast solution. But the
time cost of DFBnB is minimal compared to the solution
quality. Integer programming returns an optimal solution,
but does not outperform DFBnB, and for relatively small
problems never terminates. Thus, in terms of any-time
performance, the best strategy appears to be to first use
forward dispatch followed immediately by DFBnB. (See
Figure 8 and Figure 9.)

Best Solution Quality

Average Number of Shards

Figure 9 Comparative Quality Performance
Figure 10 compares a solution for a typical problem us-
ing I 3 and DFBnB. Shading indicates the solution area.

FD solution area=819.585 DFBnB solution area=1383.29

Figure 10 FD and DFBnB comparison

5 Conclusions
The Swath Segment Selection Problem provides an inter-
esting real-world problem that can work as a test-bed for
various search strategies. We see that extending these
strategies to handle the SSSP has brought to light some
limitations of these approaches, and we have overcome
some of them. Due to the ease of creating these problems,
we hope that the community will embrace them as a chal-
lenge and extend this seminal work.

6 Related Work
Work on a somewhat similar problem with more degrees
of freedom is reported by [Frank 20001. Work on DFBnB

is common in the literature, starting with [Papadimitriou
and Steiglitz 19821, with interesting any-time aspects of
DFBnB in [Zhang 20001. Our flow network implementa-
tion came from [Corman et all. Work on integer pro-
gramming for use in operations research is a booming
field, for a good overview read [Schrijver 19861, and for
a good example of a polydral solution to a combinatorial
optimization problem see [Ruland 19861. Any NP-
completeness proof benefits from a read of [Garey and
Johnson 19791.

Acknowledgements
We would like to acknowledge the work of our cowork-
ers at <to be filled in after review>. Also, my advisor <to
be filled in after review> has provided excellent advice
with respect to direction and formalism. Parts of this
work are funded by <to be filled in after review>.

References
[Corman et all Thomas H. Corman, Charles E. Leiserson,
and Ronald L. Rivest. Introduction to Algorithms.
McGraw-Hill, 1990.

[Frank 20001 J Frank. “SOFIA’S Choice: Automating the
Scheduling of Airborne Observations” Proceedings of the
2d NASA Workshop on Planning and Scheduling for
Space, March 2000.

[Garey and Johnson 19791 M.R. Garey and D.S. Johnson.
Computers and Intractability. W.H. Freeman and Com-
pany, San Francisco, 1979.

[Karp 19721 R. M. Karp “Reducibility among combinato-
rial problems.” In R. E. Miller and J. W. Thatcher (eds.)
Complexity of Computer Computations, Plenum Press,
New York, 85-103.

[Papadimitriou and Steiglitz 19821 C. H. Papadimitriou
and K. Steiglitz. Combinatorial Optimization: Algorithms
and Complexity. Prentice-Hall, Englewood Cliffs, NJ,
1982.

[Ruland 19861 K. Ruland. Polyhedral solution to the
pickup and delivery problem. Washington Universit,
Sever Institute of Systems Science and Mathematics.
http://rodin.wustl.edu/-kevin/dissert/dissert.html (Disser-
tation). St. Louis Missouri, 1995.

[Schrijver 19861 A. Schrijver. Theory of Linear and Inte-
ger Programming, Wiley, 1986.

[Zhang 20001 W. Zhang. “Depth-First Branch-and-Bound
versus Local Search: A Case Study.” In Proceedings of
the 17‘h National Conference on Artificial Intelligence
(AAAI 2000), pages. 930-935, Austin, Texas, 2000.

http://rodin.wustl.edu/-kevin/dissert/dissert.html

