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Abstract 
We introduce the Swath Segment Selection prob- 
lem (SSSP). The SSSP consists of a constrained 
geometric covering problem and a capacitated 
resource problem. It comes from the real-life 
problem of scheduling on- and off-times for air- 
or space-borne instruments that image a target 
by flying over and collecting a “swath” of in- 
formation. This information needs to be stored 
on board and downlinked. We provide a formal 
description of the SSSP, an NP-completeness 
proof, a random problem generator, and several 
solvers, including a forward-dispatch greedy 
solver, an integer program solver, and a depth- 
first branch and bound solver. We compare the 
results of the solvers, with a mix of results. 

1 Introduction 
The Swath Segment Selection Problem is a real-life prob- 
lem of imaging areas using aircraft or spacecraft. It con- 
sists of selecting a subset of data collection opportunities 
from all that are available such that the most valuable 
data are collected given the limitations of bounded mem- 
ory and bounded communication. We will employ a hy- 
pothetical synthetic aperture radar (SAR) mission as an 
example. 

Our S A R  mission consists of an orbiting spacecraft 
with a SAR instrument, a series of downlink opportuni- 
ties when data may be transferred to the ground from the 
spacecraft, a collection of targets from that the scientists 
wish to gather data, and a series of imaging opportuni- 
ties. An example (rather short) operation would be to turn 
on the S A R  for 10 seconds while flying over Antarctica 
and store the data on-board, then downlink the data when 
the receiving antenna on the Earth is visible. 

The challenging aspect of such a mission is to chose 
times for gathering data and subsequently downlinking it 
that maximize the amount of coverage for the scientists 
without overrunning our available memory or communi- 
cations capacities. This problem has two interesting as- 
pects: 1) a constrained geometric relationship between 
the overlapping swaths and area to be imaged and 2) 

memory constraints with respect to on-board storage and 
downlink capacity. 

In the rest of this paper we describe and compare solu- 
tions for this problem, as well as the problem generators 
used. We also characterize the problem’s complexity. We 
point out a few limitations of our approach, and conclude 
with a description of related works. 

2 Definitions 
Having the basic idea of the SSSP, we now informally 
define our terminology. 

A target is the area of interest to be imaged or “COV- 
ered.” Figure 1 shows an example target. 

Figure 1 Example Target 

A swath is an area that represents the coverage of the 
instrument during an interval. It is usually rectangular 
and quite “stretched.” Figure 2 shows two example 
swaths. The delta shapes indicate the direction of travel. 

Figure 2 Example Swaths 



A segment is a sub-section of a swath that is also in it- 
self a swath in that it is usually rectangular and is an area 
that represents the coverage of the instrument during an 
interval. Segments are derived from the natural interac- 
tions of the lines describing the target and the lines de- 
scribing the swaths. Thus, the problem is to select a col- 
lection of segments. Figure 3 shows a set of segments 
derived from the target and the swaths. 

Figure 3 Example Segments 

A downlink is an opportunity to transfer data in mem- 
ory to the ground. A downlink is over an interval that is 
disjoint from those of the swaths. Downlinks result in 
restored memory on-board and “awarded” data. Of 
course, downlinks are of limited capacity. 

A shard is a sub-section of the target. We use shards to 
represent pieces of the target that can be gathered and 
downlinked. They are the natural result of combining the 
target and the edges of the segments. The term shard is 
taken from the basic appearance of these polygons as 
shards of broken glass, especially in larger problem in- 
stances. Figure 4 shows a set of example shards derived 
from the segments and the target. We draw dotted lines 
from the edges of each shard to its center for easier iden- 
tification. 

Figure 4 Example Shards 

3 SSSP 
We continue with a formal specification of the swath 
segment selection problem and a characterization of its 
complexity. 

3.1 Formulation 
The swath segment selection problem (SSSP) consists of 
a set of polygons, a set of swath-segments, a set of 
downlinks, and a memory capacity. From the segments, 
choose a subset that respects the memory capacity and 
downlink capacity that maximizes the area of the targets 
downlinked. 

We presume real-valued functions area(s) and area@) 
that gives the area of the segment or polygon. We also 
assume that the area of the polygons or segments is 
proportional to the amount of memory required to store 
them. 

Thus, more formally, given: 
0 a set of polygons P where each p E P is a simple (but 

possible concave) polygon in the Euclidean plane, 

0 a set of swath-segments S where each s E S is a convex 
quadrilateral in the Euclidean plane, including the 
edge-valued functions startEdge(s) and endEdge(s) that 
return non-adjacent edges that represent the start and 
end of the segment accordingly, and including the real- 
valued functions startTime(s) and endTime(s) that re- 
turn the starting time and ending time of the segment. 

0 a set of downlinks D where each d E D has a real- 
valued capacity function cap(d) that represents the 
maximum amount of memory that can be communi- 

’ cated during the downlink, and real-valued functions 
startTime(d) and endTime(d) that represent the interval 
of the downlink d .  

0 a memory limit m that represents the maximum amount 
memory that can be stored between downlink opera- 
tions. 

Note: we shall use the notation to mean the same as 
the expression endTim&) c startTime(y). We use the 
notation consec(x, y) to mean that x and y are consecu- 
tive and are members of the same set, or, more formally, 
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We also use the notation for Di to mean the i’th element 
in D ordered according to consec. We assume that no 
intervals overlap. 

A solution is a subset S’L S such that: 

< m  0 &lrea(s> 
S E S ’ I S < D ,  
i.e. the sum of the areas of the selected segments that 
occur before the first downlink must be accommodated 
by the available memory. We call this sum the pre- 
utilization or preUtil. The computation of preUtil is 
linear in the number segments preceding the first 
downlink. 
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i.e. the sum of all the areas of the selected segments 
that occur between two consecutive downlinks dl and 
dz plus the amount of memory not accommodated by 
previous downlinks must be accommodated by the 
available memory. We define the real-valued function 
carry(dc D) as such: 

carry(D,) min(0,preUfil -cup(D,)) 

curry(Di) mi O,curry(D,-,) + Eurea(s) -cap(D,) 

i.e. carry(d) returns the memory that d couldn’t ac- 
commodate and therefore must keep on-board until the 
next downlink. The computation of all values for curry 
is linear in the total number of downlinks and seg- 
ments. 

The quality of a solution is the area of the geometric in- 
tersection of all selected segments with the target poly- 
gons. 

1 .i s E S ID,-, 4 s 4 D, 

Additionally, we add that the computation of the set of 
shards H is polynomial in the total number of edges in 
the problem. For each h E H we assume the real valued 
function area(h), as well as the function segments(h) that 
returns a subset of S whose members are those segments 
that geometrically contain h. We make use of H during 
our solution formulations. 

Finally, we include the function shurds(s€ S) that re- 
turns the set of shards that geometrically intersect s. 

3.2 Characterization 
The SSSP is NP-complete. 

1. SSSP is contained in NP in that its associated deci- 
sion problem can clearly be solved using a non- 
deterministic algorithm that guesses s’ and then a poly- 
nomial algorithm that computes the validity and quality 
of the solution, and finally compares the quality of the 
solution with the bound given for the decision problem. 

2. SSSP contains NP because the subset sum problem 
(a well-known NP-complete problem) can be reduced to 
it. 

The subset sum problem can be stated as such: given a 
set of (possibly redundant) values V,  compute a subset 
GL V such that the sum of all values in G equals a con- 
stant value c. Let q be sum of all values in V. 

Our transformation is as follows. Consider a collection 
of targets T that consists of one square for each value in 
S. Each side of the square is measured as the square root 
of its associated sub-set sum value, thus its area is the 
same as the value. Place each of these squares in the 
plane such that the linear extension of their edges never 
crosses another square (e.g. diagonally). Now, for each 
square, overlap it with a vertical segment of the exact 
same dimensions as the square, and impose a random 

temporal ordering on the vertical segments. Add a single 
downlink d, to D with cap(d,)=c. Assign times to d,  such 
that all vertical segments are previous to it. Add a set of 
horizontal segments in the same manner as the vertical 
segments to S. Impose a random ordering on the times for 
the horizontal segments ensuring that each succeeds d,. 
Finally, add a downlink dh to D that succeeds all swaths 
with cup(dh)=q -c. Note that no partial usage of a seg- 
ment facilitates the solution because this imposes a nec- 
essary waste of capacity, the total capacity of the system 
being q. A solution to the SSSP that is of value q is also a 
solution to the subset sum problem. Simply include in G 
each value that is associated to a vertical segment that is 
selected. Figure 5 shows an example subset sum problem 
and its solution using the SSSP reduction. Note: continu- 
ously varying the timing of the segments is no help, thus 
even the continuous case of this problem is NP-hard. 

V= {9,25, 16, 1,4) 
c = 2 1  

Figure 5 Subset Sum reduction example 

By 1 and 2, we conclude that the SSSP is NP-complete 0. 

4 Solutions 
Here we describe the various solution approaches that we 
have implemented for the SSSP. 

4.1 Forward Dispatch 
Forward Dispatch (FD) is the only automated solution of 
those presented here that existed previously to this work 
to the best of our knowledge. In practice, an SSSP was 
formulated and solved using a forward-dispatching algo- 
rithm and then tweaked by hand until a “good enough” 
schedule was discovered. 

The approach is simple: we add segments in temporal 
order until we oversubscribe the system. If adding a seg- 
ment results in an over-subscription, we back up and re- 
move the offending segment from our selection, and pro- 
ceed. Not surprisingly, this approach does not fare too 
well vis a vis other approaches with respect to quality, 
but it is the fastest approach; thus we understand its al- 
lure. 

4.2 Integer Programming 
On the other hand, the integer programming (IP) ap- 
proach gives us optimal answers, but it is the slowest 



approach (even in generating interim sub-optimal an- 
swers). We now describe the IP formulation in detail. 

A linear program consists a vector c, a matrix A, and a 
vector b. The goal is to assign values to a vector x such 
that we minimize (or maximize) the objective function. 
An integer program includes the extra constraint that all 
values for x be integral. A mixed integer program con- 
sists of both integer and continuous values for various 
members of x. Our formulation is a mixed integer pro- 
gram. Therefore, we wish to identify our variables (indi- 
ces of x) (as well as which variables are integer), our ob- 
jective function (values for c), and our constraints (the 
set of inequalities of b on x). 

Variables 
We include a variable for each segment, shard, and 
downlink. 
Objective Function 

i=l 

Constraints 
We assume all variables are greater than or equal to zero. 
The segment variables are binary: 
'd s E S ,  x ( s )  integer 
V S E  S , n ( s ) I l  
Shard variables are at most 1: 
V h E  H , x ( h ) S l  
Downlink variables may not exceed their capacity: 
'd d E D , x(d) I cup(d) 
A shard variable's value can only be non-zero if at least 
one of its associated segments is selected: 
t l h E  H,-x(h)+ ~ x ( s ) ~ O  

scsegments(h) 

The sum of memory before each downlink cannot exceed 
the total memory capacity: (Overflow constraints.) . .  . 

t ld E D, x a r e a ( s ) x ( s ) -  x x ( d p )  5 m 
sebhsdd de Dhd,  <d 

The sum of memory after each downlink cannot be sub- 
zero: (Underflow constraints.) 
tld E D,-x(d) + 
This results in a very large formulation, but most of the 
variables are continuous, leaving only the segment selec- 
tion variables as binary. 

A common technique used in solving integer programs 
is to relax the problem and assume all variables are con- 
tinuous, resulting in a polynomial time solvable relaxa- 
tion. This is interesting in that it implies the existence of 
a solution for a more capable system-specifically, a 
system that can deal with arbitrarily divided segments. 
Thus, if a highly capable spacecraft existed that could 
"cut-up" the images and register them perfectly, saving 
only what it needed, then this problem becomes polyno- 

mial. Unfortunately, no such spacecraft exists. But, we 
can formulate our relaxation in a more efficient frame- 
work than a linear program. 

4.3 Network Flow Relaxation 
This provides a solution that is faster than the linear pro- 
gramming relaxation while providing the same informa- 
tion. We use this as an admissible heuristic in conjunc- 
tion with a branch and bound algorithm described later. 
The goal is to generate a flow network that represents the 
flow of information through the problem. The rest of this 
subsection describes its construction. 

Our network flow graph G=(V,E) is a directed, edge 
labeled graph with the real valued edge label function 
cap(eEE) that returns the capacity of the edge, a source 
vertex srcE V,  and a sink vertex snkE V, snk#src. The so- 
lution is a function flflow(eE E )  that indicates the amount 
of flow across any edge and a real value f that represents 
the total flow through the network from the source to the 
sink. Our formulation is as follows: 

Vertices 
Add vertices src and snk to V. 
'd h E H, add a vertex v(h) to V. 
'd d E D, add a vertex v(d)  to V. 
'd d E D ,  add a vertex v(d),, to V 
Edges 
'd h E H ,  add an edge e=(src, v(h)) to E, cup(e)=areu(h). 
'd d E D ,  add an edge e=(v(d), snk) to E, cup(e)=cup(d). 
'd d E D ,  add an edge e=(v(d)mem, v (d) ,  snk) to E, 

'd d ,  E D ,  3 d2 E D, consec(d1, d2) ,  add an edge 

'd h E H , ' d s ~  segments(h)l3dE D, d 
V h e  H ,  

Vs E segments(h) I 

add an edge e=(v(h), ~(d) , , , )  to E, cap(e)=areu(h), i.e. 
for every segment associated with a shard, identify the 
nearest subsequent downlink d and add an edge from the 
shard vertex to the memory vertex associated with d .  

24 23 

cup( e)=m. 

e=(v(dd,  v(d2)mem) to E, cup(e)=m. 

3d E D,s  - id  A-dd'E D,d' f d A S  < d ' h  d'-i d ,  

is 
Figure 6 Labeled Shards 



Figure 6 shows all 26 shards from our previous example. 
Figure 7 shows the equivalent flow network given 2 
downlinks, one after the first swath and one after the sec- 
ond swath. 

Figure 7 Flow Network example 

4.4 
We assume knowledge on the part of the reader of depth 
first branch and bound (DFBnB), the role of the g value, 
the h value, and the node ordering heuristic. 

Given the network flow relaxation, we are tempted to 
simply use this as our h estimator for a branch and bound 
search, but this would be a mistake. As soon as a segment 
is selected during search, the flow network needs to be 
adjusted to reflect the lost capacity due to the segment 
selection. Often, waste is associated with this allocation. 
We have implemented an incremental flow network ca- 
pacity update that allows us to change the capacities upon 
segment selection and de-selection. The time complexity 
of the update is proportional to the total number of 
downlinks and the total number of shards associated with 
the segment being updated. 

Given this, we now have a good heuristic estimator, or 
h function, that we can apply to a traditional branch and 
bound search. We employ the following node ordering 
heuristic: 

Depth first Branch and Bound 

area(h) 
Vhe shards (s)Ids’s S’.hc shards (s’) pn’ority(sE S A SE S‘ = 

area(s) 

i.e. the priority value of a segment s is the area of the 
unclaimed shards geometrically contained by it divided 
by its area. Ties are broken randomly. 

Performance 
We report “first solution” time and quality results for 
Forward Dispatch, Depth First Branch and Bound 
(greedy, in this case), and Integer Programming for many 
sizes of random problems. But first, we describe our 
problem generator. 

Problem Generation 
The problem generator creates swaths, downlinks, and 
polygons. 

We generate polygons by selecting points normally 
distributed around a single point, and then solve its asso- 
ciated Euclidean traveling salesman problem using the 
insert-furthest heuristic and then removing edge cross- 
ings. 

Swath and downlink generation interact because we do 
not generate problems which have simultaneous swath 
and downlink intervals. Thus we first generate a set of 
candidate times for each, and then fold them together by 
postponing either the swaths or the downlinks (chosen 
randomly) at each temporal intersection in a forward dis- 
patching manner. 

We chose a duration, width, length, orientation, and 
position for each swath from normal distributions. We 
chose a capacity for each downlink in a like manner. 

Finally, we chose the memory capacity from a normal 
distribution. 

Results 
Easily computable metrics that appear to reflect on the 
scale of the problems and the quality of solutions are the 
number of shards in each problem and the initial network 
flow approximation, thus we report these for the sizes of 
problems here. The actual instances are available on our 
web site, <to be filled in after review>. We report results 
for 100 instances per size, with a time cutoff of 1 hour. 

Time In Seconds for Best Solution 

Figure 8 Comparative Time Performance 



We see in general that the forward dispatch algorithm 
dominates in terms of generating a fast solution. But the 
time cost of DFBnB is minimal compared to the solution 
quality. Integer programming returns an optimal solution, 
but does not outperform DFBnB, and for relatively small 
problems never terminates. Thus, in terms of any-time 
performance, the best strategy appears to be to first use 
forward dispatch followed immediately by DFBnB. (See 
Figure 8 and Figure 9.) 

Best Solution Quality 

Average Number of Shards 

Figure 9 Comparative Quality Performance 
Figure 10 compares a solution for a typical problem us- 
ing I 3  and DFBnB. Shading indicates the solution area. 

FD solution area=819.585 DFBnB solution area=1383.29 

Figure 10 FD and DFBnB comparison 

5 Conclusions 
The Swath Segment Selection Problem provides an inter- 
esting real-world problem that can work as a test-bed for 
various search strategies. We see that extending these 
strategies to handle the SSSP has brought to light some 
limitations of these approaches, and we have overcome 
some of them. Due to the ease of creating these problems, 
we hope that the community will embrace them as a chal- 
lenge and extend this seminal work. 

6 Related Work 
Work on a somewhat similar problem with more degrees 
of freedom is reported by [Frank 20001. Work on DFBnB 

is common in the literature, starting with [Papadimitriou 
and Steiglitz 19821, with interesting any-time aspects of 
DFBnB in [Zhang 20001. Our flow network implementa- 
tion came from [Corman et all. Work on integer pro- 
gramming for use in operations research is a booming 
field, for a good overview read [Schrijver 19861, and for 
a good example of a polydral solution to a combinatorial 
optimization problem see [Ruland 19861. Any NP- 
completeness proof benefits from a read of [Garey and 
Johnson 19791. 
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