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ABSTRACT 

NASA has been considering the use of Ka-band for deep space missions primarily for 
downlink telemetry applications. At such high frequencies, although the link will be 
expected to improve by a factor of four, the current Deep Space Network (DSN) antennas 
and transmitters would become less efficient due to higher equipment noise figures and 
antenna surface errors. Furthermore, the weather effect at Ka-band frequencies will 
dominate the degradations in link performance and tracking accuracy. At the lower 
frequencies, such as X-band, conventional CONSCAN or Monopulse tracking techniques 
can be used without much complexity, however, when utilizing Ka-band frequencies, the 
tracking of a spacecraft in deep space presents additional challenges. The objective of this 
paper is to provide a survey of neural network trends as applied to the tracking of 
spacecrafts in deep space at Ka-band under various weather conditions, and examine the 
trade-off between tracking accuracy and communication link performance. 

1. INTRODUCTION 

NASA’s Deep Space Network (DSN) has been using 34m, and 70m diameter antennas to 
track and communicate with the spacecrafts, primarily at X-band frequencies. The 
principal motivation for operating in the Ka-band frequencies is the 4 MHz channel 
bandwidth limitation at X-band with maximum of 50 MHz spectrum allocation for deep 
space applications. As the spectrum for X-band becomes more congested, efforts are 
being made to utilize the Ka-band, which is 3.8 times higher in frequency than X-band 
(DSN). Ka-band provides 3.8* (14.5 times) more Equivalent Isotropic Radiated Power 
(EIRP) for the same spacecraft transmitter power and antenna size. This provides 5 to 10 
dB improvement in signal strength for a given spacecraft transmitter and antenna. The 
effectiveness of Ka-band operation can be reduced by atmospheric induced noise, 
pointing loss, scintillation, and fading. 

On the commercial side of the space applications, the motive for Ka-band operation is 
derived from its potential for global communications in the gigabit range. As an example, 
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inspired by the Asynchronous Transfer Mode (ATM) era technology, suit-case size 
science terminals have been developed for broadband two-way satellite links. Ka-band 
operations for near Earth applications also enables the integration of GPS and cellular 
wireless technology, and leads to further development of the Ka-band for deep space 
applications. 

One real example of Ka-band operation for deep space missions is the NASA Mars 
Reconnaissance Orbiter (MRO) with telemetry data rates of 0.5 Mbps to 4.0 Mbps, 
depending on the Earth-Mars distance. Other future missions can demand 10-100 Mbps 
and require ten times more spectrum than is available at X-band. After more than two 
decades, many key Ka-band RF components have been developed, such as high power 
transmitters (e.g., 35-100 Watts), and low noise amplifiers with low noise figures, 
However, new challenges remain for Ka-band link optimization applications utilizing 
more robust antenna tracking methods for varying weather conditions. 

In the sections below, the tracking methods for deep space applications with weather 
effects in the Ka-band will be discussed as follows: First, the tracking methods used for 
deep space applications will be reviewed in section 2 with a discussion on optimization 
issues between the communications link performance and tracking accuracy. Sections 3 
and 4 cover the effect of weather and the weather forecasting methods developed in 
recent years using neural networks. Section 5 presents discussions and review from 
recently published literature for potential uses of neural networks for deep space tracking 
at Ka-band frequencies. 

2. LARGE ANTENNA TRACKING METHODS 

DSN antenna diameter sizes range from 9 meters for small antennas, to 34 and 70 meters 
for the larger tracking antennas. Additional burdens are placed on large Ka-band DSN 
antennas when tracking low power signals from spacecraft at the extremely large 
distances involved in typical deep space missions. Aside from gravity deformations, 
thermal effects, wind disturbances, and mechanical vibrations that impact the antenna 
performance, the degradation effects of weather also need to be taken into account when 
assessing link performance. Signal fluctuations and fade depths experienced during 
tracking caused by weather conditions, can be accurately modeled fiom the predicted 
weather statistics. The space-to-Earth round-trip delays and the extremely low signal 
levels involved introduce other challenges for optimizing the link performance and the 
antenna tracking accuracy. 

2.1 Antenna Pointing 

Earth-Orbiting satellites can be tracked using open-loop or closed-loop antenna beam 
pointing methods. Both methods present advantages and disadvantages to the tracking 
techniques and one method may be chosen from the other depending on the application. 
Pointing accuracies are dependent on the ground antenna mechanical distortions, tracked 
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spacecraft dynamics, frequency band in use, and tropospheric instabilities caused by 
weather conditions, such as gusty winds. Open-loop tracking, or more commonly called 
“blind pointing,’’ functions based on the continuously updated predicted pointing 
coordinates of the object being tracked. This tracking method is sensitive to 
environmental conditions, such as wind disturbances and is employed in situations of 
non-critical tracking, or when wind gusts are within certain pointing accuracy tolerance 
levels. Blind pointing is sometimes preferred over closed-loop pointing during certain 
experiments that require operator control of the tracked object. 

Closed-loop method relies on the initial predicted pointing coordinates of the tracked 
object, and then continuously corrects the antenna off-beam errors using the amplitude 
and/or phase components of the signal received from the tracked spacecraft. In contrast 
to the open-loop method, this method is less sensitive to weather conditions and 
effectively “tracks out” a significant portion of the pointing error sources encountered 
during tracking. 

2.2 Closed-loop Tracking 

Closed-loop tracking is generally superior to open-loop tracking due mainly to its 
responsiveness to antenna mechanically induced noise, which degrades the pointing 
accuracy. The antenna pointing error is largely affected by the mechanical jitter caused 
by wind gusts and other mechanical vibrations to the antenna structure. These random 
error sources are known to severely degrade the antenna tracking accuracy in the Ka- 
band, where the antenna beamwidth is effectively narrower and hence more sensitive to 
angular displacements. Instantaneous antenna pointing errors caused by variations in the 
atmosphere significantly impact the overall tracking accuracy and to some extent can be 
tracked out with closed-loop tracking. 

2.2.1 CONSCAN Tracking Method 

The closed-loop CONSCAN tracking technique has been successfully used to track 
spacecrafts at the NASA DSN stations. Angle tracking is accomplished by scanning the 
antenna around its boresight in a circular pattern with constant angular offset, called the 
scan radius. This technique uses fluctuation of the Automatic Gain Control (AGC) 
samples from the ground receiver to estimate the ground antenna pointing angle [I]. The 
circular pattern is chosen such that the received power is 0.1 dB less than the peak power 
at the antenna boresight. Typically, the 0.1 dB power loss corresponds to 22 mdeg at S- 
band, 5.9 mdeg at X-band, and 1.5 mdeg at Ka-band (3 1.8 GHz to 32.3 GHz). 

Using the CONSCAN technique, the antenna is rotated at a constant rate cc) in a circular 
pattern about a point called the CONSCAN center. The known instantaneous location of 
the antenna boresight is defined by XQi given by [2] 
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R cos(o t, ) 
R sin(wt,) 

where, R is the CONSCAN radius and w is the CONSCAN frequency. The carrier power 
Pcj can be approximated by [3] 

where, Poi is the peak power received when the antenna is pointed directly at the target, 
and h is the antenna half power beam width, p = 4 ln(2), and p1 is the offset angle 
between the antenna boresight and the target, and qj is the signal noise. The offset angle 
pl is given by 

After combining equations 1 & 2 we obtain, 

which results in the following final form for the received power, 

Angular pointing error relationships in the CONSCAN elevation (EL) and cross-elevation 
(XEL) coordinates are shown in figure 1. The antenna boresight describes a circular 
pattern around the target with radius R. As the antenna scans the pattern, fluctuations in 
the received power enables target location estimates during the period of the scan cycle. 
In equation 6 ,  it is assumed that the spacecraft power and location are fixed during the 
scan cycle. The spacecraft location is then estimated using the least squares solution to 
determine location x for the selected CONSCAN scan cycle and scan radius. In the 
CONSCAN tracking system, fluctuations in the signal amplitude are compared to the 
mean power to determine target location, whereas other closed-loop tracking systems 
require knowledge of both the signal amplitude and phase. The monopulse tracking 
technique employed by various tracking systems utilize both signal amplitude and phase 
information to estimate more precise pointing coordinates. 
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2.2.2 CONSCAN Pointing Errors 

The CONSCAN steady state closed-loop variance for the elevation and cross-elevation 
coordinates are given as 

.=[ G 0; ] 
(2 - G) (KR)* 

(7) 

G a; 
(2 - G) ( K Q 2  

Where, 0; and of are the real and imaginary components of the open loop variance, 
G is the loop gain, and K is the loop constant. 
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Fig. 1 CONSCAN Geometry 

2.2.3 Monopulse Tracking Method 

Another closed-loop technique used for tracking spacecraft involves monopulse antenna 
pointing principles. Monopulse tracking originated with radar monopulse systems that 
transmit pulses to a tracked target and then receive and process the returned sum and 
difference signals to determine the angular displacements, or pointing errors. Some 
monopulse systems employ antennas with multiple feeds and antenna beams to extract 
the signal amplitude and phase relationships needed for correcting the pointing errors, 
whereas others employ single multi-mode feeds. 
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2.2.3.1 Monopulse Tracking System Using Single Multi-Mode Feed 

The Ka-band monopulse system employed at the NASA DSN receiver uses a single horn 
and feedcoupler that separates the sum and difference channels produced by the angular 
displacements of the antenna beam during tracking. The sum channel consists of the main 
antenna beam signal, where the gain G(f3,$) peaks at the center of the antenna boresight at 

= 0 degrees, as shown in figure 2. Alternately, the antenna error beam pattern consists 
of a difference, or error signal, which has a gain null at the antenna boresight. The sum 
channel and the error channel are then compared to yield a tracking error signal. 
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Fig. 2 Monopulse antenna sum & error gain patterns 
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Figure 3 shows the sum and error channel monopulse loop configuration. The error 
channel difference pattern is generated in the antenna feed using waveguide TE21 
propagation mode, while the sum channel TEll dominant mode carries the 
communications data [4,5]. The amplitude of the received signal at the higher TE21 mode 
is proportional to the angle of misalignment to the tracked spacecraft. Error signal 
amplitude and phase components are then detected and processed to drive the antenna 
servo system, which continuously updates the azimuth and elevation coordinates. The 
sum and error channels are described as follows, 

X, = (2 P)’” Cos[oct + 8, + Ad(t) ] + n, (t) (8) 

where, 

P = received signal power 
oc t = carrier frequency of the received signal 
8, = phase of the received signal 
A = modulationindex 
d(t) = data modulated on the carrier 
8 F  = azimuth angle of signal at the feed in a spherical coordinate system 

referenced to the feed 
$F = elevation angle of signal at the feed in a spherical coordinate system 

referenced to the feed 

(g(&, $F))’/~ = ratio of the error signal amplitude and the sum signal 

h (OF, $F) = sum and error channel phase difference in spherical coordinate system 

ns(t) = additive white noise in the sum channel 
n, (t) = additive white noise in the error channel 

amplitude as a function of (OF, $F) 

referenced to the feed 
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Fig. 4 Monopulse Signal Detection & Processing 

A typical monopulse closed-loop system is shown in figure 4. The RF signal is separated 
into sum and error channel signal at the monopulse feed and amplified independently 
before being down-converted to IF frequencies. Estimates of the elevation and cross- 
elevation coordinates are then routed to the multiplier detector stage. Here the sum and 
error signals are detected as Sine and Cosine components, and passed through a Half- 
Band Filter (HBF) that couples to an Integrate and Dump Filter (IDF) and the loop filter. 
An estimate of the relative phase distortion introduced by independent amplification, 
down conversion and routing is coupled to the error channel loop filter as A$’. The 
detected sum and error signals are then processed into elevation and cross-elevation 
coordinates. The monopulse tracking Loop SNR in a 1 Hz loop bandwidth can be 
estimated as: 

P 
C J  Tracking Loop SNR = 

NO$ + N d  

Or equivalently, 

AXE 

AEL 

where, 

P,,, 3 carrier power in the sum channel 
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No,e E one-sided noise power density in the error channel 

N ,  E equivalent one-sided telemetry data power noise density (i.e., sum channel) 

-E total power-to-noise power density in the error channel PT 

NO$ 
m = telemetry data modulation index 

R, telemetry symbol rate 

The numerator in the second term represents the carrier suppression caused by the 
telemetry data, and the denominator of the second term represents the additional 
degradation caused by the noise-like telemetry data power in the loop. It should be noted 
that with an increase in the symbol rate R,, there is a corresponding increase in the 
monopulse tracking loop SNR. 

Note again that this is a simple model, and it is assumed that the telemetry data 
modulation has an equivalent single-sided spectral density similar to the system noise and 
that its power density can be treated as a white Gaussian noise process, when there is no 
weather effect. 

2.3 Blind Pointing 

Antenna “blind pointing” is an open-loop tracking technique based on pointing 
algorithms determined from the computed positions of the tracked object. Pointing errors 
are classified as errors in the computed position of the target, and errors due to the 
differences between the computed target position and the antenna boresight. Systematic 
and random pointing errors are mainly caused by antenna mechanical jitter, 
gravitationally induced structural deformities, and atmospheric fluctuations. In most 
cases, thermal effects will result in pointing errors, which vary slowly with time and 
require constant self-calibration by the tracking system. 

Blind pointing can be used to establish the initial antenna pointing coordinates at the start 
of a tracking period. This method of open-loop pointing can sometimes be preferred over 
closed-loop methods, for instances where the pointing error data are used for purposes of 
experiments. Blind pointing may also be used to track objects that require continuous 
manual tracking without need for automated tracking control, as when tracking non- 
radiating objects. 

Errors in blind pointing are primarily caused by wind-induced structural deformations. 
Wind gusts present severe limitations in blind pointing accuracy, especially at the higher 
frequency bands with narrower antenna beamwidths. Although identifiable systematic 
error sources in blind pointing can be reduced to manageable levels with the use of 
various structural metrology devices, random errors are more difficult to control. 
Alternately, closed-loop tracking systems, such as monopulse tracking, exhibit improved 
robustness and overall precision in the antenna tracking capability. 
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2.4 Broadband Monopulse Tracking 

In typical cases, the signal received at the monopulse antenna is embedded in noise and 
has a low signal-to-noise ratio. At the detector, the sum and error sinusoidal signals are 
routed to phase-locked loops to track and detect the antenna pointing error components. 
When the received signal power is constant, the signal-to-noise ratio of the monopulse 
tracking loop can be improved by narrowing the bandwidth of the phase-locked loops. As 
the signal-to-noise ratio increases there is a corresponding improvement in the pointing 
error variance. 

In the case where the received signal is a broadband type signal, it becomes impracticable 
to track the signal using narrowband phase-locked loop detection. The tracked broadband 
noise-like signals are assumed to consist largely of a random noise component and a 
weak embedded signal with some deterministic structure. Correlation methods provide a 
more practical approach to detect the amplitude and phase of noise-embedded signals. 
Broadband monopulse tracking is required when the object being tracked emits a wide 
spectrum of signals. For example, broadband monopulse tracking may be applied to 
tracking of quasars or other celestial objects that emit noise-like broadband radio signals. 

At the antenna monopulse feed/coupler, the broadband noise-like signal is separated into 
the TEll and TE21 waveguide propagation modes in a manner similar to that of a 
monochromatic signal. The elevation and cross-elevation pointing errors are detected by 
cross-correlating and auto-correlating the sum and error channel signals to extract 
amplitude, phase, and calibration information needed for updating the monopulse loop. 

Another application of broadband monopulse tracking is for tracking suppressed carrier 
signals, such as in the case of BPSK or QPSK modulation, where the carrier is fully 
suppressed, and the entire signal power is spread out over the frequency band. The 
tracking system now determines the antenna pointing error from the amplitude and phase 
information obtained from the modulated signal. For cases when the signal is modulated 
with random data, such as in telemetry, the spectral characteristics are comparable to 
broadband noise. The sum and error channel components of this type of signal can be 
detected using the standard correlation methods described above. 

3. WEATHER EFFECTS 

Weather is considered to be a major uncontrollable variable of link performance in the 
Ka-band operation. Links affected by weather require careful analysis of the 
communications and tracking operating parameters. Examples of operating parameters 
that can be used to optimize link performance include the modulation index, level of 
carrier suppression, data rate, carrier power to noise power density in the error channel of 
tracking loop, receiver lock stability, and tracking accuracy. The weather also affects the 
method to be used for tracking. Therefore, in order to fully utilize the capabilities of the 
Ka-band link, adequate and accurate data related to the DSN site atmospheric noise 
temperature and its corresponding statistics must be collected and analyzed prior to any 
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link prediction. Furthermore, the development of an optimized link strategy should be 
coordinated with the tracking method and the corresponding operating parameters. More 
specifically, for each antenna gain-to-system noise temperature ratio (G/T) prediction, a 
set of telemetry and tracking parameters need to be selected and set prior to the scheduled 
tracking period, and refined later if short-term weather prediction becomes available. 

To give some examples, 0.3 dB atmospheric loss requires 3 dB link margin, Le., 0.3 dB 
atmospheric loss adds 18.36 K to the vacuum 37 K noise temperature. As another 
example, 1 .O dB atmospheric loss results in 5.02 dB degradation of G/T, which is greater 
than the typical 3 dB link margin. As a rule-of-thumb, the attenuation of 0-1 dB raises 
the system noise temperature from 0-60 K linearly. The weather effect further 
complicates the situation with signal fading, with time durations of 10 seconds to several 
minutes. On the other hand scintillation at 30 GHz can cause 1 dB variation in carrier-to- 
noise ratio (CNR). 

The link margin improvement of Ka-band over X-band is 11 dB, but with losses as high 
as 5 dB due to pointing error, 4-10 dB due to bad weather, and 3-10 dB (if not 
compensated) caused by gravity deformation of the antenna structure, and about 1-2 dB 
due to wet antenna surface. Therefore, it would be preferable to adopt some weather 
mitigation technique that is coordinated with the antenna pointing strategy. Typically, 8 
mdeg pointing accuracy requirement for X-band corresponds to 2 mdeg of pointing 
accuracy requirement for Ka-band. Depending on the situation and the availability of X- 
band and Ka-band sub-systems on-board the spacecraft, a coarse X-band tracking in bad 
weather could be followed by more precise tracking at Ka-band. 

A decision mechanism is needed to act upon the recognized pattern of the weather and 
relate the telemetry and tracking performance parameters accordingly. The potential of 
neural network for weather forecast strategies and estimating atmospheric noise 
temperature as well as local weather patterns are discussed in the following section. 

4. NEURAL NETWORK & WEATHER FORECAST 

As discussed in the previous section, the most critical and the most uncontrollable factor 
in Ka-band operation for deep space applications is the effect of weather on tracking and 
link performance. With regard to weather forecast for various applications, neural 
networks have been extensively addressed in the literature for numerical weather 
predictions. Young Yee et al. [7] investigated the use of a neural network in the retrieval 
of upper level winds and temperature profiles and its effect on the accuracy of ballistic 
trajectories. Young et al. showed how a neural network could be used for fusion of 
various meteorology measurements. It was demonstrated how a neural network can be 
used to estimate the upper level winds from lower level wind measurements. The trained 
neural net is then used for timely and accurate estimates of the upper level wind effect 
from calculations of ballistic trajectories. 
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In another published study, Perez et al. [8] have shown how a trained neural network is 
able to predict local wind speeds 20 minutes in advance from meteorological sensor 
inputs, such as wind speed, wind gust, wind direction, air temperature, relative humidity, 
air pressure, visibility, sunshine duration, net atmospheric radiation, rainfall, solar 
radiation, and water temperature. A time window was used for the inputs as they are 
applied to the neural network in a PC. The input features are computed based on the 
parametric and non-parametric correlation functions. 

Pasini et al. [9], involved with neural meteorological forecasting at the Italian 
Metorological Service, described the neural research activities for meteorological 
forecasting such as fog visibility, and forecast of the mean monthly or daily atmospheric 
temperatures at the site location. Also, in a related work on neural networks, Devendra 
Singh et al. [ 101 utilized the High Resolution Picture Transmission (HRPT) reception 
system installed at the India Meteorological Department to receive real time data from 
sensors onboard the NOAA-K, L, M, and N series of satellites, and then used neural 
network methods to retrieve the temperature profiles. 

The other aspect of weather forecast mechanism is the prediction of the global surface 
temperature variations from the greenhouse gases (GHG). For example, A. Walter et al. 
[ l  11, used a backpropagation neural network (BPN) to take the GHG, the Sulfate aerosol 
particles (SUA), volcanism (gas-to-particle-conversion), and solar activity, as inputs at 
each sample time, and output the temperature time series as a response. Yuie-AN Liou et 
al. [12], used a neural network scheme to generate the surface temperature profile from 
land and air radiometric relationships, taking into account the atmospheric liquid water 
and its relation to the surface rain rate. 

References [13-151 discussed how neural network can be used to estimate the cloud 
liquid water content and its contribution to atmospheric noise temperature and rain rate. 
Neural networks were used to classify the cloud type according to their liquid water 
content and attenuation effect. Further references are provided for the interested reader 
for neural network applications of other aspects of weather predictions, such as 
precipitation, brightness temperature, wind power and speed, classification of local 
weather patterns, and rain cell top altitude estimation, etc. [ 15-26]. 

Therefore, neural networks provide an attractive tool kit for parallel processing of 
multiple atmospheric parameters that have nonlinear relationships and are difficult to 
model into joint probability density functions. A neural network can provide a useful 
interface between the antenna tracking and receiver telemetry. The next section will 
address the possible trades between tracking and telemetry performance with regard to 
monopulse tracking, and the potential deployment of neural network for deep space 
tracking. 
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5. SATELLITE TRACKING & NEURAL NETWORK FORECASTING 

Although the antenna pointing and communications link performance are somewhat 
correlated, the relationship is nonlinear and the performance parameters can be improved 
to achieve some level of desired optimization. For instance, monopulse tracking uses the 
detected signal amplitude and phase components to continually estimate the antenna 
azimuth and elevation coordinates. The received signal from the spacecraft usually 
contains telemetry, which is phase-modulated onto the carrier. The telemetry modulation 
index can be adjusted upward to increase the data Eb/No, or adjusted downward to 
increase the tracking system PJ". 

The contributors to tracking errors include receiver noise, servo system noise, target 
fluctuation (glint noise), atmospheric noise, and signal fading due to weather effects. For 
the Ka-band operation where atmospheric and weather effects dominate the link 
performance, the assumption of additive white Gaussian noise is no longer applicable. 
Effectively, tracking a spacecraft signal in deep space with long (several minutes) round- 
trip light time becomes equivalent to tracking a conventional fading target. Observing 
the statistical behavior of weather and the monopulse sum and error signals, we can 
utilize a neural network to desensitize the effects of fading on the tracking performance. 

Monopulse tracking performance has been investigated with regard to the effect of wind 
and the minimal CNR requirement for tracking in deep space and modeled as a Gaussian 
random variable at the antenna controller [27]. However, wind constitutes a single 
component of the entire weather effect, which is more critical at Ka-band. As a specific 
example of the weather effect, the fading is a higher-level error that needs to be 
compensated by the tracking system. To improve the tracking performance the weather 
forecast can be incorporated into the tracking error model. If the CNR required for each 
class of weather is matched with the receiver loop bandwidth, then the tracking and 
telemetry performance can be jointly optimized for the effects of weather. This is where a 
trained neural network can be useful as an interface between the telemetry and tracking 
systems. 

Tracking systems that use neural networks have been discussed in the literature for over a 
decade. A complete survey of tracking algorithms for aerospace applications using neural 
network architectures is provided in the references [28]. The advantage of using a neural 
network between the antenna receiver and tracker is that many subjective behaviors of 
the antenna through operator experience with weather can be integrated with forecast 
algorithms and numerical predictions to further improve tracking performance. One 
example is the recognition of the cloud type and its correlation with atmospheric noise 
temperature, and deciding on the best data rate, or modulation index to maintain receiver 
lock while minimizing the tracking error. 

V.Y. LO [6]  developed monopulse tracking simulation software for the Ka-band 34m 
Beam Waveguide (BWG) antenna using simulation models. V.Y. LO combined the 
digital receiver and decoder model with the monopulse antenna pointing model to 
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evaluate the integrated telemetry and tracking system performance. However, the analysis 
was limited to wind loading effects on the telemetry and tracking systems. 

To date, there have been no known investigations into integrated performance of 
telemetry and tracking for deep space Ka-band operation under various weather 
conditions and link characteristics. Data return volume and link optimization methods 
without regard to tracking system have been formerly investigated [29]. In efforts to 
improve the large DSN antenna tracking performance, several researchers have utilized 
neural network techniques. For instance, Vilnrotter, and Mukai et al. [30, 311 utilized a 
Radial Basis Function (RBF) neural network for the DSN 70m fine tracking in the Ka- 
band downlink. The fine-tracking neural network-based algorithm was obtained from a 
power-centroid algorithm derived from coarse antenna pointing offsets. Here the neural 
network was trained to compensate for the gravity distortion, elevation-dependent 
tracking errors, wind effect, and thermal distortion in such a way as to maximize the 
signal-to-noise ratio ( S N R )  of the received signal. The inputs to the neural network in 
[30] are generated from the seven-array feed elements and combined through the trained 
neural network, maximizing receiver SNR. 

D. Watola and J. B. Hampshire [32] had previously examined the use of a neural network 
for the Downlink Analyzer (DLA), which was used in the Mars Observer Ka-band Link 
Experiment. Watola and Hampshire used a neural network with inputs from several 
weather related sensor read-outs, telecom system parameters, antenna angles, and 
provided two outputs from the neural network to monitor the data received from the deep 
space downlink. More specifically, the input parameters included, maximum system 
noise temperature, azimuth and elevation angles as well as their corresponding error 
ranges, wind speed, wind speed range, wind direction range, relative wind direction, air 
temperature, and water vapor density. The neural network was then used to detect and 
diagnose the data anomalies due to weather, without trying to correct for any tracking, or 
telemetry parameters. 

Therefore, neural networks have the potential for including the impact of the natural 
phenomena of weather and other environmental effects on the telemetry channel and 
tracking loops for systems using large antennas. Further details of a neural network 
algorithm for improved tracking under weather effects will be discussed in a future paper. 

CONCLUSION 

Neural networks and their applications to space communications and tracking systems 
affected by weather were discussed. It was shown that neural networks would provide a 
practical means to optimize telemetry and tracking performance in the Ka-band, which is 
generally more susceptible to the effects of weather. More in-depth studies are needed to 
fully characterize the relationships between weather and the tracking and telemetry 
performance. New efforts are now underway for determining methods for optimizing the 
telemetry link performance while maintaining the tracking error below the required 
threshold. 
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