
ABSTRACT

Architectures for data systems that are built and managed by a single organization are
inherently complex. In order to understand a large scale space data system architecture,
and to judge its applicability for its nominal task, a description must be produced that
exposes a number of distinct viewpoints. Such descriptions will typically cover the uses
that are to be made of the system, the h c t i o n s that the system performs, the elements
that compose the system, the information that flows among these elements, and the
specific technologies that are integrated into the system.

There are a variety of approaches that can be used to describe such system architectures
and to capture these various viewpoints and their relationships. A standard called
Reference Model for Open Distributed Processing (RM-ODP) has been developed within
IS0 and ITU to provide a common way to describe large, multi-organization systems.
This modeling approach provides views on a system that go from the organizational
(Enterprise) to the abstract (informational, computational), to the more concrete
(Engineering, Technology).

Within the CCSDS Architecture Working Group we have adapted RM-ODP to describe
large, multi-national, space data systems. These systems exhibit all of the complexities
of typical terrestrial systems, but are frequently compounded by involvement of several
space agencies, some unusual organizational cross-support arrangements, and use of
contractors in a number or roles. We also must deal with the complexities of operating
systems in space, including all of the physical constraints and challenges that that
environment brings. The most fundamental challenge are is the physical space
environment (motion, obscuration, long round trip light times, episodic connectivity, low
signal strength, asymmetric data paths) which constrains how these systems are
engineered and operated, and often requires different protocols for communications than
those that can be used terrestrially.

We have produced a methodology, based upon RM-ODP, which provides the necessary
concepts and notation for describing these complex space data systems. The reference
architecture is intended for use by two different, but related, user communities: the
system users and the system and standards developers. The approach is intended to be
general enough to permit description of civilian, military, and commercial space data
systems, the spacecraft, ground systems, processing and communications resources, and
organizational arrangements. There is related work to identify means to capture these
architectures and the behavior of the described elements in a machinable way, such that
we can reason about the completeness and accuracy of the system as described. As a way
of assessing performance and exploring design trades we hope to eventually be able to
simulate at least the coarse grained overall behavior of such systems based upon their
descriptions.

REFERENCE ARCHITECTURE FOR SPACE DATA SYSTEMS

Peter Shames

Jet Propulsion Laboratory, CIT

peter.shames@jpl.nasa.gov
Pasadena, CA

ABSTRACT

This paper introduces the Reference Architecture for Space
Data Systems (RASDS) that is being developed by
CCSDS and shows how it can be used to reduce the cost
of development of space data systems. RASDS uses five
Views to describe architectures of space data systems.
These Views are derived from the viewpoints of the
Reference Model of Open Distributed Processing (RM-
ODP), but they are slightly modified from the RM-ODP
viewpoints so that they can better represent the concerns of
space data systems.

1. INTRODUCTION

Interoperability of space data systems is of great concern to
Space Agencies because sharing or reusing interoperable
resources among multiple projects and multiple Agencies
can reduce the cost of developing and operating space data
systems. However, an on-going problem is that each space
data system often has a different architecture and therefore
the elements of one system cannot be easily used by other
systems. Moreover, the method of describing the
architecture is usually different from system to system and
it is sometimes difficult to even describe the problems
associated with interoperability among systems. Standard
interfaces and protocols, and standard architectures, are
ways of providing interoperability and reuse, and reducing
costs.

To cope with this situation, the Consultative Committee
for Space Data Systems (CCSDS) [I] has developed
various architectures to describe space data systems.
CCSDS is an international, consensus based, space system
standards organization which has as members NASA,
ESA, ISAS, and all the other major space agencies.
Recognizing that there are already different architectures of
space data systems, the approach taken by the CCSDS
Systems Architecture Working Group (SAWG) was to
generate a reference architecture that can be used as a
framework to generate various architectures in a coherent
way. This reference architecture is known as the Reference
Architecture for Space Data Systems (RASDS). Using this
reference architecture, architectures of different space data
systems can be described in a standard way so that the

Takahiro Yamada

Institute of Space and Astronautical Science
Sagamihara, Japan

tyamada@pub.isas.ac.jp

commonality and differences among the systems can be
easily understood.

Space agencies are designing increasingly complex
missions, many of which require some level of multi-
agency interoperability (spacecraft to ground system,
instrument to spacecraft, spacecraft to spacecraft) or
interdependency among systems (lander to orbiting relay).
We have a methodology for describing these complex
missions and expect to adapt a formal methodology for
modeling their behavior based upon these formalized
descriptions. We anticipate cost savings from using a
common, highly capable approach to describing these
complex systems, from using common tools and model
based engineering to design these systems, from re-use of
models and architectures, and for being able to share
architectures and engineering models among agency
partners. The major savings will come from the ability to
reuse components and provide cross support among these
missions.

2. OVERVIEW OF THE REFERENCE
ARCHITECTURE

Space data systems are complex entities, which may be
viewed from various aspects. In order to generate the
architecture of a space data system in a manageable way,
RASDS uses multiple Views to present the architecture of
a space data system, each view focusing on one aspect of
the system. The Views used by RASDS are derived from
the viewpoints defined in the Reference Model of Open
Distributed Processing (RM-ODP) [2] but they are slightly
modified from the RM-ODP viewpoints so that they can
better represent the concerns of space data systems. The
views used in RASDS range from the organizational to the
physical component and from abstract representation to
concrete implementations, they include: Enterprise,
Connect ivi ty , Function a1 , Information, and
Communications.

Each View is an abstraction that uses a selected set of
architectural concepts and structuring rules, in order to
focus on particular aspects within a space data system.
Each of the Views describes the space data system in
question as a set of Objects, the interactions among them,

mailto:peter.shames@jpl.nasa.gov
mailto:tyamada@pub.isas.ac.jp

Management Interfaces:
How objects are configured
controlled, and reported upon

u
Service Interfaces: External Interfaces:

How services are Core functions: How external elements
requested & supplied Decision are controlled

Action
processing Concerns:

Issues
Resources
Policies

Figure 1. Representation of Objects
3. ENTERPRISE VIEW and the concerns that must be addressed for that

viewpoint. An Object is an abstract model of an entity in
the system.

As shown in Figure 1 , each Object is described with its
core functions and its interfaces with other Objects. Also,
a set of concerns is associated with each Object.

RASDS uses the five Views that are explained in the
subsequent sections to describe the architecture of space
data systems. The user may decide not to use all of these
five Views to describe a particular system if the system
can be characterized with less than five Views. The user
may also choose to combine Views using the basic
concepts defined in RASDS if it is impossible to capture
all the important aspects of the system with a single pre-
defined View. Examples of this are shown in the text.

The motivation for the Enterprise View is that we often
have complex organizational relationships involving
spacecraft, instruments, ground systems, scientists, staff,
and contractors that are distributed among multiple
organizations (space agencies, science institutes,
companies, etc). The Enterprise View is used to address
these aspects of space data systems and the relevant
concerns that arise, i.e. polices, contracts, agreements,
organizational interfaces and, from a security perspective,
trust relationships.

The Enterprise View describes the organizations involved
in a space data system and the relationships and
interactions among them. The Enterprise View is depicted
as a set of Enterprise Objects and interactions among
them, where each Object is an abstract model of an

~ ~~~

/ - - - - - - - - - 'I
1 1

performs data I I
4 I analysis service I 1

4 @ (I 0
I 0 I --_1-_1--14

0 '
Data Utilization + _I - - - - -

Agreement I Science Institute R:
r - - - - - - - -

0 'I
A d d

c.-------
I Agency P: builds I 1
I and operates a '- - - - - - - - - I 7 .

1 ' 'I
1 1

' C I I
Agreement tracking service I I

I 0
1 ,

' / \
I spacecraft I N

I - - - - - - - - Y e-------

Support Service \ , Agency Q: provides

\
\
\

1

1 - - - - - - - _ 1 A
~~

Figure 2. Example of Enterprise View (Mission A)

organization or facility involved in a space data system.
An Enterprise Object represents an independent Enterprise
(such as a space agency, a government institute, a
university, or a private company) or an element belonging
to an Enterprise (such as a tracking network, a control
center, a science center, or a research group). An Enterprise
Object may be composed of other Enterprise Objects. A
group of Enterprise Objects that plays some role in a space
data system (such as a community, a committee, or a joint
project) can also be an Enterprise Object.

Figure 2 shows an example of an Enterprise View for
Mission A, in which Agency P builds and operates a

scheduling, long round trip light times, and low signal-to-
noise ratios, all of which require special protocols and
functionality to deal with. The Connectivity View is used
to address all of these physical and performance aspects of
space data systems. This is a concrete view of system
elements, used in conjunction with more abstract views,
such as the Functional View, to show allocation of
functions, and with more concrete views, such as the
Communications View, to show the protocols that are
required to deal with the link and environmental
characteristics.

Figure 3 shows Nodes and Links used for Mission A, as
spacecraft, Agency Q provides tracking support and
Science Institute R performs scientific data analysis.

shown in Figure 2.

Ground Link

Et

Figure 3. Example of Connectivity View (Mission A)

4. CONNECTIVITY VIEW

The Connectivity View describes the physical elements,
how they are connected, and the physical environment of a
space data system. The Connectivity View is depicted as a
set of Nodes and Links. A Node is an abstract model of a
physical entity or component used in a space data system,
which is connected to other Nodes by a Link of some sort.
A Node represents a system (such as a spacecraft, a
tracking system or a control system) or an individual
physical element of a system (such as an instrument, a
computer, or a piece of equipment). A Node may be
composed of other Nodes. A Link is a physical connection
between or among Nodes. A Link represents an RF link, a
wired link, or a network of some kind (such as the
Internet, a LAN, or a bus). Both Nodes and Links have
associated behavioral properties, which include
performance, location, and possibly motion. The entire set
of Nodes and Links is embedded in a physical
environment, which has its own properties and behaviors.

The motivation for the Connectivity View is that we have
system elements that are in motion through space and
consequently connectivity issues associated with pointing,

An Enterprise Object owns each Node. Figure 4 shows
which Enterprise Object from Figure 2 owns which
Node(s) from Figure 3.

5. FUNCTIONAL VIEW

The motivation for the Functional View is to separate
functional elements and their logical interactions from the
engineering concerns of where functions are housed, how
they are connected, which protocols are used, or which
language is used to implement them. The Functional View
is an abstract view used to address these aspects of space
data systems.

The Functional View describes the functional structure of a
space data system and how functions interact with each
other. The Functional View is depicted as a set of
Functional Objects and the logical associations among
them. A Functional Object is an abstract model of a
functional entity that performs actions and generates or
processes data in a space data system. Each Functional
Object has a set of associated behaviors and a set of
defined interfaces. An Object that only moves data is
called a Communications Object and is treated in the
Communications View. A Functional Object may be

r-_I------

I - -

Figure 4. Example of Enterprise and Connectivity Views (Mission A)
realized as either software or hardware. A Functional
Object may be composed of other Functional Objects. A
Functional Object may use a service provided by other
Functional Objects, provide a service to other Functional
Objects, or perform actions jointly with other Functional
Objects. These kinds of interactions are described in the
Functional View.

Figure 5 shows some of the Functional Objects used for
Mission A together with the logical associations between
them (shown with dotted lines).

Functional Objects actually reside in physical entities (Le.,
Nodes) of the system. Overlaying the Functional View on
the Connectivity View of the same system will show the
distribution of Functional Objects among Nodes. Such an
example is shown in Figure 6 , in which the Functional
Objects from Figure 5 are overlaid on the Connectivity
View from Figure 3. The allocation of Functional Objects
to Nodes is a part of the system design trade space.

6. INFORMATION VIEW

The motivation for the Information View is to clarify
relationships among data objects that are passed among the

functional elements, and to define their structures,
relationships, and policies. Data objects are managed (that
is, stored, located, accessed, and distributed) by
information infrastructure elements. The Information View
is used to address these aspects of space data systems.

The Information View describes the space data systems
from the perspective of the Information Objects that are
exchanged among the Functional Objects. It includes
descriptions of Information Objects (their structure and
syntax), information about the meaning and use of these
Objects (contents and semantics), the relationships among
Objects, rules for their use and transformation, and
policies on access. It also provides descriptions of the
Distributed Information Infrastructure (DII) that supports
the location, access, delivery, and management of these
Information Objects and descriptions of the Information
Management Functional Objects that support the
operations of DII. Finally, this View shows the
relationship between the Information Objects and the
Functional Objects that manipulate and exchange them.

Figure 7 shows the relationship between some typical
Functional Objects and the Information Objects that they
exchange. This example shows a mission planning flow

**.
*. **.

Figure 5. Example of Functional View (Mission A)

Science Spacecraft

Tracking Station
Grou

Li

Ground
Link

SIC Control Center

Figure 6. Example of Functional and Connectivity Views (Mission A)
for Mission A, where the green objects are Functional
Objects and the blue objects are Information Objects.

7. COMMUNICATIONS VIEW

The motivation for the Communications View is to define
the layered sets of communications protocols that support
communications among the functional elements. These
protocols, and the Communications Objects that
implement them, are needed to meet the requirements
imposed by the connectivity and operational challenges.
The Communications View describes the engineering
solutions to these space data systems challenges and is a
key area of technical focus within CCSDS. The

Connectivity View describes the operating environment
and the physical connections among Nodes and Links.

The Communications View describes the mechanisms for
information transfer among physical entities (Le., Nodes)
in a space data system. The Communications View is
depicted as a set of Communications Objects and
interactions among them. A Communications Object is an
abstract model of a communications protocol that may be
realized as either software or hardware. Communications
Objects support information transfer between or among
Functional Objects over Links (i.e., physical connections
between or among Nodes). A stack of Communications
Objects is usually used to support information transfer
from a Functional Object to another Functional Object for

I

Figure 7. Example of Information and Functional Views (Mission A)

Science Spacecraft Tracking Station SIC Control Center

Space Link Ground Link

Figure 8. Example of Communication, Functional and Connectivity Views
a sequence of functional interactions. In the
communications stack, the topmost Communications
Object directly supports the Functional Object, and the
lowest Communications Object handles the Link.

The selection of Communications Objects to support
information transfer between Functional Objects over a
Link heavily depends on the characteristics of the
Functional Objects, the Nodes, the physical Link and the
space environment. Therefore, it is useful to show the
Functional Objects, the Nodes and the Link together with
the Communications Objects in the Communications
View.

Such an example is shown in Figure 8, in which the
Communications View (Communications Objects) are
overlaid with a simplified Functional View (Functional
Objects) and the Connectivity View (Nodes and Links).

8. APPLYING THE REFERENCE
ARCHITECTURE

The RASDS can be used for comparing and analyzing
different systems in a systematic way. Each space data
system has a set of functions, but there are several design
choices on how to implement these functions in the
system. For example, some functions can be implemented
on the spacecraft or on the ground, and if they are
implemented on the spacecraft, they can be centrally
located at the central data handling sub-system or
distributed among several sub-systems.

A simple example of such a distribution of functions to
physical elements is shown in Figure 6 as a distribution of
Functional Objects to Nodes. In this example, mission

planning is performed at the science center and observation
plans are sent from the science center to the spacecraft
control center, where observation plans are converted to
mission directives by the directive generation Functional
Object (see also Figure 7 that shows information
transferred between Functional Objects).
Depending on the constraints imposed by system or
operational requirements, observation plans may be
transferred directly to the spacecraft, where mission
directives are generated and executed, instead of generating
the low level directives on the ground and shipping these
to the spacecraft. In such a case, the Communications
Objects (i.e., protocols) to support transfer of information
between Functional Objects may need to be re-selected to
match the physical and operational environments of
information transfer.

In a similar fashion, some highly autonomous missions,
or several missions that are collaborating to serve some
end science goals, may require distributed information
management and access functionality. The interfaces can be
conveniently analyzed using the Functional View and the
implications of distributing this functionality can be
analyzed using the Connectivity View, possibly in
conjunction with the Communications View. An example
of such a Connectivity View is shown in Figure 9.

The RASDS can be used to present these different designs
in a unified way so that engineering issues associated with
each of the possible designs can be analyzed
systematically. Given a sufficiently complete set of
attributes for physical components and links, and an
adequate model of the connectivity and protocol
performance, it will be possible to model the end to end
performance and science return of different mission

Science Spacecraft B

SIC Control Center

Figure 9. Example of Multi-Mission Functional and Connectivity Views

architectures.

9. COST REDUCTION WITH RASDS

This paper has presented the conceptual framework of
RASDS. Since there has been no common architectural
framework for space data systems, RASDS will be used as
a standard framework by system architects and system
developers. This will reduce the cost of system
development by eliminating the need of developing
individual frameworks.

Our next step is to develop formal methods for describing
these architectures (for example, UML profiles andor
XML schemas). With these methods, each View of a space
data system will formally be described with the Objects
contained in the Views and the interactions among the
Objects. The characteristics of Objects, their behaviors,
and their interactions will also be formally described.
These formal methods will enable sharing and exchange of
information on architectures and systems among different
organizations or teams, and eliminate the need of re-

generating the same information for different purposes,
which happens quite frequently in actual system
development.

Together with the formal methods for describing
architectures, we plan to develop software tools, based on
existing commercial or academic tools, for generation and
manipulation of architectures. These tools will facilitate
generation and manipulation of architectures and
information on the architectures. By using the formal
methods and tools, information on an architecture or a
system will be electronically generated by the architect or
developer and then delivered to the engineering teams who
use the information for building, testing and using the
system. For example, architectural information on a
system generated by the architect can be directly fed to a
generic simulator, which simulates the behavior of the
system using the received architectural information. The
same information can also be fed to software tools used for
detailed design and documentation of the system in which
the processes for design and documentation will be
initiated using the received information.

Therefore, the approach described above will greatly
facilitate automating the system design processes and this
will greatly reduce the cost of system development.

To summarize, we anticipate cost savings from using a
common, highly capable approach to describing these
complex systems. These saving will come from:

Using a common, highly capable approach to
describing these complex systems
Using common tools
Using model based engineering to design these
systems
Reuse of models and architectures
Sharing architectures and engineering models with
partners
Development of standards to implement cross support
Reuse of complaint components
Cross support among agencies & missions.

10. CONCLUSION

This paper has briefly presented the Reference Architecture
for Space Data Systems (RASDS) that is being developed
by the CCSDS Systems Architecture Working Group
(SAWG). The SAWG generated some sample architectures
(spacecraft onboard architectures, space link architectures,
cross-support architectures) using this RASDS approach,
and RASDS was proven to be a powerful tool for
describing and relating different space data system
architectures.

Some simple examples were provided to show how to
apply the RASDS approach to the analysis of mission
design trades. The ability to separate the different views
and therefore simplify the analysis of different elements in
the trade space should prove to be beneficial during
mission design. The European Space Agency (ESA) in a
European technology harmonization of Ground Software
System is now applying the RASDS approach. RASDS
will provide high level views and XASTRO, which uses
xADL [3] and UML [4] to model the systems, will be
used as the method to describe the ground segment
reference architecture.

Many aspects of space data systems that are considered in
the RASDS have not been addressed in this brief paper,
but are covered in the full report of the SAWG. These
include security, system management, engineering details,
lifecycle issues, IV&V, and other aspects of designing and
building real systems. This Reference Architecture offers a
consistent way of dealing with a variety of critical system
viewpoints, starting with high low level abstractions and
work toward more concrete realizations and
implementations.

As missions become more complex, and more
interdependencies are required between projects and among
agencies, having clear architectural models will be
essential. Significant costs savings are possible both in the
architecting process itself and in the development of
standards and systems components that are compliant with
these architectures.

11. ACKNOWLEDGEMENTS

The research described in this paper was carried out at the
Jet Propulsion Laboratory, California Institute of
Technology, and was sponsored by the Institute of Space
and Astronautical Science (ISAS) and the National
Aeronautics and Space Administration. The authors wish
to thank the members of the CCSDS System Architecture
Working Group (Eduardo Bergamini, Fred Brosi, Adrian
Hooke, Lou Reich and Don Sawyer) for their valuable
contribution to the development of the RASDS presented
in this paper.

12. REFERENCES

[11 http://www.ccsds.org

[2] Information Technology - Open Distributed Processing
- Reference model: Overview, Intemational Standard,
ISOIIEC 10746-1, December 1998.

[3] xADL.: Enabling Architecture Centric Tool
Integration with XML, Khare, et al, UCI

[4] Unified Modeling Language, (UML),
http://www.omg.org/uml/

http://www.ccsds.org
http://www.omg.org/uml

Reference Architecture for Space Data Systems

Authors:

Peter Shames
Mgr, JPL Information Systems Standards Program
Jet Propulsion Laboratory (JPL)
4800 Oak grove Drive
Pasadena, CA 91 109
8 18 354-5740

Dr. Takahiro Yamada
Institute of Space and Astronautical Science (ISAS)
3-1-1 Yoshinodai
Sagamihara 229
Japan

Focus Issues:

- Architectural representation and analysis
- Standards and interoperability
- Space and ground communication architectures

