
ABSTRACT 

Architectures for data systems that are built and managed by a single organization are 
inherently complex. In order to understand a large scale space data system architecture, 
and to judge its applicability for its nominal task, a description must be produced that 
exposes a number of distinct viewpoints. Such descriptions will typically cover the uses 
that are to be made of the system, the h c t i o n s  that the system performs, the elements 
that compose the system, the information that flows among these elements, and the 
specific technologies that are integrated into the system. 

There are a variety of approaches that can be used to describe such system architectures 
and to capture these various viewpoints and their relationships. A standard called 
Reference Model for Open Distributed Processing (RM-ODP) has been developed within 
IS0  and ITU to provide a common way to describe large, multi-organization systems. 
This modeling approach provides views on a system that go from the organizational 
(Enterprise) to the abstract (informational, computational), to the more concrete 
(Engineering, Technology). 

Within the CCSDS Architecture Working Group we have adapted RM-ODP to describe 
large, multi-national, space data systems. These systems exhibit all of the complexities 
of typical terrestrial systems, but are frequently compounded by involvement of several 
space agencies, some unusual organizational cross-support arrangements, and use of 
contractors in a number or roles. We also must deal with the complexities of operating 
systems in space, including all of the physical constraints and challenges that that 
environment brings. The most fundamental challenge are is the physical space 
environment (motion, obscuration, long round trip light times, episodic connectivity, low 
signal strength, asymmetric data paths) which constrains how these systems are 
engineered and operated, and often requires different protocols for communications than 
those that can be used terrestrially. 

We have produced a methodology, based upon RM-ODP, which provides the necessary 
concepts and notation for describing these complex space data systems. The reference 
architecture is intended for use by two different, but related, user communities: the 
system users and the system and standards developers. The approach is intended to be 
general enough to permit description of civilian, military, and commercial space data 
systems, the spacecraft, ground systems, processing and communications resources, and 
organizational arrangements. There is related work to identify means to capture these 
architectures and the behavior of the described elements in a machinable way, such that 
we can reason about the completeness and accuracy of the system as described. As a way 
of assessing performance and exploring design trades we hope to eventually be able to 
simulate at least the coarse grained overall behavior of such systems based upon their 
descriptions. 
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ABSTRACT 

This paper introduces the Reference Architecture for Space 
Data Systems (RASDS) that is being developed by 
CCSDS and shows how it can be used to reduce the cost 
of development of space data systems. RASDS uses five 
Views to describe architectures of space data systems. 
These Views are derived from the viewpoints of the 
Reference Model of Open Distributed Processing (RM- 
ODP), but they are slightly modified from the RM-ODP 
viewpoints so that they can better represent the concerns of 
space data systems. 

1. INTRODUCTION 

Interoperability of space data systems is of great concern to 
Space Agencies because sharing or reusing interoperable 
resources among multiple projects and multiple Agencies 
can reduce the cost of developing and operating space data 
systems. However, an on-going problem is that each space 
data system often has a different architecture and therefore 
the elements of one system cannot be easily used by other 
systems. Moreover, the method of describing the 
architecture is usually different from system to system and 
it is sometimes difficult to even describe the problems 
associated with interoperability among systems. Standard 
interfaces and protocols, and standard architectures, are 
ways of providing interoperability and reuse, and reducing 
costs. 

To cope with this situation, the Consultative Committee 
for Space Data Systems (CCSDS) [ I ]  has developed 
various architectures to describe space data systems. 
CCSDS is an international, consensus based, space system 
standards organization which has as members NASA, 
ESA, ISAS, and all the other major space agencies. 
Recognizing that there are already different architectures of 
space data systems, the approach taken by the CCSDS 
Systems Architecture Working Group (SAWG) was to 
generate a reference architecture that can be used as a 
framework to generate various architectures in a coherent 
way. This reference architecture is known as the Reference 
Architecture for Space Data Systems (RASDS). Using this 
reference architecture, architectures of different space data 
systems can be described in a standard way so that the 
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commonality and differences among the systems can be 
easily understood. 

Space agencies are designing increasingly complex 
missions, many of which require some level of multi- 
agency interoperability (spacecraft to ground system, 
instrument to spacecraft, spacecraft to spacecraft) or 
interdependency among systems (lander to orbiting relay). 
We have a methodology for describing these complex 
missions and expect to adapt a formal methodology for 
modeling their behavior based upon these formalized 
descriptions. We anticipate cost savings from using a 
common, highly capable approach to describing these 
complex systems, from using common tools and model 
based engineering to design these systems, from re-use of 
models and architectures, and for being able to share 
architectures and engineering models among agency 
partners. The major savings will come from the ability to 
reuse components and provide cross support among these 
missions. 

2. OVERVIEW OF THE REFERENCE 
ARCHITECTURE 

Space data systems are complex entities, which may be 
viewed from various aspects. In order to generate the 
architecture of a space data system in a manageable way, 
RASDS uses multiple Views to present the architecture of 
a space data system, each view focusing on one aspect of 
the system. The Views used by RASDS are derived from 
the viewpoints defined in the Reference Model of Open 
Distributed Processing (RM-ODP) [2] but they are slightly 
modified from the RM-ODP viewpoints so that they can 
better represent the concerns of space data systems. The 
views used in RASDS range from the organizational to the 
physical component and from abstract representation to 
concrete implementations, they include: Enterprise, 
Connect ivi ty  , Function a1 , Information,  and 
Communications. 

Each View is an abstraction that uses a selected set of 
architectural concepts and structuring rules, in order to 
focus on particular aspects within a space data system. 
Each of the Views describes the space data system in 
question as a set of Objects, the interactions among them, 
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Figure 1. Representation of Objects 
3. ENTERPRISE VIEW and the concerns that must be addressed for that 

viewpoint. An Object is an abstract model of an entity in 
the system. 

As shown in Figure 1 ,  each Object is described with its 
core functions and its interfaces with other Objects. Also, 
a set of concerns is associated with each Object. 

RASDS uses the five Views that are explained in the 
subsequent sections to describe the architecture of space 
data systems. The user may decide not to use all of these 
five Views to describe a particular system if the system 
can be characterized with less than five Views. The user 
may also choose to combine Views using the basic 
concepts defined in RASDS if it is impossible to capture 
all the important aspects of the system with a single pre- 
defined View. Examples of this are shown in the text. 

The motivation for the Enterprise View is that we often 
have complex organizational relationships involving 
spacecraft, instruments, ground systems, scientists, staff, 
and contractors that are distributed among multiple 
organizations (space agencies, science institutes, 
companies, etc). The Enterprise View is used to address 
these aspects of space data systems and the relevant 
concerns that arise, i.e. polices, contracts, agreements, 
organizational interfaces and, from a security perspective, 
trust relationships. 

The Enterprise View describes the organizations involved 
in a space data system and the relationships and 
interactions among them. The Enterprise View is depicted 
as a set of Enterprise Objects and interactions among 
them, where each Object is an abstract model of an 
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Figure 2. Example of Enterprise View (Mission A) 



organization or facility involved in a space data system. 
An Enterprise Object represents an independent Enterprise 
(such as a space agency, a government institute, a 
university, or a private company) or an element belonging 
to an Enterprise (such as a tracking network, a control 
center, a science center, or a research group). An Enterprise 
Object may be composed of other Enterprise Objects. A 
group of Enterprise Objects that plays some role in a space 
data system (such as a community, a committee, or a joint 
project) can also be an Enterprise Object. 

Figure 2 shows an example of an Enterprise View for 
Mission A, in which Agency P builds and operates a 

scheduling, long round trip light times, and low signal-to- 
noise ratios, all of which require special protocols and 
functionality to deal with. The Connectivity View is used 
to address all of these physical and performance aspects of 
space data systems. This is a concrete view of system 
elements, used in conjunction with more abstract views, 
such as the Functional View, to show allocation of 
functions, and with more concrete views, such as the 
Communications View, to show the protocols that are 
required to deal with the link and environmental 
characteristics. 

Figure 3 shows Nodes and Links used for Mission A, as 
spacecraft, Agency Q provides tracking support and 
Science Institute R performs scientific data analysis. 

shown in Figure 2. 

Ground Link 

Et 

Figure 3. Example of Connectivity View (Mission A) 

4. CONNECTIVITY VIEW 

The Connectivity View describes the physical elements, 
how they are connected, and the physical environment of a 
space data system. The Connectivity View is depicted as a 
set of Nodes and Links. A Node is an abstract model of a 
physical entity or component used in a space data system, 
which is connected to other Nodes by a Link of some sort. 
A Node represents a system (such as a spacecraft, a 
tracking system or a control system) or an individual 
physical element of a system (such as an instrument, a 
computer, or a piece of equipment). A Node may be 
composed of other Nodes. A Link is a physical connection 
between or among Nodes. A Link represents an RF link, a 
wired link, or a network of some kind (such as the 
Internet, a LAN, or a bus). Both Nodes and Links have 
associated behavioral properties, which include 
performance, location, and possibly motion. The entire set 
of Nodes and Links is embedded in a physical 
environment, which has its own properties and behaviors. 

The motivation for the Connectivity View is that we have 
system elements that are in motion through space and 
consequently connectivity issues associated with pointing, 

An Enterprise Object owns each Node. Figure 4 shows 
which Enterprise Object from Figure 2 owns which 
Node(s) from Figure 3. 

5. FUNCTIONAL VIEW 

The motivation for the Functional View is to separate 
functional elements and their logical interactions from the 
engineering concerns of where functions are housed, how 
they are connected, which protocols are used, or which 
language is used to implement them. The Functional View 
is an abstract view used to address these aspects of space 
data systems. 

The Functional View describes the functional structure of a 
space data system and how functions interact with each 
other. The Functional View is depicted as a set of 
Functional Objects and the logical associations among 
them. A Functional Object is an abstract model of a 
functional entity that performs actions and generates or 
processes data in a space data system. Each Functional 
Object has a set of associated behaviors and a set of 
defined interfaces. An Object that only moves data is 
called a Communications Object and is treated in the 
Communications View. A Functional Object may be 
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Figure 4. Example of Enterprise and Connectivity Views (Mission A) 
realized as either software or hardware. A Functional 
Object may be composed of other Functional Objects. A 
Functional Object may use a service provided by other 
Functional Objects, provide a service to other Functional 
Objects, or perform actions jointly with other Functional 
Objects. These kinds of interactions are described in the 
Functional View. 

Figure 5 shows some of the Functional Objects used for 
Mission A together with the logical associations between 
them (shown with dotted lines). 

Functional Objects actually reside in physical entities (Le., 
Nodes) of the system. Overlaying the Functional View on 
the Connectivity View of the same system will show the 
distribution of Functional Objects among Nodes. Such an 
example is shown in Figure 6 ,  in which the Functional 
Objects from Figure 5 are overlaid on the Connectivity 
View from Figure 3. The allocation of Functional Objects 
to Nodes is a part of the system design trade space. 

6. INFORMATION VIEW 

The motivation for the Information View is to clarify 
relationships among data objects that are passed among the 

functional elements, and to define their structures, 
relationships, and policies. Data objects are managed (that 
is, stored, located, accessed, and distributed) by 
information infrastructure elements. The Information View 
is used to address these aspects of space data systems. 

The Information View describes the space data systems 
from the perspective of the Information Objects that are 
exchanged among the Functional Objects. It includes 
descriptions of Information Objects (their structure and 
syntax), information about the meaning and use of these 
Objects (contents and semantics), the relationships among 
Objects, rules for their use and transformation, and 
policies on access. It also provides descriptions of the 
Distributed Information Infrastructure (DII) that supports 
the location, access, delivery, and management of these 
Information Objects and descriptions of the Information 
Management Functional Objects that support the 
operations of DII. Finally, this View shows the 
relationship between the Information Objects and the 
Functional Objects that manipulate and exchange them. 

Figure 7 shows the relationship between some typical 
Functional Objects and the Information Objects that they 
exchange. This example shows a mission planning flow 
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Figure 5. Example of Functional View (Mission A) 
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Figure 6. Example of Functional and Connectivity Views (Mission A) 
for Mission A, where the green objects are Functional 
Objects and the blue objects are Information Objects. 

7. COMMUNICATIONS VIEW 

The motivation for the Communications View is to define 
the layered sets of communications protocols that support 
communications among the functional elements. These 
protocols, and the Communications Objects that 
implement them, are needed to meet the requirements 
imposed by the connectivity and operational challenges. 
The Communications View describes the engineering 
solutions to these space data systems challenges and is a 
key area of technical focus within CCSDS. The 

Connectivity View describes the operating environment 
and the physical connections among Nodes and Links. 

The Communications View describes the mechanisms for 
information transfer among physical entities (Le., Nodes) 
in a space data system. The Communications View is 
depicted as a set of Communications Objects and 
interactions among them. A Communications Object is an 
abstract model of a communications protocol that may be 
realized as either software or hardware. Communications 
Objects support information transfer between or among 
Functional Objects over Links (i.e., physical connections 
between or among Nodes). A stack of Communications 
Objects is usually used to support information transfer 
from a Functional Object to another Functional Object for 

I 

Figure 7. Example of Information and Functional Views (Mission A) 
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Figure 8. Example of Communication, Functional and Connectivity Views 
a sequence of functional interactions. In the 
communications stack, the topmost Communications 
Object directly supports the Functional Object, and the 
lowest Communications Object handles the Link. 

The selection of Communications Objects to support 
information transfer between Functional Objects over a 
Link heavily depends on the characteristics of the 
Functional Objects, the Nodes, the physical Link and the 
space environment. Therefore, it is useful to show the 
Functional Objects, the Nodes and the Link together with 
the Communications Objects in the Communications 
View. 

Such an example is shown in Figure 8, in which the 
Communications View (Communications Objects) are 
overlaid with a simplified Functional View (Functional 
Objects) and the Connectivity View (Nodes and Links). 

8. APPLYING THE REFERENCE 
ARCHITECTURE 

The RASDS can be used for comparing and analyzing 
different systems in a systematic way. Each space data 
system has a set of functions, but there are several design 
choices on how to implement these functions in the 
system. For example, some functions can be implemented 
on the spacecraft or on the ground, and if they are 
implemented on the spacecraft, they can be centrally 
located at the central data handling sub-system or 
distributed among several sub-systems. 

A simple example of such a distribution of functions to 
physical elements is shown in Figure 6 as a distribution of 
Functional Objects to Nodes. In this example, mission 

planning is performed at the science center and observation 
plans are sent from the science center to the spacecraft 
control center, where observation plans are converted to 
mission directives by the directive generation Functional 
Object (see also Figure 7 that shows information 
transferred between Functional Objects). 
Depending on the constraints imposed by system or 
operational requirements, observation plans may be 
transferred directly to the spacecraft, where mission 
directives are generated and executed, instead of generating 
the low level directives on the ground and shipping these 
to the spacecraft. In such a case, the Communications 
Objects (i.e., protocols) to support transfer of information 
between Functional Objects may need to be re-selected to 
match the physical and operational environments of 
information transfer. 

In a similar fashion, some highly autonomous missions, 
or several missions that are collaborating to serve some 
end science goals, may require distributed information 
management and access functionality. The interfaces can be 
conveniently analyzed using the Functional View and the 
implications of distributing this functionality can be 
analyzed using the Connectivity View, possibly in 
conjunction with the Communications View. An example 
of such a Connectivity View is shown in Figure 9. 

The RASDS can be used to present these different designs 
in a unified way so that engineering issues associated with 
each of the possible designs can be analyzed 
systematically. Given a sufficiently complete set of 
attributes for physical components and links, and an 
adequate model of the connectivity and protocol 
performance, it will be possible to model the end to end 
performance and science return of different mission 
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Figure 9. Example of Multi-Mission Functional and Connectivity Views 

architectures. 

9. COST REDUCTION WITH RASDS 

This paper has presented the conceptual framework of 
RASDS. Since there has been no common architectural 
framework for space data systems, RASDS will be used as 
a standard framework by system architects and system 
developers. This will reduce the cost of system 
development by eliminating the need of developing 
individual frameworks. 

Our next step is to develop formal methods for describing 
these architectures (for example, UML profiles andor 
XML schemas). With these methods, each View of a space 
data system will formally be described with the Objects 
contained in the Views and the interactions among the 
Objects. The characteristics of Objects, their behaviors, 
and their interactions will also be formally described. 
These formal methods will enable sharing and exchange of 
information on architectures and systems among different 
organizations or teams, and eliminate the need of re- 

generating the same information for different purposes, 
which happens quite frequently in actual system 
development. 

Together with the formal methods for describing 
architectures, we plan to develop software tools, based on 
existing commercial or academic tools, for generation and 
manipulation of architectures. These tools will facilitate 
generation and manipulation of architectures and 
information on the architectures. By using the formal 
methods and tools, information on an architecture or a 
system will be electronically generated by the architect or 
developer and then delivered to the engineering teams who 
use the information for building, testing and using the 
system. For example, architectural information on a 
system generated by the architect can be directly fed to a 
generic simulator, which simulates the behavior of the 
system using the received architectural information. The 
same information can also be fed to software tools used for 
detailed design and documentation of the system in which 
the processes for design and documentation will be 
initiated using the received information. 



Therefore, the approach described above will greatly 
facilitate automating the system design processes and this 
will greatly reduce the cost of system development. 

To summarize, we anticipate cost savings from using a 
common, highly capable approach to describing these 
complex systems. These saving will come from: 

Using a common, highly capable approach to 
describing these complex systems 
Using common tools 
Using model based engineering to design these 
systems 
Reuse of models and architectures 
Sharing architectures and engineering models with 
partners 
Development of standards to implement cross support 
Reuse of complaint components 
Cross support among agencies & missions. 

10. CONCLUSION 

This paper has briefly presented the Reference Architecture 
for Space Data Systems (RASDS) that is being developed 
by the CCSDS Systems Architecture Working Group 
(SAWG). The SAWG generated some sample architectures 
(spacecraft onboard architectures, space link architectures, 
cross-support architectures) using this RASDS approach, 
and RASDS was proven to be a powerful tool for 
describing and relating different space data system 
architectures. 

Some simple examples were provided to show how to 
apply the RASDS approach to the analysis of mission 
design trades. The ability to separate the different views 
and therefore simplify the analysis of different elements in 
the trade space should prove to be beneficial during 
mission design. The European Space Agency (ESA) in a 
European technology harmonization of Ground Software 
System is now applying the RASDS approach. RASDS 
will provide high level views and XASTRO, which uses 
xADL [3] and UML [4] to model the systems, will be 
used as the method to describe the ground segment 
reference architecture. 

Many aspects of space data systems that are considered in 
the RASDS have not been addressed in this brief paper, 
but are covered in the full report of the SAWG. These 
include security, system management, engineering details, 
lifecycle issues, IV&V, and other aspects of designing and 
building real systems. This Reference Architecture offers a 
consistent way of dealing with a variety of critical system 
viewpoints, starting with high low level abstractions and 
work toward more concrete realizations and 
implementations. 

As missions become more complex, and more 
interdependencies are required between projects and among 
agencies, having clear architectural models will be 
essential. Significant costs savings are possible both in the 
architecting process itself and in the development of 
standards and systems components that are compliant with 
these architectures. 
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