A DECADE OF SUCCESSFUL COOPERATION:
WHAT'S NEXT FOR THE INTERNATIONAL GPS SERVICE?

Norman Beck (1), John Dow (2), Gerd Gendt (3), Angelyn Moore (4), RUTH NEILAN (4), Jim Ray (5), Christoph Reigber (3), Robert Serafin (6), Richard Wonnacott (7)

1) Natural Resources of Canada, CANADA
2) European Space Operations Center, GERMANY
3) GeoForschungsZentrum Potsdam, GERMANY
4) International GPS Service Central Bureau, NASA/Jet Propulsion Laboratory, California Institute of Technology, USA
5) National Geodetic Survey, USA
6) National Center for Atmospheric Research, USA
7) Chief Directorate Surveys and Mapping, SOUTH AFRICA

This presentation will provide a succinct overview of the International GPS Service (IGS) development and evolution since 1994, and present the IGS strategy, goals, and objectives for the coming five years (http://igscb/overview/pubs.html).. As a service of the International Association of Geodesy (IAG) since 1994, the International GPS Service (IGS) produces Global Positioning System (GPS) data and products at the highest level of precision and accuracy available anywhere. IGS provides GPS orbits (3-5 cm WRMS), sub-centimeter 3-D station positioning and velocities, and station and satellite clocks (sub nanosecond) for users worldwide. A similar suite of data and products is available for the Russian satellite system, GLONASS, demonstrating the ability of the IGS to incorporate observations from other Global Navigation Satellite Systems (GNSS). IGS affirms interest to engage in the development and applications of the 'Galileo' program, the proposed European Union GNSS, and other GNSS as they arise. A key objective of the IGS is to provide users anywhere in the world access to GNSS data, products and resources as a 'global utility'. This is naturally dependent upon the availability and performance of the various satellite systems. IGS currently consists of over 200 actively contributing organizations in more than 80 countries and a global network of 350+ stations.

The very productive working groups and pilot projects of the IGS will be briefly summarized demonstrating IGS involvement in applications related to the precise global reference frame, timing, ionosphere, atmospheric water vapor, Low Earth orbiter precise orbit determination (LEO POD), sea level change measurements, real-time GPS applications, GNSS developments, and the African Continental Reference Frame (AFREF) Initiative. IGS connection to the Integrated Global Geodetic Observing System (IGGOS) will be addressed within this context, presenting a 'chart' of the IGS directions for the coming years.