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Abstract 

JPL is considering the development and launch of a 
roving long-range, long-duration science laboratory to 
Mars that will be a major leap in the in-situ exploration 
of Mars. This paper focuses on methods to determine 
relative benefits of autonomy technology development 
investments for accomplishing this mission's goals. 

We developed a framework that looks at both cost and 
risk early in the design process in order to determine the 
investment strategy in new technology development that 
will lead to the lowest risk mission possible which enables 
desired science rerum within a given budget. The work 
was pelformed under NASA's Engineering for Complex 
Systems (ECS) program. 

1. Introduction 

A long-duration science mission to Mars has time 
constraints. Communication with earth is limited to only 
two intervals a Martian day, assuming the current space 
infrastructure. A rover dependent on communication with 
Earth for detailed decision-making will have reduced 
productivity over a more autonomous rover. Risk models 
are presented to estimate the probability that time is 
sufficient to meet mission goals for several potential 
levels of autonomy capability. 

The analysis focuses on currently deployed rover 
autonomy technologies for which extensive terrestrial 
experiment data is readily available and where the field 
data has been collected in the context of system 
performance evaluation based on integrated field-testing 
for Mars rovers. The performance failure rate data is from 
the JPL technology rover FIDO over the course of four 
years of field trials doing a variety of tasks [2-31. This 
study does not focus on higher-level autonomy 
technologies, such as: autonomous management of on- 
board resources or opportunistic science. These are 
research topics in long-term system autonomy, but are 
outside the scope of the current study. Probabilities of 
hardware failure, landing and egress failures, or mission 

disabling events have not yet been included, but are 
currently under consideration. 

A utility function describes the merit of completing 
different surface activities. The activities considered are 
long-range traverse, sample approach, and sample 
processing. Event tree analysis of these activities 
estimates likelihood of time delays due to technology 
failures and associated communication with Earth. The 
expected utility of the mission is computed by combining 
the utility of outcome with the probability of achieving 
the outcome. The analysis results in ranking of autonomy 
technologies. The ranking is based on technology 
development maximizing the expected utility of the 
mission. 

2. Framework 

The analytic framework comes from decision theory 
[l]. Our approach maximizes the expected return on 
investment subject to cost and schedule constraints. A 
network shown in figure 1 is created that models the 
influence of investments to technologies, to mission risk, 
and to science return. 

3. Utility of outcomes 

A mission can have many possible outcomes. The 
relative preferences of these outcomes are quantitatively 
described by a utility function subjectively asserted by the 
decision maker. 

A utility function is defined over the set of possible 
outcomes. Results based on the utility function described 
in this section will be presented in later sections. 

The utility function solicited from the MSL program is 
shown in figure 2 [5 ] .  It is defined over 'the set of 
sequences of activities. This utility function suggests that 
40% of the mission science return from processing 
samples will be obtained from the first sample processed 
through the analytic lab, with samples 2 and 3 
contributing an additional 15% and samples 4 and 5 an 
additional lo%, respectively. The other metrics, range 
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reached and samples measured with contact sensor, also 
have a decreasing marginal utility for larger values. 

This utility function limits the possible outcomes to a 
set of specific sequences of completed activities. 
Implicitly, all other outcome sequences not in this set are 
excluded from possibility. 

Now that the utility of the outcomes is at hand, it is 
necessary to estimate the probability of these outcomes. 
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Figure 1. Block diagram of inference network. 
Autonomy technology developments influence 
the performance of surface activities. Event tree 
analysis estimates distributions of time needed 
to perform these activities. Utility metrics are 
combined with the probability estimates to give 
the expected science return. 
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Figure 2. Utility function as a function of 
activities completed. The sequence in which 
activities are executed is 1) one sample 
processed by the analytic lab, 2) four contact 
sensor measurements obtained, and 3) traversal 
of 3 km to next science site The relative utility 
weighting for these operations is 10:2:1. The x- 
axis is increasing time as the activities are 
completed. The lowest portion of each bar 
represents the cumulative utility from samples 
processed by the analytic lab. The middle and 
highest segments represent the cumulative 
utility from contact sensor measurements and 
from the range reached respectively. 

4. Probability of outcomes 

The first step in estimating the probability of outcomes 
is to develop a flowchart of the sequence of steps for each 
of the activities performed during rover surface 
operations. There are three dominant activities: long- 
range traverse, approach activity, sample processing. 

Figure 3 shows the flowchart for long-range traverse. 
Figure 4 shows the flowchart for the approach activity. 
Figure 5 shows the flowchart for the sample processing 
activity. The frequency of performing each step is 
calculated from the flowchart. 

According to current plans, the SPAD (Sample Prep 
and Distribution System) will have a high degree of 
automation (fixed sequences of steps), but there is 
currently no perceived science autonomy within the 
SPAD. Consequently, the science processing checkpoints 
in the SPAD will continue to be supervised from Earth, 
rather than supervised by an autonomous science software 



agent. Time requirements for sample analysis are 
therefore dominated by the science processing 
checkpoints and the corresponding telecomm to Earth. 

An event tree of each activity is derived from its 
flowchart. An event tree is a representation of all the 
events that can occur in the system. The events 
considered are the success or failure in performing each 
step. Each step in the flowchart has a number of failure 
modes. The failure modes considered in this analysis 
were failures that can be mitigated by autonomy 
technology development. The result of a failure is a delay 
of one or more communication cycles to diagnose and 
command the rover from Earth. 

Failure modes and their failure rates are provided from 
JPL technology rover FIDO over the course of four years 
of field trials doing a variety of tasks [2,3]. The FIDO 
field trials were Silverlake, CA in April-May 1999, Black 
Rock Summit, NV in April 2000, Soda Mountains, CA in 
May 2001, and Gray Mountain, AZ in September 2002. 
All trials were run for ten days, and the Soda Mountains 
and Gray Mountain trials were done under flight relevant 
mission timelines and constraints in order to train the 
MER scientists. 

A database is created that contains a row for each 
failure mode. The failure modes included are: 

Sparse range map 
No valid path plans 

0 Wheel wedge 
Drive step 

0 Localization 
0 False reference target@) 
0 

Workspace 
Hitarm 
Arm targeting 

Science target out of FOV 

Tables 1-3 show the database for the three activities. 
The technology development estimate column gives a 
point estimate of the difficulty of the technology 
development to reduce the failure rate to zero. We 
currently are generalizing this estimate to account for a 
range of cost to performance relationships. 

The event tree is used to estimate the probability 
distribution of the time necessary to complete each 
activity. From these estimates the probability of 
completing a sequence of activities within the mission 
time is computed. Figure 6 shows the probability 
distribution for the sequence of activities that the utility 
function was defined over. The probability distribution is 
based on no further technology development over that 
demonstrated in the FIDO field trials. Note that this 
distribution shown in figure 6 is a conditional distribution. 
It is conditioned on no mechanical or mission failures. 

Iterate 
final j 
read 

Acquire panorama 
toward goal with long 

range sensors 

Plan path toward 
intermediate goal 

within range of sensors 
(-12-20m) 

Orient rover for 
drive 

-.xate until 

Plan drive step to 
avoid obstacles 

Execute drive 

Determine localization 
error at end of 

traverse 

Figure 3. Flowchart of long-range traverse 
activity. The activity starts from the top of the 
flowchart. Arrows show the sequencing of the 
steps. 
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Figure 4. Flowchart of approach activity. 

5. Objective function: Expected utility 

Expected utility is the combination of the utility of the 
possible outcomes combined with the probability of the 
outcomes. This is described by equation 1. 

Expected utility = 

outcome C 'outcome P o u t c o m e  
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Reposi 'on arm 3 
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c 
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4 
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4 
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SPAD (Sample Prep and 
Distribution System) 

4 
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analytic instruments 
(telecon checkpoints for science 
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c 
Clean SPAD and instruments, dispose of 

excess sample material 

Figure 5. Flowchart of sample processing. 
where u is the utility function defined over the possible 

outcomes and p is the probability density function defined 
over these outcomes. 



Table 1. Long-range traverse failure modes. 
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6. Constraint: Investment budget 

sample 

Investment in autonomy technologies has the potential 
to reduce the failure rates associated with the failure 
modes. This in turn will influence the probability 
distribution in figure 6. Initially, we use estimates of 
technology development difficulty as a surrogate for 
technology development cost estimates. 

The probability distribution of the outcomes is 
estimated as a function of the investment allocation. The 
investment allocation is a vector of the investment levels 
for each autonomy technology. The investment allocation 
must meet a budget constraint. 
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Table 3. Approach failure modes. 
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Figure 6. Probability of completing sequence of 
activities within a fixed mission time. The 
mission time of 200 sols is arbitrary. It was 
chosen to demonstrate the falloff in the 
probability of completing all the activities. The x- 
axis is increasing time as the activities are 
completed, and is the same as in figure 2. 



The expected utility is now a function of the allocation 
and is given by equation 2. 

Expected utility(Al1ocation) = 

(Allocation) ( 2 )  
outcome 'outcome P o u t c o m e  

Our approach is to maximize expected utility subject to 
a budget constraint. 

7. Ranking Results 

The technologies considered can be ranked by a 
performance to cost ratio. Performance is defined by 
percent increase in expected utility. 

A ranking of the technologies is shown in figure 7. 
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Figure 7. Ranking of autonomy technologies. 
The ratio of the marginal increase in expected 
utility to technology development difficulty is 
used to rank the technologies. 

The analysis shows that autonomous calibration of 
camera models is an important technology because it 
impacts whether a wide range of autonomy functions can 
be done without ground-command intervention. Target 
handoff technology has a strong impact because it is 
needed for every sample approach and it mitigates a high 
failure rate. Autonomous short range path planning is also 
a significant technology because without it the amount of 
time required to complete surface operations grows to 
levels that severely degrade the expected utility of the 
mission. 

The initial ranking is performed using point estimates 
of technology development difficulty. Based on the initial 
ranking, more detailed cost estimates are being solicited 
of the highest ranked technologies [4]. These refined 
estimates will include cost and performance uncertainties. 
This data also impacts the decision analysis since now the 
investment allocation depends on the absolute resources 
available, and not just the performance/cost ratio. 

8. Conclusion 

This work is useful in a number of ways. The first is to 
estimate achievable mission performance based on 
current estimates of failure rates. Next it can aid 
technology development decisions to obtain the best 
performance to cost benefit. Finally it can help design 
field tests specifically to provide relevant evidence about 
the most sensitive parameters. 

Future work will include sensitivity analysis, 
generalization of the ranking procedure using cost and 
performance uncertainties, and enhancement of the 
computational framework. 
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