Delay-Tolerant Networking

June 5, 2003
Scenario

- Workstation
- Earth
- Internet
- Antenna complex
- Relay orbiter 1
 - TCP/IP over Proximity-1 R/F link
- Deep space R/F link, with CFDP-RP link ARQ
- Weather station
 - TCP/IP over wireless LAN
- Mars
- Relay orbiter 2
Why Not IP End-to-End?

- Problems with TCP:
 - Connection time (one round trip) may exceed duration of communication opportunity.
 - In-order delivery means data loss delays data arrival by at least one round trip.
 - Long round-trip times retard recovery from data loss (interpreted as congestion, reducing data rate).

- Problem with end-to-end ARQ (either TCP or application-layer ARQ over UDP): end-to-end retransmission requires original sender to retain retransmission buffer for an e-to-e round trip.
Why Not IP End-to-End? (cont’d)

- Problems with routing protocols:
 - BGP uses TCP, performs poorly when TCP is unable to keep a connection established.
 - Route computation is based on probes and timeouts; loss of connectivity can result in premature timeout, thus a connectivity false negative.
 - Transient partitioning due to scheduled intermittent connectivity may be interpreted as loss of connectivity to the destination – no route can be computed at all.
Alternative: Delay-Tolerant Networking

- Use protocols at all layers of stack that are best suited to each environment.

- Above them, provide an overlay network protocol that applications can use end-to-end.

- No end-to-end expectation of:
 - continuous connectivity; low or constant transmission latency; low error rate or low congestion
 - high transmission rate or symmetrical data rates
 - common name or address expression syntax or semantics; data arrival in transmission order
DTN Principles

- **Postal model of communications.**
 - Abandon telephonic model. Don’t design for interactive conversation. When submitting a request, “bundle” with it the answers to all possible questions.
 - Overlay protocol is named “Bundling”.

- **Tiered functionality:** rely on underlying “regional” protocols as heavily as possible, do the rest in Bundling.

- **Terseness.**
Tiered Forwarding

- Regional network protocols (e.g., IP) do local forwarding.
- Bundling does end-to-end forwarding across region boundaries. *Deferred transmission.*
- Bundle (message) source and destination IDs must include:
 - Region ID (meaningful to Bundling)
 - Regional endpoint ID (meaningful to the regional network protocol)
- Region IDs function as addresses.
- Regional endpoint IDs are *names* that are *late bound* to regional addresses upon arrival at the destination region.
Other Tiered Functionality

- Tiered routing:
 - Regional routing protocols
 - Contact-sensitive bundle routing

- Tiered ARQ:
 - Regional ARQ (e.g., TCP, CFDP’s retransmission procedures)
 - Bundle-layer ARQ: custody transfer

- Tiered security:
 - Hop-by-hop bundle agent authentication at Bundle layer to protect infrastructure
 - End-to-end confidentiality, integrity at application layer
Other Tiered Functionality (cont’d)

- Tiered congestion avoidance:
 - Regional protocols deal with regional congestion.
 - Bundle layer detects Bundling congestion, respond to it by invoking (tiered) flow control.

- Tiered flow control:
 - Regional flow control may be protocol-based (Internet) or managed, rate-based (deep space).
 - Inhibition of custody acceptance at Bundle layer.

- Tiered coding:
 - Regional coding:
 - Bundle header compression in adapters to regional protocols.
 - Other coding as needed is performed by regional protocols, possibly at multiple layers of stack.
 - Optional erasure coding at Bundle layer.
Other Tiered Functionality (cont’d)

- Tiered fragmentation and reassembly:
 - Bundling fragments bundles from awareness of contact duration.
 - Proactive for scheduled or predicted contacts.
 - Reactive for opportunistic contacts.
 - Regional protocols do further fragmentation from awareness of (e.g.) MTU size.
Other DTN Functionality

- Resilient delivery: destination service agent may not be running at the time a bundle destined for it arrives.
 - *Deferred delivery:* wait until destination starts.
 - *Reanimation:* start the destination, then deliver bundle to it.

- Postal service levels:
 - Priority levels: low, standard, high
 - Service notifications:
 - Notice of initial transmission, i.e., notice of mailing
 - Notice of delivery to the ultimate destination application, i.e., return receipt
 - Report of route taken, i.e., delivery record
Example of Bundling Data Flow

[Diagram showing the bundling process from workstation to spacecraft]

- Application
- Bundling
- IP
- Ethernet
- Cable

- Internet router
- IP
- Ethernet
- SOTET
- Cable
- Fiber

- Tracking station (gateway)
- Bundling
- IP
- SONET
- CCSDS
- Fiber
- R/F

- Spacecraft
- Bundling
- IP
- CFDP-RP
- CCSDS
- Fiber
- R/F
Example of Tunneling/RLI Data Flow
Summary

- Emerging network configuration problems are difficult to handle by simply extending the Internet.
- Delay-Tolerant Networking generalizes the Internet architecture to address these problems in a simple, robust way.
1. Interplanetary Internet: An Architectural Framework for Space Internetworking: Adrian Hooke
2. User Data Services for Internet Based Spacecraft Applications: Joe Smith
3. CCSDS File Delivery Protocol (CFDP): Tim Ray
4. Internet Protocol Based Standards for Spacecraft Onboard Interfaces: Joe Smith
5. Standard Spacecraft Interfaces and IP Network Architectures: Jane Marquart
6. Standard Transport and Network Capabilities: Bob Durst
7. Next Generation Space Internet: Standards and Implementation: Keith Scott
8. Secure Space Networking: Howie Weiss
9. Delay Tolerant Networking: Scott Burleigh
10. CCSDS Link Layer Protocol Suite: Greg Kazz