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Challenge

« Cassini spacecraft (S/C) will perform 45 targeted

flybys of Saturn’s largest moon, Titan
. Titan has a dense, planet-like atmosphere

« S/C will fly through upper atmosphere where free
molecular heating (FMH) is the dominant environmental

heating

« S/C design doesn't fully address current Project

constraints and operational scenarios

* 25 targeted flybys with relatively low closest approach

(C/A) altitudes are of thermal concern

* Thermally induced power transients in Radioisotope
Thermoelectric Generators (RTGs) are a power concern
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Solution

- Develop a Titan flyby thermal control strategy
That enables science

Remains within S/C design limitations

Complies with Project constraints

Comes from Thermal/Devices Team within Cassini
Project in Mission Operations
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Approach

 Define acceptable thermal performance envelope
for Titan flybys and use for evaluation purposes
« Based upon S/C design and current planning
 Requires thermal simulation of defining flyby scenarios

« Use Systems-level approach utilizing Mission
Operations “Team"” architecture
 Involve Project teams and organizations - share expertise

« Account for S/C design, Project policies and
requirements, risk constraints, Titan atmosphere
definition, uncertainties, mission planning, and flyby
trajectories and scenarios (attitude and power profiles)
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Cruise Trajectory Requires Robust S/C

Thermal Design
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S/C Thermal Design Highlights

« Multi-layer insulation blankets (MLI) used to reduce thermal sensitivity
to varying environments

« Louvers used on Bus, RSP, and FPP to reduce thermal sensitivity for
selected temperature ranges

- Heater power minimized by use of Radioisotope Heater Units (RHUs),
Variable RHUs, and RTG waste heat

- Repl. and Supl. Heaters and radiators used where required to maintain
temperature levels

- Proportional heaters used to maintain temperatures in tight ranges
« HGA thermally isolated from Bus and serves as solar shade

» Probe side of S/C designed to tolerate solar heating for off-Sun
maneuvers inside 5 AU — Probe released after second targeted flyby

« RGP instruments shaded from Sun inside 5 AU and sensitive at Saturn
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Cassini S/C — Orbiter and Probe
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Highlights of Policies, Requirements,
and Constraints

« Limit risk to hardware resulting in temporary performance
degradation due to Titan flybys to < 5%

o Limit C/A target altitudes to a minimum of 950 km
« May change in future if atmospheric model updated

« Optical instruments designed to withstand defined solar
exposure durations (function of heliocentric distance)

« Based on angle off optical instrument boresights (-Y axis)
« Normal to optical instrument radiators (+X axis)

+ Flight Rules further constrain Sun exposure for optical
instruments — enforced by onboard Constraint Monitor
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Uncertainty Considerations

3 standard deviations (30 km) applied to C/A target altitudes
« Tour worst-case S/C velocity relative to Titan = 6.426 km/s
« For Titan flybys, linear flyby trajectories assumed rather than
hyperbolic
« Typical resulting temperature variation less than 1°C
« Project uses Yelle Model of Titan atmosphere - 95%

confidence limits applied to density profile

« Conservatism applied assuming temperature varies linearly with
standard deviation

- Thermal math model uncertainty typically £ 5°C in bulk
nodes and = 2°C in higher resolution nodes

2003-01-2685

O




Yelle Model Titan Atmosphere Density
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S/C Will Use Power Modes

« S/C functions and their power usage for an
operational activity constitute a power mode

 Two operational power modes applicable

. ORS (RCS): Optical and Fields and Particles instruments
are on and Radar and Radio Science are off

» Radar (RCS): Optical instruments are not active, Fields
and Particles and Radar instruments are active, and

Radio Science is off

» "RCS” refers to attitude control provided by thrusters
- Safing can be considered a power mode

« All instruments off and on RCS control

&
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Safing Considerations

 Fault induced Safing can occur at any time

« Onboard System Fault Protection puts S/C in “safe” state
then turns S/C and points HGA toward Earth

« Final attitude is inertial
« Two flyby scenario considerations required
evaluation
« Safing process complete prior to entering atmosphere
« Part or all of Safing occurs in atmosphere

- Trajectory, Earth, and Sun locations defined for all
45 targeted flybys
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Safing Considerations (Cont’'d)

« Attitude Control (AACS) and Thermal/Devices
Teams worked to minimize the number of
candidate attitudes for all 45 targeted flybys

 Considered both thermal and AACS concerns

« Considered unique attributes of all 45 flybys

- Flyby S/C model images used to help select attitudes

 Thermally bounding attitudes also selected to better
understand envelope of S/C thermal response

« 3 candidate attitudes applied to 5 actual flybys plus
4 bounding flyby attitudes required simulation for
adequate Safing thermal envelope evaluation

@ 2003-01-2685



Image Of S/C
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Operational Considerations

« AACS, Mission Planning, and science teams all
contributed to define operational flyby scenarios

« Two optical observation flyby scenarios required
thermal simulation
« Apertures point at a spot on Titan
« S/C can rotate about either the X or Z axis to point

« “Spot Light” pointing has potential for greatest exposure
of optical instruments to the RAM

« Conservative approximation of optical observation flyby
scenarios thermally simulated with varied Sun locations
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Operational Considerations (Cont’d)

A Radar flyby scenario required thermal simulation
« HGA nadir pointed and —X side of S/C leading
. Included “Side-Look” slews: rotations about X and Z axes
« Needed to define thermally safe limit of rotation about Z
axis
3 operational flybys and 7 bounding flybys (using 6
inertial attitudes) required simulation for adequate
operational thermal envelope evaluation
« Thermally worst-case flyby trajectory used in all cases
« Appropriate power modes and Sun positions used
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Optical "Spot Light” Observation Flyby
S/C Rotation About X Axis
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Radar Operational Flyby at C/A
With “Side-Look” Slew Variations
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6 Inertial Operational Attitudes
Used in 7 Bounding Flyby Simulations
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Thermal Modeling Considerations

» Simulations used flight correlated, System-level
thermal math model and geometric model of S/C

« Direct solar, Titan IR, Titan albedo, and FMH
environmental heat loads calculated individually

« Diffuse multiple surface reflections taken into account

 Simulations were + 1.5 hours about C/A
« FMH @ 10 minutes max. about C/A (altitude dependent)
« IR and albedo %+ 1 hour about C/A

« Temperature differences and trend plots produced
for each node
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Thermal Modeling Considerations
(Cont'd)

. Safing simulations used actual flyby trajectories
« Operational simulations used worst-case trajectory

« Incident FMH was converted to material dependent
incident solar heat loads for comparison purposes
with known solar sensitivities

« Temperature results formatted for comprehensive,
reliable, and relatively easy evaluation
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Thermal Evaluation Results

Safing flybys
3 inertial attitudes will suffice for all 45 targeted flybys
« Each attitude acceptable for contiguous group of flybys
» C/A target altitudes as low as 950 km are acceptable

« It is acceptable for Safing to complete prior to entering
the atmosphere or occur within the atmosphere

« HGA Sun pointing as well as Earth pointing acceptable

RTG output power transients

« Maximum temperature induced transient power drop in
total RTG output power is not expected to exceed 5 W

« Acceptable from power margin perspective
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Thermal Evaluation Results (Cont’'d)

Operational flybys

« Attitude constraints must be applied to limit FMH and
direct solar heat loads for optical instruments
« Onboard Constraint Monitor does not protect against FMH

. Operational flybys evaluated (optical and radar) are
acceptable for C/A target altitudes as low as 950 km

 Radar “Side-Look” rolls about Z axis can be as large as
+ 20° off nominal attitude
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Skills Retention Planning

o It is assumed evaluation will be revisited
« Science planning continues
« Flight may reveal new problems or opportunities

« Information database improvement — Titan atmospheric
density profile will be reevaluated from measurements
taken during first targeted flyby

- Evaluation capability retained for baseline mission
« Mission duration must accommodate personnel changes
« Personnel trained to perform required tasks
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Lessons Learned/Recommendations

 Plan during S/C development phase to provide
comprehensive analysis ability during operations
« Take mission duration into account — response time
« Select tools to meet needs throughout operations
« Account for organizational differences between
development and operations phases of a Project
« Require System-level models during development
« Correlate with System-level testing and early flight
« Knowledge retention of design details in model
o Utilize model visualization tools to improve evaluations

&
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Lessons Learned/Recommendations

(Cont'd)

« Operations teams benefit from working together

 Policy and requirement interpretation

- Proper awareness and accurate information transfer

. Benefit from expertise and experience

« Analysis process should include sanity checks and
peer reviews
- Prevent errors and uncover software bugs
« Problems documented

&

2003-01-2685




Lessons Learned/Recommendations
(Cont'd)

o Automate processes to expedite, simplify, and

improve reliability of interface and output products
and calculations

« Document processes assuming they will be used again

« Assume surprises will occur — be prepared to
respond successfully in a timely fashion
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