
Experiences in Integrating Auto-Translated

1

State-Chart Designs for Model Checking
Paula J. Pingree, Jet Propulsion Laboratory, Member, IEEE

Edward G. Benowitz, Jet Propulsion Laboratory

Abszruct- In the complex environment of JPL’s flight
missions with increasing dependency on advanced
software designs, traditional software validation methods
of simulation and testing are being stretched to
adequately cover the needs of software development. Our
aim is to apply formal method techniques and tools to
validate mission-specific components of flight software
that are specified using finite state machine
representation. We have established an automatic
translation toolset called Hi Vy that translates Stateflow@
state-charts to Promela, the input language of the Spin
model-checker, for the validation of mission-specific
components. An interesting challenge in our method is to
achieve the closed-loop system model required for Spin.
We provide methods to integrate auto-translated Stateflow
model specifications with C-code called by the state-charts,
and the rest of the model environment which may be auto-
translated or included directly in Promela.

Index Terms-model checking, statecharts, translation,
verification

I. INTRODUCTION
State-charts and auto-code generation are emerging as a

powerful approach to implementing software designs for
complex spacecraft missions. This method was used to
develop the fault protection (FP) flight software for NASA’s
Deep Space 1 mission, and is being used for NASA’s Deep
Impact mission FP flight software currently in development
for a 2004 launch date. This technology is generally
applicable to flight software components that can be specified
as finite state machines.

The HiVy Toolset permits the validation of such mission
critical software designs with the exhaustive exploration
techniques of model checking. Our translation method and
technique preserves the Stateflow@ semantics of the software
design to guarantee compliance of the auto-translated Promela
model with the flight software code that is auto-generated
from the state-chart specification using Stateflow Coder.
When the state-chart is the source of both the flight code and
the Promela model, this automated approach ensures design
and validation integrity of the implemented code.

Development of the HiVy Toolset was motivated by and
prototyped for the application of model checking techniques to
software components of NASA flight projects. However, the
translation programs of the toolset are not tailored to any
particular domain or design implementation. The HiVy

Toolset can also be used independently from Stateflow@. An
experienced user may implement an abstract syntax of
hierarchical sequential automata (HSA) that is an intermediate
format for our translation programs used to produce Promela
models for Spin. In this paper we discuss our methods for
integrating auto-translated state-chart designs into the closed-
loop models required for Spin.

11. HIVY TRANSLATION PRODUCTS

A. Getting Started
State-chart design representations are captured in Stateflow

model files. Access to the Stateflow application and general
familiarity with the tool is needed. HiVy is used to perform
automated translation of the Stateflow model file. The HiVy
tool set programs include Sparse, sflhsa, hsa2pr and the
HSA Merge facility. Refer to Figure 1 in the Section 111. To
achieve compatibility with the Spin model checker, HiVy
supports verification of closed systems only, i.e. the design
model to be verified must contain a model of the environment
as well.

B. Preparing Inputs for Translation
Two programs of the HiVy tool set: Sparse and sflhsa are

used to prepare the Stateflow model file for translation. If the
execution of these programs is successful (e.g., no syntax
errors reported in parsing), a file is produced that contains an
ASCII representation of the state-chart in HSA-format [3].

It is not required to have an entirely graphical state-chart
(i.e., produced by Stateflow) representation of the system for
verification. It may be desired in some cases to specify a
component of the system in tabular notation that captures the
states, transitions, hierarchy, and default transitions. In this
manner the tool extension ‘xl2hsa’ can be used to convert
Microsoft Excel specifications into HSA. We discuss this
tool extension further in Section 111.

C. Translation to Promela
Once the components of the system are parsed and in HSA

format, HiVy generates Promela input for the Spin model
checker. If the model consists of several files, they may be
merged into one HSA file before translating into Promela for
Spin using the HiVy program hsacomplete found in the HSA
Merge facility

The program hsa2pr is the most significant program in the
HiVy tool set, and it is used to generate Promela code from
the .hsa file. The following files are generated by hsa2pr:

2

stmodel.pr: the Promela model of the original state-
chart specification.
propositions: contains names and definitions of
propositions. One proposition is generated for each
state and each event.
prop-list: contains just the names of propositions
(not their definitions). These proposition names are
suitable for automatic generation of LTL properties
during verification.

The auto-translated file stmodel.pr contains an include
statement for a file named never. This file contains the Spin
“never claim” to be verified. The never claim is not generated
by hsa2pr and must be created before applying Spin to the
generated model.

111. MODEL INTEGRATION

A. The HiVy Tool Set Interfaces
Figure 1 presents our system that accepts state-chart

specifications both in graphical and tabular notation for
translation into Promela. Hierarchical Sequential Automata
(HSA) is an intermediate format that offers a set of elements
for defining the syntax and semantics of Stateflow charts. The
HiVy Toolset implements the HSA format to enable
translation of Stateflow model designs.

I System hputs I

I LTL ~ n,i, Correctness properties & , I I (Optional) 1
System Output Verified

I I

Figure 1. The Closed-Loop Integration System

In this paper we focus on the integration components of our
system that we find necessary to close-the-loop around our
HiVy-translated designs in order to provide an acceptable
model to Spin for verification. These component interfaces
are represented in Figure 1 by the set of arrows entering the
Spin component. Both the auto-generated code and its
integration with the model of the environment must yield a
closed system that is a valid model of the real system. Our

goal is to achieve this with the HiVy auto-translation method
for model checking. The following sections describe each
interface of the closed-loop model.

B. C code and the Environment Model
We rely on the availability of a newly extended version of

the Spin model-checker (Spin version 4) that allows for the
use of embedded C code fragments inside Promela code. Via
this mechanism, the translated Promela model can be linked
with original C code libraries that implement elements of the
state-chart (for flight software) that can be executed as atomic
functions during the model-checking exercise. However, C
code is in general not visible by the model-checker (and
therefore not available as variables in correctness properties),
so we minimize the amount of C code used in our integrated
system. Our process is to first stub out the necessary C code,
to find the minimum level of C code needed to allow the full
Promela model to be compiled. We then add small amounts
of C code to manipulate the Promela environment model,
using the now variable. In practice, several iterations are
needed to ensure that the environment model has the fidelity
necessary for investigating correctness properties.

C. The xl2hsa Tool Extension

While specifying a graphical state-chart of a design in
Stateflow is convenient for the system engineer and permits
flight software auto-code generation from the model if desired,
a simpler approach is possible if one is only interested in
creating the environment model for verification. In most
cases, the environment model will only involve states,
hierarchies, and basic transition events (without conditions,
condition actions, etc). This is an adequate subset of
Stateflow. We have developed a tool called xl2hsa that allows
the expression of such state machines in a tabular format.
Microsoft Excel is used to easily produce and edit such
specifications. The user is required to describe states in terms
of their hierarchy and parallelism. The user then describes
transitions by specifying the starting state and destination
state of that transition. By using this tabular format, state-
chart models can be created without the more intensive process
of drawing transitions and states in a graphical manner.

The intent of this technique is take advantage of the
intermediate HSA format and auto-translation to Promela
process and to eliminate the need to create the environment
specification by hand-coding Promela. The disadvantage of
this technique is the translation overhead that increases the
Promela model state-space - a potentially limiting factor for
model checking the design. We recommend the xl2hsa tool
for smaller environment models that may contain nested
hierarchies. Environments with typical ordoff power switch
states can be represented more efficiently and directly with
Promela Boolean variables. This approach helps reduce the
size of the model and optimize Spin’s capability for
verification of models with large environments. For very
simple model environments where extemal events are handled
non-deterministically direct Promela code may be the best
implementation. This option is further discussed in Section
E.

3

D. Post-processor
By default, HiVy generates Promela code to model state

machines with standard Stateflow semantics. However,
certain applications may wish to incorporate application or
domain-specific behavior. In the case of our DS1 Fault
Protection example, specific scheduling behaviors were added,
which were indicated by specific function calls to C code. A
domain-specific post-processor was created in Perl. Using
regular expressions, scheduling calls to the C code were
replaced with calls to Promela code that modeled the domain-
specific scheduling semantics. An additional use of the
postprocessor can be to add non-determinism in specific cases.
For example, a transition waiting for a specific time-out to
occur can instead be replaced with a “true” transition in
Promela. A simple find-and-replace postprocessor can be used
in this situation.

E. Non-determinism

Even after post-processing, a certain amount of Promela
hand-coding may be necessary, due to the need to add non-
determinism to the system. Non-determinism means that a
statehput pair exists for which the next state/output are not
unique. For example, when in a particular state-chart state,
transitions out of the state may depend on either a time-out
signal or a completion signal. In Promela, we want to test all
possibilities; therefore we need to non-deterministically set
these signals. In such a case, hand coding may be necessary
to add the non-determinism if a postprocessor is not suitable
for the task.

As mentioned previously, the env file that is included in
the init.pr file may be used to specify non-determinism within
the state-chart environment. Figure 2 shows a structure for the
Hi Vy-generated program files that enable this capability.

top.pr

model contents
here.. . */

#include “stmodel.pr ”

c-code
I
#include ‘F1e.c”
#include “ji1e.h”
A

‘I I
#include “init.pr”
#include ”never”

contents here *I

#include “envy(’

The env file is written to contain a set of Promela code that
specifies the desired non-determinism of events in the
environment model.

IV. CONCLUSION
The integration lessons learned in completing our closed-

loop Promela model have specific ties to our domain design
and automated translation methods. However the challenge to
integrate a closed-loop system €or Spin model-checking is a
significant and recognized issue. Requirements for
environment models vary widely across applications and
projects that is why multiple techniques are available
including Stateflow, Microsoft Excel or even direct coding in
Promela.

ACKNOWLEDGMENT
The research described in this abstract was carried out at the
Jet Propulsion Laboratory, California Institute of Technology,
under a contract with the National Aeronautics and Space
Administration.

REFERENCES
K. Barltrop, P. Pingree, Model Checking Investigations for Fault
Protection System Validation. Paper accepted for 2003 International
Conference on Space Mission Challenges for Information Technologv.
June 2003

P. Pingree, E. Mikk, G. Holunann, M. Smith, D. Dams, Validation of
Mission Critical Sofhvare Design And Implementation Using Model
Checking. The 2lst Digital Avionics Systems Conference, October
2002.

E. Mikk. HSA-Format, privafe communication 2002.

E. Mi&, Semantics and Verification of Statecharts. PhD Thesis.
Technical Report of Christian-Albrechts-University in Kid , October
2000.

E. Mikk, Y. Lakhnech, M. Siege1 and G. Holzmann, Implementing
Statecharts in PROMELNSPIN. In Proceedings of the T d IEEE
Worhhop on Industrial-Strength Formal Specification Techniques.
pages 90-101. IEEE Computer Society 1999.

G.J. Holzmann. The Model Checker Spin. IEEE Trans. on Sofhare
Engineering, 23(5):279-295, May 1997. Special issue on Formal
Methods in Software Practice.

D. Harel, Statecharts: A Visual Formalism for Complex Systems.
Science of Computer Programming, ASSP-34(2):362, 1986.

The Mathworks Stateflow Users Guide, htb://www.matliworks.com

I* emit events non-detenninistically *I

:: I -> EVEM-I = I;
:: I -> EVENT-2 = I ;
:: I -> E V m - 3 = 1:

c

Figure 2. HiVy Program Structures

http://htb://www.matliworks.com

