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Absiract-The Kalman filter in question, which was 
implemented in the time scale algorithm TA(MST), produces 
time scales with poor short-term stability. A simple modification 
of the error covariance matrix allows the filter to produce time 
scales with good stability at all averaging times, as verified by 
simulations of clock ensembles.* 

I. INTRODUCTION 

The purpose of a time scale is to form a virtual clock from 
an ensemble of physical clocks that are compared with one 
another at a sequence of dates, where a date is the reading of a 
clock as determined by counting its oscillations. The virtual 
clock is defined as an offset from one of the physical clocks, 
the offset being computed from the comparison measurements 
by some algorithm. The usual goal of the algorithm design is 
to produce a virtual clock that is more stable than any of the 
physical clocks in both the short term and the long term, as 
measured by some frequency stability measure such as Allan 
deviation. 

A straightforward Kalman filter approach to this problem 
has been tried at least twice [I-31. The noise of each clock is 
modeled as a sum of independent white FM and random walk 
FM noises with known noise levels. The entire ensemble is 
modeled by a linear stochastic difference equation, whose 
state vector is estimated by a Kalman filter from the clock 
comparisons, which are assumed to be noiseless. Under this 
assumption, if each clock's tick is offset by its Kalman phase 
estimate, we arrive at a single point on the time axis, called the 
common corrected clocks. It makes sense to regard this value 
as the estimated center of the ensemble, and to use the 
sequence of these values as a time scale, called the raw 
Kalman scale. This time scale, realized as TA(NIST), was 
reported to follow the clock with the best long-term stability, 
regardless of its short-term stability [4,5]. The goals of the 
present study have been to reproduce this result by simulation, 
to understand it, and to find a better way to use this Kalman 
filter in a time scale algorithm. 

We shall exhibit two improved algorithms. The first, called 
the Kalman-plus-weights scale, ignores the Kalman phase 
estimates and uses the frequency state estimates in a weighted- 
average time scale. The second algorithm, called the reduced 
Kalman scale, uses the corrected clocks, but with a modified 
version of the Kalman error covariance matrix. This scale 
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turns out to be optimal in a sense that is explained in Section 
VII. When applied to ensembles of dissimilar clocks, both 
improved scales are observed to combine the best short-term 
behavior with the best long-term behavior [6-81. These results 
also hold for clocks with random run FM noise (random walk 
of drift) in addition to the other noises [7,8]. 

11. ENSEMBLE MODEL AND KALMAN FILTER 

Let t be one of a sequence of measurement dates. When 
clock i ( i = 1, ..., n ) reaches date f internally, it issues a pulse at 
time h, ( t ) ,  which cannot be measured by itself; instead, we 
can only measure the interval between the pulses of any two 
clocks; thus, we have the measurements x,, ( t )  = h, ( t )  - h, ( t )  , 
assumed to be noiseless. The phase residual of clock i is 
defined by x, ( t )  = t -h, ( t )  . The sign reversal is needed: if 

clock i speeds up, then h, ( t )  tends to decrease. (Strictly 

speaking, we ought to write x, (h, (r)) instead of x, (f) 

because h, ( t )  is the physical time, but the difference is 
negligible.) 

The stochastic model for clock i is given by 

where nx, and nUi are white noises with spectral densities 
2qxi and 2qyl ,  which are assumed to be known. The 
frequency state y, contains only the random walk FM portion 
of the total frequency hi I dt . 

By solving (1) for each clock between two measurement 
dates t - ro and t, we obtain the discrete-time model given by 
Jones and Tryon [2]: 

whereX = [ x I , y I ,  ..., x,,, y,,] is the system state, O(zo) is a 

2n x 2n matrix with diagonal blocks [A :I, and the process 

x ( t )  = 0 ( ro)  x ( t  - To) + W ( t ) ,  (2) 
T 

L -I 

noise w =[wxI'wYl ,..., w,,,w,,,,IT is a vector of mean-0 

random variables whose covariance matrix Q(ro) has 
diagonal blocks 
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A set of n-1 independent noiseless measurements is 
expressed by Hx = [x2 -xl , . . . ,xn - x ,  1’. For three clocks, 

...e.. Reduced Kalman Scale 

. The measurement dates may be 1 - 1 0 1 0 0 0  
- 1 0 0 0 1 0  

H = [  

unequally spaced, i.e., zo may depend on 1. 

Fig. 1 shows an idealized model of an ensemble of four 
clocks: two hydrogen masers and two mercury ion traps. The 
ion traps are assumed to have only white FM noise. Plotted 
are the theoretical Allan deviations ay ( r )  = ,,/- 
(lines) and the empirical Allan deviations (dots) from a 1000- 
point simulation of (2) with zo = 1000 s . 

The Kalman filter is a set of equations that propagate an 
unbiased minimal-variance state estimate from one 
measurement date to the next [9-113. We want to obtain the 
estimate k (r) and its error covariance matrix 

P ( r )  = E [X ( r ) -  R ( t )][X (r)- 2 ( r ) r  

from i ( r  - 7 0 )  and P(r - 7 0 ) .  First we perform the temporal 
update @rediction) equations: 

2 ( r ) = a j ( t o ) , t ( r  - ro) ,  

p(r) = @ (rO) P (t - zo)@ (rO>’ + Q (rO). 

After making the noiseless measurement H X ( t )  we perform 
the measurement update equations: 

K (r)= (r)HT [ HF (t)HT]-’ ,  

k(r)= r‘(t)-F(r)H’K(r)’, 

thus completing the iteration. The 2n x (n - 1) matrix K(r)  is 
called the Kalman gain. 

The Kalman filter must be started with some initial i ( t )  

and P ( r )  ; we shall say more about this in Section V. 
For the sake of numerical stability over many iterations, it 

is better to propagate a Cholesky factor of the covariance 
matrix; this is an upper triangular matrix C(r )  such that 

F( t )=  c ( f ) C  (t)T. There are several “square root filter” 
algorithms, algebraically equivalent to (4) and (5), that 
propagate i ( r )  and C ( t )  [10,11]. The author has used one 
of these methods for all simulations with no trouble. 

(4) 

R(r)= ,?(r)+K(r)[HX(r)- HJ(r )] ,  j (9 
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Fig. I .  Stability results from simulating an ensemble of four idealized clocks. 

111. RAW KALMAN SCALE 

From ( 5 )  we find that 
HK(r )=l ,  rui(r)=HX(r) ,  HP(r)=O. (6) 

Thus, for noiseless measurements, the estimated state satisfies 
the measurement equations. For the clock ensemble, 

(7) 
It folIows that the quantities 

X ,  ( t )  = x, ( r )  -2, ( r )  and he (I) = A, ( f )  +Zf (f) (8) 
do not depend on i. Brown [33 called h, ( r ) + i f  ( t )  the 
corrected clocks; for convenience we shall use this term for 
the quantities x, ( t ) -2 ,  ( r )  , whose common value x, ( r )  is 
calIed the raw Kalman scale, or Kraw. 

The squares in Fig. 1 show the Allan deviation of Kraw for 
the simulated clocks. We find that Kraw(r) ignores the 
masers and converges quickly to the mean of the two ion trap 
phases. Although the long-term stability of Kraw is as good 
as it can be, it does not take advantage of the quieter clocks to 
improve its short-term stability. 

2, ( r )  -2, ( t )  = x, ( r )  -x, ( r ) ,  i = 2 ,..., n. 

IV. KALMAN PLUS WEIGHTS 

To improve this situation, one can igEore the phase 
estimates altogether and use the Kdman frequency state 
estimates in a weighted-average time scale governed by the 
basic time scaZe equafion (BTSE) ([12], p. 133 ff.). The 
BTSE has several equivalent forms; the one used here is a 
sequential definition of the time scale (denoted again by 
xe ( r )  ) in terms of the non-observable quantities x, ( r )  : 

xe ( t )  - xc (f - t o  1 

The weights & ( f )  (to be determined) add to 1. One can 
convert (9) to a more conventional form of the BTSE, 



which gives the ensemble offsets xq ( t )  = xe ( t ) -x ,  (f) 

sequentially from the measurements x,, ( t )  = x, (t)-x, ( t )  . 
The presence of Kalman frequency estimates in (9) is 

unconventional; the frequency estimates for weighted-average 
scales are usually obtained by estimating the frequency 
departure of each clock from the scale itself as it evolves. 
Here, we feed no information from the time scale back to the 
Kalman filter, whose only job at this point is to deliver 
frequency estimates from the clock models and measurements. 

To select the weights we observe that the ith bracketed term 
of (9) is the 7, -increment of a detrended version of the phase 
of clock i. Because all these detrended phases have good 
long-term stability, we may assign the weights to optimize 
their combined short-term stability. By (2) and (9), 

xe ( t )  - xe ( f  - 70 ) 

* * * * + y, Yl 

x2 

Y2 

* * * *  
* * * *  

Yz 

For now, assuming that wxi ( t )  dominates the other terms in 

the braces, we make Ai (f) inversely proportional to 

0 * ;  0 * 
x 2 0 0 0 0  

0 * o *  

E w:i (1) = qxizo + q,,;r; / 3 

from (3). The resulting time scale is called the Kalman-plus- 
weights scale, or KPW. In Section VI1 we shall obtain the 
optimal weights without any approximation. 

The open diamonds in Fig. 1 show the measured Allan 
deviation of KPW for our four-clock simulation. In the short 
term it has the stabiIity of the average of the two masers; in 
the long term it has the stability of one ion trap. But for a 
lucky discovery, the story would have ended here. 

V. COVARIANCE X-REDUCTION 

By an x-row or x-column of the Kalman covariance matrix 
P ( t )  we mean a row or column that corresponds to a phase 
component of the state vector. According to the third equation 
in (6), all the x-rows (and hence all the x-columns) of P ( f )  are 
the same vector after a measurement update; let us call it the 
x-vector. This is another way of saying that we have perfect 
knowledge of the clocks with respect to each other, that is, the 
sets {x, ( t ) ,  i = O,.. . ,n] and {2, ( t ) ,  i = 0 ,..., n}  differ only by 
an unknown rigid translation. All the phase error variances 
(the x-components of the x-vector) are the same. When we 
run the Kalman filter, we observe that this common error 
variance diverges fast; the filter seems to know that it is doing 
a poor job on the phases. On the other hand, the submatrix Py 
of the frequency error covariances is empirically well 
behaved, though a slower divergence is not ruled out. 

Suppose, now, that we declare arbitrarily that the 2, ( t )  are 
the correct phases. Then their error variances become zero, 

and hence the troublesome x-vector becomes zero. 
Covariance x-reduction consists in setting all x-rows and x- 
columns of P ( t )  to zero. For two clocks, the operation looks 
like this: ; ;2 Yl x2 Y2 

0 0 0 0  

Y = [ o , ~ ~ ,  xz . . ,xn  - yn p . 
By following the Kalman filter equations (4) and (5), one 
shows that a temporal or measurement update of the X model, 
with and without x-reduction, maps to the same update of the 
Y model. 

The author first used this result for initializing the Kalman 
filter as follows: we run the covariance iteration without any 
measurement data until the Py submatrix settles down, then 
use the x-reduced P as the initial error covariance; it is 
reasonable to treat the initial clock phases as known. For the 
simulations, initial frequency state errors yi - j ;  were 
generated as Gaussian random variables with covariance Py . 

Another use of x-reduction is to control the growth of 
P ( f ) ,  if only to improve the numerical stability of the 
Kalman algorithm. Brown [3] proposed a more sophisticated 
method, called transparent variations of covariance, for 
reducing P ( t )  in a way that preserves future estimates of the 
entire state vector. When running the KPW scale, one can use 
the simpler method of x-reduction because only the frequency 
state estimates matter. 

VI. REDUCED KALMAN SCALE 

X-reduction is not transparent to the phase estimates. The 
author tried it in a simulation, performing the x-reduction at 
each date. To his surprise, the time scale defined by the 
common corrected clocks (8) no longer resembled the the raw 
Kalman scale; it became at least as stable as the KPW scale. 
To repeat, one carries out the Kalman filter as before, but 
performs covariance x-reduction after each measurement 
update. Then the common corrected clocks define a new time 
scale, called the reduced Kulmun scale, or Kred. The circles 



in Fig. 1 show the measured Allan deviation of Kred for our 
simulation; it is a slight improvement over KPW over the 
whole range of averaging times. Other simulations gave 
similar results. The next section tries to explain this surprising 
empirical finding. 

VII. THE IMPLICIT WEIGHTS 

Weiss, Allan, and Peppler 141 observed that the scale 
defined by the corrected clocks is actually a weighted-average 
scale, with weights that come directly from the Kalman gain 
matrix. Let us see how this works. The first ( x ,  ) component 

of the equation for ,? (t)  in (5) can be written as 

r=2 

where [K,, ( t ) ,  i = 2, ... n] is the first row of K ( t ) ,  

connecting the phase of clock 1 to the n-1 measurements. 
The implicit weights are defined by 

4 (t)= I + C K , ~  (t>; lJ ( t )  = - K , ~  (t),  i = 2, .  . ., n. (12) 

These weights add to 1, but it is possible for some of them to 
be negative. The same weights can be obtained by similar 
formulas from any of the x-rows of K ( t )  . From (8), (1 I), and 

n 

r=2 

( 

From (4) and (€9, 

When this is substituted into (13), the BTSE (9) appears. Let 
us state this finding as a theorem. 

THEOREM 2. No matter how the state estimate (2, P )  at 

the previous measurement date was obtained, the common 
corrected clock at the current date are obtained from the 
corrected clocks at the previous date by the basic time scale 
equation, whose weights are obtained from the Kalman gain 

This is true for both the raw and the reduced Kalman scales, 
but the implicit weights are different because the Kalman 
gains are different. Here are the implicit weights for the raw 
and reduced scales at the end of the four-clock simulation, 
together with the explicit weights of the KPW scale. 

2, ( 2 )  = XI  (f - 7 0 )  - x, (f -To) + Tojjr (t - To) . 

by ( 12). 

44 h 
Kraw 0 0.50 
KPW 0.45 0.05 
Kred 0.40 0.10 

The BTSE from Kraw ignores the H masers entirely. The 
Kred weights are a little more balanced than the KPW 
weights, while the Kred stability is hardly better than the 
KPW stability. 

These observations suggest that KPW and Kred are close to 
an optimal situation of some kind. By Theorems 1 and 2, both 

scales are weighted-average scales based on the same Kalman 
frequency estimates. It turns out that Kred itself is optimal in 
the following sense. 

THEOREM 3. Among all weighted-average time scales 
based on the Kalman frequency estimates, the reduced 
Kalman scale has the impIicit weights that minimize the 
variance of the scale increment x, ( t )  - x, ( t  - zo) between 

successive measurement dates. 
This result is reasonable: by x-reducing the previous 

covariance matrix, we declare that the previous phase 
estimates are perfect; thus, when the Kalman filter optimizes 
the current phase estimates, it also optimizes the estimates of 
the phase increments. 

The author has given an algebraic proof [SI, which we 
sketch here. In fact, the optimal weights can be obtained by 
minimizing the variance of the expression (10) for the scale 
increment. The optimal solution for the vector [A,, ..., An] 

depends on EW;~ (zo) and the frequency error covariance 
submatrix Py ( t  - r0). On the other hand we find from (5)  that 

K ( t )  depends on Ew:, (zo) and the entire matrix P ( t - r o ) ,  

which reduces to P,(t-ro) (and zeros) if it is x-reduced. 
One shows that the vector of implicit weights obtained from 
K ( t )  satisfies the optimality equation that comes from (10). 
Thus, there is no need to solve this equation for the weights; 
they come free with the reduced Kalman scale algorithm. 

VIII. FINAL REMARKS 

As we saw, the raw Kalman scale tends to adhere to an 
average of the clocks that are best in the long term, regardless 
of their short-term behavior. According to Weiss and 
Weissert [5], this happens because the Kalman filter is an 
accuracy algorithm; among other things it is trying to 
minimize the accumulated phase estimation error over time. 
Their insight appears to be correct. To change this behavior, 
we reach inside the Kalman filter at each step to modify the 
error covariance matrix by the operation of x-reduction. This 
simple, crude operation converts the accuracy algorithm to a 
stability algorithm, the reduced Kalman scale. The KPW 
scale may be regarded as a suboptimal version of the reduced 
Kalman scale, with explicit weights instead of the automatic 
implicit weights. 

This study has been carried out in a simulation playpen in 
which all clocks behave according to their assumed models. 
There is no provision for outliers, jumps in phase and 
frequency, changes in the ensemble, and estimation of the 
process noise parameters. Perhaps the simplicity and 
excellent stability of the reduced Kalman scale, under ideal 
conditions to be sure, will motivate an effort to supply these 
functions. 
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