
CCSDS File Delivery Protocol
(CFDP)

JPL’s Reference Implementation
An Overview

Navid Dehghani
Deputy Manager, Mission Software Systems

May 13,2003

JPL CFDP Reference Implementation

JPL is developing Reference Implementation of the
CCSDS File Delivery Protocol
Started as a prototype in the Flight System Testbed
Work is being partially funded by the JPL Standards
Organization
JPL is participating on the CCSDS CFDP Panel (PlF)
which is responsible for the development of its
sp eci ti cat ion.

2

JPL What is CFDP?
0

0

0

0

0

0

0

0

An intemational standard for automatic, reliable file transfer between
spacecraft and ground (in both directions), built on top of the familiar
CCSDS protocols.
Able to route data across multiple relay points, some of which may be
separated by interplanetary distances.
A single protocol, that relies on the services of underlying Link-layer
protocols.
Handles concurrent file transfers in both directions
Handles out of order PDU delivery
Supports acknowedged and unacknowledged transmission modes
In reliable transmission mode, automatically retransmits lost or
corrupted data using one of several lost segment detection modes
Provides several data integrity measures including file checksums and
optional CRCs for each PDU

3

JPL Core & Extended Procedures
Core Procedures

Extended Procedures

- Single point to point file transmission

Multi-hop transfers fiom waypoint to waypoint
Each entity takes custody of the file
Retransmission is point-to-point, but transaction state is tracked end-to-end [e.g., rover to
desktop]

-

-

-

Science workstation -

E., orbiter 1

station \ OaN

4

CFDP Classes of Service

Class 1 - Core procedures

+:+ Class 2 - Core procedures
- Unacknowledged mode file transfer

- Unacknowledged or Acknowledged mode file transfers
- Bounded or Unbounded Data File

Class 3 - Extended procedures
- Unacknowledged transfer of bounded or unbounded data files Erom

a source to destination via waypoints
Class 4 - Extended procedures
- Acknowledged transfer of a bounded or unbounded data file fiom a

source to destination via waypoints

+:+Current Class of JPL Reference Implementation
5

Basic Architecture of a

6

CFDP Terminology
Entity - a functioning implementation of the CFDP protocol that implements
all of its procedures.
CFDP User - a software task that makes services requests of its the local
entity
Filestore - the media used by the entity to store its files. The protocol operates
by copying files from the filestore on the local entity to a filestore on a remote
entity.
Management Information Base - The database used to configure the local
CFDP entity.
Communication System - The underlying communication system referred to
as the “Unitdata Transfer Layer” to which all entities in a given domain have
access.
File Data Unit - the concatentation of the filedata and metadata required to
transfer a single file between 2 entities.
Transaction - An end to end transmission of a single File Data Unit between 2
entities.

7

CFDP User Application

Each CFDP entity has an associated user application which is not part
of the core software.
The user application performs requests and receives events (or
indications) and status from the core application via interface libraries.
Requests include: put file, cancel transaction, abandon transaction
suspend transaction, resume transaction, and report transaction
Indications include the transaction indication, transaction finished
indication, metadata received indication, EOF sent indication, file
segment received indication, transaction suspended / resumed
indications, a report indication and a fault indication.
The user application is not standardized by a CCSDS specification and
can be a complex application or a simple test program.

8

P

Communication System
The CFDP Entity communicates with other entities via
transport layer protocols.
The UT adapters have been developed which interface to
the underlying transport protocols via interface libraries
These adapters handles mapping of CFDP entity names to
protocol level addresses using information stored in the
Management Information Base (MIB)
Each CFDP entity may interface to one or more UT
adapters to communicate with different remote entities.
We used User Datagram Protocol (UDP) adapters in our
test environment.

9

d
)

m

*

a d) E d) srl

c
m

d
)

m

rmL Types of Operations
0

0

0

0

0

0

Put Request
- Transfer a file from one filestore to another
- Perform filestore requests on another filestore
- Initiate proxy operations

Cancel Transaction - cancel the specified transaction
Abandon Transaction - abandon the specified transaction
Report on Transaction - request a report on a specified
transaction
SuspendResume Transaction - suspend or resume a
specified transaction
Set / Request MIB Values

1 1

0

0

0

0

0

0

0

0

Metadata PDU - first PDU sent from sender to receiver on start of a
file transfer transaction
File Data PDUs - contain file data
EOF PDU - sent after all file data has been sent
Finished PDU - sent by receiver when transaction is complete.
ACK (EOF or Finished) - acknowledgement of receipt of EOF or
Finished PDU (acknowledged mode only)
NAK PDU - sent by receiver to sender to indicate that a given range of
data needs to be resent.
Keep Alive PDU - sent by sending receiving to tell the sending entity
how much data has been received
Prompt PDU - (Keep Alive or NAK) - prompts receiving entity to
sent a Keep Alive PDU or NAK PDU

12

A=L Unacknowledged Transmission Mode

One way communication
No Retransmission
The sending Entity sends a
Metadata PDU, followed by on or
more file data PDUs and an EOF
PDU.
The receiving entity does not
acknowledge receipt of the EOF
PDU and stores the file on
receipt of the EOF PDU.

etadata PDI J B

13

JDL Acknowledged Transmission Mode

Finished PDU
b

4 ACK Finished

The sending Entity sends a Metadata
PDU, followed by on or more file
data PDUs and an EOF PDU.
The receiving entity acknowledges
receipt of the EOF PDU and will send
NAK PDUS for those data segments
which have not been received.
Missing data will be NAK’d by the
receiving entity a user specified
number of times.
The receiving entity will send a
Finished PDU when file transfer is
complete with status information
regarding the transfer.
The file is stored to the filestore on
sending the Finished PDU.
The Finished PDU is acknowledge by
the sender.

1 r
etadata PDU b

3 NAK PDUs

I I

14

Proxy Operation

Source Entity User requests proxy entity user to transfer a file to the receiving
entity.
Can be used like a “get” request to get a file from another entity.

Proxy
Put request -

Proxy
Put Notice

k
d)
m etadata PDU B

EOF PDI J B

h x
0

&

15

Retransmission Modes
Immediate Mode - A NAK PDU is issued by the receiving
entity as soon as a gap is detected in the data sequence.
Prompted - A NAK PDU is issued by the receiving entity
when prompted by a PROMPT PDU fiom the sending
entity
Asynchronous - A NAK PDU is issued by the receiving
entity when an implementation specific event occurs
(opening up of a window of opportunity, timer etc)
Deferred - A NAK PDU is issued by the receiving entity
upon receipt of the EOF PDU if gaps are detected.

16

Faults and Fault Handling

Types of CFDP Faults CFDP Fault Handlers
- Too Many ACKS
- Too Many KeepAlives
- Invalid Transmission Mode
- Filestore Rejection
- Checksum Error
- FileSize Error
- Too Many NAKs
- Inactivity
- Invalid File Structure

- Abandon Fault Handler
- Cancel Fault Handler
- Suspend Fault Handler
- Ignore Fault Handler

17

TOP LEVEL PROCESS ARCHITECTURE

UT
layer

CFDP Core I
I
I
I i I Userappli

I I
I

P
Q
S
UT layer
SDR
files
libfdp
user app.

fdpi
fdpd
fdpo
fdPS

cation

Pipe
message queue
semaphore
Universal Transfer layer - interface to transport layer
Simple Data Recorder (persistent storage for user data objects)
source/destination files on virtual file system
fdpd and user application API
Template user application used for testing (sends requests to fdpd and accepts
event responses)
reads PDUs from message queue, writes them to SDR, pipes notification to fdpd
transmission and retransmission daemon
responds to semaphore, reads PDUs from SDR, writes them to message queue
Notifies fdpd that a critical PDU has been sent.

18

Processes
- fdpd is the main CFDP process and performs the bulk

of protocol’s work.
- fdpo process is created to communicate with each

contact (a destination entity with which this entity can -

directly communicate).

by sending a token over a pipe

sent so that fdpd can start its timers.

- fdpi tells the fdpd task that there is an incoming PDU

- fdpq tells the fdpd task that a critical PDU has been

19

Layered Architecture

CFDP
SDR Simple Data Recorder

baseline = fdpd, fdpi, fdpo, fdpq

= persistent object database in shared
memory, using PSM and SMList

linked lists in shared memory using PSM

= memory management within a
pre-allocated memory partition

access to O.S. such as shared
memory, system time, P, Q, S

SmList
PSM Personal Space Management

Platform

VF Virtual Filestore

Operating System
= isolates CFDP from I/O
threadhpawddestroy, file system, time,

inter process communications 20

Simple Data Recorder (SDR) is a rudimentary persistent object system
which insulates client code fkom differences in mass storage
implementations (file and DRAM versions available)

- Catalog service for retrieval of object by name.
- Collection object management: linked lists, self-identifying tables, self-

- Heap management services: create and destroy arbitrary “objects”.
- Low-level heap and bulk storage I/O functions.

Six layers of functionality:

identifying strings.

- Transaction mechanism for data integrity.
- Adaptation layer re-implemented separately for each mass storage

technology.

21

Architecture:
- Heap area for small, volatile objects, such as linked list elements.
- Bulk area for large, static data, such as the contents of linked list

- “N” write-ahead logs.
- Heap is mirrored in DRAM.

elements. A large ring buffer.

All heap write()s are applied to mirror and to current log.
All heap read()s access mirror.
When end of log A is reached, we switch to log B and all committed
transactions in log A are applied to heap.
- Multiple writes to any single area of heap are resolved to a single write

before application.

22

PSM (Personal Space Management)
- Implements private, high-speed dynamic memory

- a pre-allocated memory partition of fixed size.
- Managed partition may be either private or shared

SmList uses PSM to implement linked lists in shared
memory.

management

memory.

23

Implements C “standard I/O”, insulating CFDP from direct
access to operating system functions.
Enables support for all “virtual filestore” functions
identified in CFDP (reading and writing files, renaming
files and directories, deleting files and directories, creating
files and directories. . .)
Implemented as libvf.a, libvf-so
Header file vf.h

24

Current Platforms
- Unix
- Solaris5, Solaris 7, Solaris 8, Solaris 9
- Linux
- VxWorks 5.2, VxWorks 5.4

File Systems
- NFS,DOS

25

Who Uses our Implementation?

Current Customers at JPL:
- Deep Impact Flight Project (Ball)
- TC&DM Ground System - FDM Subsystem
- MRO

Potential Customers at JPL:
- MDS
- DAWNMission

Non-JPL Customers:
- MMO

- Messenger Ground System at the Applied Physics Laboratory

- Various Universities
Ames Research Center

26

3

0

L.
cu
U

0

(3

n
 p' 1

i
l

A

C
T

A
PI

D
O

M
A

PI

w
d

n
 N

sa
Iim

oa N
sa

z

Other Implementations of CFDP Core

European Space Agency (ESA)

Japanese Space Agency (NASDA)

Goddard (NASA)

British Space Agency (BNSD)

- DOS based implementation in Object Pascal

- DOS based implementation in C++

- Unix based implementation in C

- Linux based implementation in C

28

Delivery of flight ready software to Deep Impact - January
2003 with continuing support through launch.
Delivery to MMO (V28.0) June 2003
Delivery to MRO (V28.1) in October 2003
Delivery to TTC&DM Ground System V28.0 (June 2003)
Full Blue Book compliance and Extended Procedures
implemented by CCSDS Panel 1F meeting in Oct. 2003

fbnctions into the user application by CCSDS Panel IF
meeting in Oct. 2003

Integration of Store and Forward Overlay and Proxy

29

The Team ...
Task Lead - Mike Levesque
System Engineer - Scott Burleigh
CFDP CDE / Developer.- Kathy Bryan Rundstrom
CFDP Subsystem Tester - John Veregge
FDM CDE / Developer - Son Ho
FDM Subsystem Tester - Ken Lam
Deep Impact Project Rep. - Felicia Sanders

30

References

CCSDS Web Page - CCSDS documents and specifications
- www.ccsds.org

JPL CFDP Web Pages for development status and docs
- www.jpl.nasa.gov/eis/cfdp

A Standard for the Transmission of IP Datagrams on
Avian Carriers
- http://www.ietf.org/rfc/rfc 1 149.txt.

31

http://www.ccsds.org
http://www.ietf.org/rfc/rfc

