Requirements Discovery During the Testing of Safety-Critical Software

Robyn Lutz
Jet Propulsion Lab
and Iowa State University
rlutz@cs.iastate.edu

Inés Carmen Mikulski
Jet Propulsion Lab
ines.c.mikulski@jpl.nasa.gov

ICSE 2003
Portland, OR May 8, 2003

The research described in this presentation was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. It was funded by NASA’s Office of Safety and Mission Assurance, Center Initiative UPN 323-08. The first authors’ research is supported in part by National Science Foundation Grants CCR-0204139 and CCR-0205588.
Topics

• Motivation & related work
• Problem
• Approach
• Results and examples
• Lessons Learned
Motivation and Related Work

- **Goal:** reduce critical anomalies after launch
- **Known:**
 - Incomplete or misunderstood requirements cause testing defects [Gardiner, '99; Lauesen, Vinter, '01; Leszak, Perry, Stoll, '00; Lutz, '93]
 - Incomplete or misunderstood requirements cause accidents [Hanks, Knight, Strunk '01; Weiss, Leveson, Lundqvist, Farid, Stringfellow '01]
Problem

Previous focus

Requirements discovery

Reqmts Design Testing Deployment Operations
Approach

- Analyze problem reports from integration and system testing to better understand how requirements are discovered; use findings to reduce anomalies post-launch

- Mars Exploration Rovers
 - Launch June, 2003
 - ~300 K LOC flight software
 - ~400 software requirements

- Problem Reports (PRs)
 - Written by test teams
 - Standard form
 - Mined institutional, web-based database of PRs
 - 171 PRs analyzed in ICSE paper; now ~450
Approach

- Adapted Orthogonal Defect Classification (ODC) [Chillarege et al., 92] to spacecraft domain
- “Extracts signatures from defects”
- Attributes characterize each defect:
 - Activity: when defect surfaced, e.g., integration test
 - Trigger: situation that allowed defect to appear; e.g., testing a single command
 - Target: what got fixed; e.g., flight software
 - Type: nature of the fix, e.g., assignment_INITIALIZATION
Results

- 2 basic kinds of requirements discovery:
 - Discovery of new (previously unrecognized) requirements or requirements knowledge
 - Discovery of misunderstandings of (existing) requirements

- Reflected in ODC Target (what gets fixed) and ODC Type (nature of the fix):
 1. Software change (new requirement allocated to software)
 2. Procedural change (new requirement allocated to operational procedure)
 3. Document change (requirements confusion addressed via improved documentation)
 4. No change needed
Results: What the PRs show
Results: Examples

1. Incomplete requirements, resolved by change to software:
 New software requirement became evident: initial state of a component’s state machine must wait for the associated motor’s initial move to complete

2. Unexpected requirements interaction, resolved by changes to operational procedures:
 Software fault monitor issued redundant off commands from a particular state (correct but undesirable behavior). Corrective action was to prevent redundant commands procedurally by selecting limits that avoid that state in operations
Results: Examples

3. Requirements confusion, resolved by changes to documentation
 Testing personnel incorrectly thought heaters would stay on as software transitioned from pre-separation to Entry/Descent mode; clarified in documentation.

4. Requirements confusion, resolved without change
 Testers assumed commands issued when component was off would be rejected, but commands executed upon reboot. No fix needed; behavior correct.
Lessons Learned

- Testing is "crystal ball" into operations
 - False-positive PRs (behavior correct but unexpected) provide insights into requirements confusions
 - If software behavior surprised testers, it may surprise operators
- "No-Fix" decision may waste opportunity to document/train/change procedure
 - Avoid potentially hazardous recurrence
 - Important in long-lived systems with turnover, loss of knowledge
- Need traceability from testing into operations
 - Some testing PRs resolved by changes to operational procedures
 - Capture rationale for change to use in ops & maintenance